West-Eberhard M. Developmental plasticity and evolution. Oxford: Oxford University Press; 2003.
Book
Google Scholar
Bateson P, Gluckman P, Hanson M. The biology of developmental plasticity and the predictive adaptive response hypothesis. J Physiol. 2014;592:2357–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vickers MH. Early life nutrition, epigenetics and programming of later life disease. Nutrients. 2014;6:2165–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langley-Evans SC. Developmental programming of health and disease. Proc Nutr Soc. 2006;65:97–105.
Article
PubMed
PubMed Central
Google Scholar
Wu RSS. Chapter 3 Effects of hypoxia on fish reproduction and development. In: Richards JG, Farrell AP, Brauner CJ, editors. Fish physiology. Cambridge: Academic Press; 2009. p. 79–141.
Google Scholar
Nechaeva MV. Physiological responses to acute changes in temperature and oxygenation in bird and reptile embryos. Respir Physiol Neurobiol. 2011;178:108–17.
Article
PubMed
Google Scholar
Packard GC, Tracy CR, Roth JJ. The physiological ecology of reptilian eggs and embryos. And the evolution of viviparity within the class reptilia. Biol Rev. 1977;52:71–105.
Article
CAS
PubMed
Google Scholar
Ackerman RA, Lott DB. Thermal, hydric, and respiratory climate of nests. In: Deeming DC, editor. Reptilian incubation: environment, evolution, and behaviour. Nottingham: Nottingham University Press; 2004. p. 15–43.
Google Scholar
Booth DT. The effect of hypoxia on oxygen consumption of embryonic estuarine crocodiles (Crocodylus porosus). J Herpetol. 2000;34:478–81.
Article
Google Scholar
Ackerman R, Lott D. Thermal, hydric, and respiratory climate of nests. In: Deeming DC, editor. Reptilian incubation: environment, evolution and behaviour. Nottingham: Nottingham University Press; 2004. p. 15–43.
Google Scholar
Eme J, Rhen T, Crossley D II. Adjustments in cholinergic, adrenergic and purinergic control of cardiovascular function in snapping turtle embryos (Chelydra serpentina) incubated in chronic hypoxia. J Comp Physiol B. 2014;184:891–902.
Article
CAS
PubMed
Google Scholar
Eme J, Rhen T, Tate KB, Gruchalla K, Kohl ZF, Slay CE, Crossley DA. Plasticity of cardiovascular function in snapping turtle embryos (Chelydra serpentina): chronic hypoxia alters autonomic regulation and gene expression. Am J Physiol Regul Integr Comp Physiol. 2013;304(11):R966–79.
Article
CAS
PubMed
Google Scholar
Tate KB, Kohl ZF, Eme J, Rhen T, CrossleyIi DA. Critical windows of cardiovascular susceptibility to developmental hypoxia in common snapping turtle (Chelydra serpentina) embryos. Physiol Biochem Zool. 2015;88:103–15.
Article
PubMed
Google Scholar
Wearing OH, Conner J, Nelson D, Crossley J, Crossley DA II. Embryonic hypoxia programmes postprandial cardiovascular function in adult common snapping turtles (Chelydra serpentina). J Exp Biol. 2017;220:2589–97.
PubMed
Google Scholar
Wearing OH, Eme J, Rhen T, Crossley DA 2nd. Phenotypic plasticity in the common snapping turtle (Chelydra serpentina): long-term physiological effects of chronic hypoxia during embryonic development. Am J Physiol Regul Integr Comp Physiol. 2016;310:R176–84.
Article
PubMed
Google Scholar
Crossley DA 2nd, Altimiras J. Cardiovascular development in embryos of the American alligator Alligator mississippiensis: effects of chronic and acute hypoxia. J Exp Biol. 2005;208:31–9.
Article
PubMed
Google Scholar
Eme J, Altimiras J, Hicks JW, Crossley Ii DA. Hypoxic alligator embryos: chronic hypoxia, catecholamine levels and autonomic responses of in ovo alligators. Comp Biochem Physiol A Mol Integr Physiol. 2011;160:412–20.
Article
CAS
PubMed
Google Scholar
Smith B, Crossley JL, Elsey RM, Hicks JW, Crossley DA 2nd. Embryonic developmental oxygen preconditions cardiovascular functional response to acute hypoxic exposure and maximal β-adrenergic stimulation of anesthetized juvenile American alligators (Alligator mississippiensis). J Exp Biol. 2019;222:jeb205419.
Article
PubMed
Google Scholar
Tate KB, Rhen T, Eme J, Kohl ZF, Crossley J, Elsey RM, Crossley DA 2nd. Periods of cardiovascular susceptibility to hypoxia in embryonic American alligators (Alligator mississippiensis). Am J Physiol Regul Integr Comp Physiol. 2016;310:R1267–78.
Article
PubMed
PubMed Central
Google Scholar
Ruhr IM, McCourty H, Bajjig A, Crossley DA 2nd, Shiels HA, Galli GLJ. Developmental plasticity of cardiac anoxia-tolerance in juvenile common snapping turtles (Chelydra serpentina). Proc Biol Sci. 2019;286:20191072–20191072.
CAS
PubMed
PubMed Central
Google Scholar
Jackson DC. Living without oxygen: lessons from the freshwater turtle. Comp Biochem Physiol A Mol Integr Physiol. 2000;125:299–315.
Article
CAS
PubMed
Google Scholar
Jackson DC, Ultsch GR. Physiology of hibernation under the ice by turtles and frogs. J Exp Zool A Ecol Genet Physiol. 2010;313:311–27.
Article
PubMed
CAS
Google Scholar
Bickler PE, Buck LT. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol. 2007;69:145–70.
Article
CAS
PubMed
Google Scholar
Stecyk JAW, Galli GL, Shiels HA, Farrell AP. Cardiac survival in anoxia-tolerant vertebrates: an electrophysiological perspective. Comp Biochem Physiol C Toxicol Pharmacol. 2008;148:339.
Article
PubMed
CAS
Google Scholar
Chen T, Dent SY. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet. 2014;15:93–106.
Article
CAS
PubMed
Google Scholar
Canovas S, Ross PJ. Epigenetics in preimplantation mammalian development. Theriogenology. 2016;86:69–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 2019;20:625–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voigt P, Tee WW, Reinberg D. A double take on bivalent promoters. Genes Dev. 2013;27:1318–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet. 2016;17:551–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Héberlé E, Bardet AF. Sensitivity of transcription factors to DNA methylation. Essays Biochem. 2019;63:727–41.
Article
PubMed
PubMed Central
Google Scholar
Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10:295–304.
Article
CAS
PubMed
Google Scholar
Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.
Article
PubMed
PubMed Central
Google Scholar
Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109.
Article
CAS
PubMed
Google Scholar
Bell JSK, Vertino PM. Orphan CpG islands define a novel class of highly active enhancers. Epigenetics. 2017;12:449–64.
Article
PubMed
PubMed Central
Google Scholar
Doni Jayavelu N, Jajodia A, Mishra A, Hawkins RD. Candidate silencer elements for the human and mouse genomes. Nat Commun. 2020;11:1061.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinhaus R, Gonzalez T, Seelow D, Robinson PN. Pervasive and CpG-dependent promoter-like characteristics of transcribed enhancers. Nucleic Acids Res. 2020;48:5306–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Illingworth RS, Bird AP. CpG islands—‘a rough guide.’ FEBS Lett. 2009;583:1713–20.
Article
CAS
PubMed
Google Scholar
Chen X, Zhang L, Wang C. Prenatal hypoxia-induced epigenomic and transcriptomic reprogramming in rat fetal and adult offspring hearts. Sci Data. 2019;6:238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang L, Chen X, Dasgupta C, Chen W, Song R, Wang C, Zhang L. Foetal hypoxia impacts methylome and transcriptome in developmental programming of heart disease. Cardiovasc Res. 2018;115:1306–19.
Article
PubMed Central
CAS
Google Scholar
Radhakrishnan S, Literman R, Mizoguchi B, Valenzuela N. MeDIP-seq and nCpG analyses illuminate sexually dimorphic methylation of gonadal development genes with high historic methylation in turtle hatchlings with temperature-dependent sex determination. Epigenet Chromatin. 2017;10:28.
Article
CAS
Google Scholar
Elango N, Yi SV. DNA methylation and structural and functional bimodality of vertebrate promoters. Mol Biol Evol. 2008;25:1602–8.
Article
CAS
PubMed
Google Scholar
Xu J, Liu S, Yin P, Bulun S, Dai Y. MeDEStrand: an improved method to infer genome-wide absolute methylation levels from DNA enrichment data. BMC Bioinform. 2018;19:540.
Article
CAS
Google Scholar
Wang T, Krosniunas EH, Hicks JW. The role of cardiac shunts in the regulation of arterial blood gases. Am Zool. 1997;37:12–22.
Article
Google Scholar
Hicks JW, Wang T. Cardiovascular regulation during anoxia in the turtle: an in-vivo study. Physiol Zool. 1998;71:1–14.
Article
CAS
PubMed
Google Scholar
Farrell AP, Franklin CE, Arthur PG, Thorarensen H, Cousins KL. Mechanical performance of an in-situ perfused heart from the turtle, Chrysemys Scripta, during normoxia and anoxia at 5°C and 15°C. J Exp Biol. 1994;191:207–29.
Article
CAS
PubMed
Google Scholar
Hicks JM, Farrell AP. The cardiovascular responses of the red-eared slider (Trachemys scripta) acclimated to either 22 or 5°C. II. Effects of anoxia on adrenergic and cholinergic control. J Exp Biol. 2000;203:3775–84.
Article
CAS
PubMed
Google Scholar
Stecyk JAW, Bock C, Overgaard J, Wang T, Farrell AP, Portner H-O. Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. Am J Physiol Regul Integr Comp Physiol. 2009;297:R756–68.
Article
CAS
PubMed
Google Scholar
Farrell AP, Stecyk JA. The heart as a working model to explore themes and strategies for anoxic survival in ectothermic vertebrates. Comp Biochem Physiol A Mol Integr Physiol. 2007;147:300–12.
Article
CAS
PubMed
Google Scholar
Hicks JM, Farrell AP. The cardiovascular responses of the red-eared slider (Trachemys scripta) acclimated to either 22 or 5°C. I. Effects of anoxic exposure on in-vivo cardiac performance. J Exp Biol. 2000;203:3765–74.
Article
CAS
PubMed
Google Scholar
Stecyk JAW, Overgaard J, Farrell AP, Wang T. α-Adrenergic regulation of systemic peripheral resistance and blood flow distribution in the turtle, Trachemys scripta, during anoxic submergence at 5°C and 21°C. J Exp Biol. 2004;207:269–83.
Article
CAS
PubMed
Google Scholar
Stecyk JA, Stensløkken KO, Farrell AP, Nilsson GE. Maintained cardiac pumping in anoxic crucian carp. Science. 2004;306:77.
Article
CAS
PubMed
Google Scholar
Bundgard A, James AM, Joyce W, Murphy MP, Fago A. Suppression of reactive oxygen species generation in heart mitochondria from anoxic turtles: the role of complex I S-nitrosation. J Exp Biol. 2018;221:jeb174391.
Article
Google Scholar
Wasser JS, Inman KC, Arendt EA, Lawler RG, Jackson DC. 31P-NMR measurements of pHi and high-energy phosphates in isolated turtle hearts during anoxia and acidosis. Am J Physiol Regul Integr Comp Physiol. 1990;259:R521–30.
Article
CAS
Google Scholar
Ultsch GR, Jackson DC. Long-term submergence at 3°C of the turtle, Chrysemys picta bellii, in normoxic and severely hypoxic water: I. Survival, gas exchange and acid-base status. J Exp Biol. 1982;96:11–28.
Article
Google Scholar
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94:909–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chouchani ET, Pell VR, James AM, Work LM, Saeb-Parsy K, Frezza C, Krieg T, Murphy MP. A unifying mechanism for mitochondrial superoxide production during ischemia–reperfusion injury. Cell Metab. 2016;23:254–63.
Article
CAS
PubMed
Google Scholar
Wasser JS, Guthrie SS, Chari M. In vitro tolerance to anoxia and ischemia in isolated hearts from hypoxia sensitive and hypoxia tolerant turtles. Comp Biochem Physiol A Physiol. 1997;118:1359–70.
Article
CAS
PubMed
Google Scholar
Wasser JS, Inman KC, Arendt EA, Lawler RG, Jackson DC. 31P-NMR measurements of pHi and high-energy phosphates in isolated turtle hearts during anoxia and acidosis. AJP Regul Integr Comp Physiol. 1990;259:R521–30.
Article
CAS
Google Scholar
Bundgaard A, James AM, Gruszczyk AV, Martin J, Murphy MP, Fago A. Metabolic adaptations during extreme anoxia in the turtle heart and their implications for ischemia–reperfusion injury. Sci Rep. 2019;9:2850.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stecyk JAW, Farrell AP. Effects of extracellular changes on spontaneous heart rate of normoxia- and anoxia-acclimated turtles (Trachemys scripta). J Exp Biol. 2007;210:421–31.
Article
CAS
PubMed
Google Scholar
Eme J, Rhen T, Tate KB, Gruchalla K, Kohl ZF, Slay CE, Crossley DA II. Plasticity of cardiovascular function in snapping turtle embryos (Chelydra serpentina): chronic hypoxia alters autonomic regulation and gene expression. Am J Physiol Regul Integr Comp Physiol. 2013;304:R966–79.
Article
CAS
PubMed
Google Scholar
Papadatos GA, Wallerstein PM, Head CE, Ratcliff R, Brady PA, Benndorf K, Saumarez RC, Trezise AE, Huang CL, Vandenberg JI, Colledge WH, Grace AA. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci USA. 2002;99:6210–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dauger S, Pattyn A, Lofaso F, Gaultier C, Goridis C, Gallego J, Brunet JF. Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development. 2003;130:6635–42.
Article
CAS
PubMed
Google Scholar
Laifman E, Keens TG, Bar-Cohen Y, Perez IA. Life-threatening cardiac arrhythmias in congenital central hypoventilation syndrome. Eur J Pediatr. 2020;179:821–5.
Article
CAS
PubMed
Google Scholar
Satoh K, Nigro P, Zeidan A, Soe NN, Jaffre F, Oikawa M, O’Dell MR, Cui Z, Menon P, Lu Y, Mohan A, Yan C, Blaxall BC, Berk BC. Cyclophilin A promotes cardiac hypertrophy in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2011;31:1116–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anastasiadi D, Esteve-Codina A, Piferrer F. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenet Chromatin. 2018;11:37.
Article
CAS
Google Scholar
Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK. On the presence and role of human gene-body DNA methylation. Oncotarget. 2012;3:462–74.
Article
PubMed
PubMed Central
Google Scholar
Feng S, Cokus SJ, Zhang X, Chen P-Y, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci. 2010;107:8689–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328:916–9.
Article
CAS
PubMed
Google Scholar
Jellyman JK, Fletcher AJW, Fowden AL, Giussani DA. Glucocorticoid maturation of fetal cardiovascular function. Trends Mol Med. 2020;26:170–84.
Article
CAS
PubMed
Google Scholar
Song R, Hu XQ, Zhang L. Glucocorticoids and programming of the microenvironment in heart. J Endocrinol. 2019;242:T121-t133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chintamaneni K, Bruder ED, Raff H. Programming of the hypothalamic-pituitary-adrenal axis by neonatal intermittent hypoxia: effects on adult male ACTH and corticosterone responses are stress specific. Endocrinology. 2014;155:1763–70.
Article
PubMed
CAS
Google Scholar
Kent OA, Saha M, Coyaud E, Burston HE, Law N, Dadson K, Chen S, Laurent EM, St-Germain J, Sun RX, Matsumoto Y, Cowen J, Montgomery-Song A, Brown KR, Ishak C, Rose J, De Carvalho DD, He HH, Raught B, Billia F, Kannu P, Rottapel R. Haploinsufficiency of RREB1 causes a Noonan-like RASopathy via epigenetic reprogramming of RAS-MAPK pathway genes. Nat Commun. 2020;11:4673.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, Wingett SW, Andrews S, Grey W, Ewels PA, Herman B, Happe S, Higgs A, LeProust E, Follows GA, Fraser P, Luscombe NM, Osborne CS. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47:598–606.
Article
CAS
PubMed
Google Scholar
Sahlén P, Abdullayev I, Ramsköld D, Matskova L, Rilakovic N, Lötstedt B, Albert TJ, Lundeberg J, Sandberg R. Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution. Genome Biol. 2015;16:156.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters. Nature. 2012;489:109–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, Phelan D, Ledwidge MT, McDonald KM, McCann A, Sharaf O, Baugh JA. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet. 2014;23:2176–88.
Article
CAS
PubMed
Google Scholar
Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology. Cell Metab. 2018;27:281–98.
Article
CAS
PubMed
Google Scholar
D’Anna F, Van Dyck L, Xiong J, Zhao H, Berrens RV, Qian J, Bieniasz-Krzywiec P, Chandra V, Schoonjans L, Matthews J, De Smedt J, Minnoye L, Amorim R, Khorasanizadeh S, Yu Q, Zhao L, De Borre M, Savvides SN, Simon MC, Carmeliet P, Reik W, Rastinejad F, Mazzone M, Thienpont B, Lambrechts D. DNA methylation repels binding of hypoxia-inducible transcription factors to maintain tumor immunotolerance. Genome Biol. 2020;21:182.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR, Conway SJ, Yoder MC, Haneline LS, Franco D, Shou W. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004;131:2219–31.
Article
CAS
PubMed
Google Scholar
Sun L, Yu J, Qi S, Hao Y, Liu Y, Li Z. Bone morphogenetic protein-10 induces cardiomyocyte proliferation and improves cardiac function after myocardial infarction. J Cell Biochem. 2014;115:1868–76.
CAS
PubMed
Google Scholar
Umbarkar P, Singh AP, Gupte M, Verma VK, Galindo CL, Guo Y, Zhang Q, McNamara JW, Force T, Lal H. Cardiomyocyte SMAD4-dependent TGF-β signaling is essential to maintain adult heart homeostasis. JACC Basic Transl Sci. 2019;4:41–53.
Article
PubMed
PubMed Central
Google Scholar
Lin AE, Michot C, Cormier-Daire V, L’Ecuyer TJ, Matherne GP, Barnes BH, Humberson JB, Edmondson AC, Zackai E, O’Connor MJ, Kaplan JD, Ebeid MR, Krier J, Krieg E, Ghoshhajra B, Lindsay ME. Gain-of-function mutations in SMAD4 cause a distinctive repertoire of cardiovascular phenotypes in patients with Myhre syndrome. Am J Med Genet A. 2016;170:2617–31.
Article
CAS
PubMed
Google Scholar
Roberts KE, McElroy JJ, Wong WP, Yen E, Widlitz A, Barst RJ, Knowles JA, Morse JH. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J. 2004;24:371–4.
Article
CAS
PubMed
Google Scholar
Song Y, Jones JE, Beppu H, Keaney JF Jr, Loscalzo J, Zhang YY. Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation. 2005;112:553–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hautefort A, Mendes-Ferreira P, Sabourin J, Manaud G, Bertero T, Rucker-Martin C, Riou M, Adão R, Manoury B, Lambert M, Boet A, Lecerf F, Domergue V, Brás-Silva C, Gomez AM, Montani D, Girerd B, Humbert M, Antigny F, Perros F. Bmpr2 mutant rats develop pulmonary and cardiac characteristics of pulmonary arterial hypertension. Circulation. 2019;139:932–48.
Article
CAS
PubMed
Google Scholar
Thillainadesan G, Chitilian JM, Isovic M, Ablack JN, Mymryk JS, Tini M, Torchia J. TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol Cell. 2012;46:636–49.
Article
CAS
PubMed
Google Scholar
Su J, Morgani SM, David CJ, Wang Q, Er EE, Huang YH, Basnet H, Zou Y, Shu W, Soni RK, Hendrickson RC, Hadjantonakis AK, Massagué J. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature. 2020;577:566–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crossley DA II, Altimiras J. Cardiovascular development in embryos of the American alligator, Alligator mississippiensis: effects of chronic and acute hypoxia. J Exp Biol. 2005;208:31–9.
Article
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das D, Singh SK, Bierstedt J, Erickson A, Galli GLJ, Crossley DA II, Rhen T. Draft genome of the common snapping turtle, Chelydra serpentina, a model for phenotypic plasticity in reptiles. G3. 2020;10:4299–314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rhen T, Metzger K, Schroeder A, Woodward R. Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina. Sex Dev. 2007;1:255–70.
Article
CAS
PubMed
Google Scholar
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran H, Porter J, Sun MA, Xie H, Zhang L. Objective and comprehensive evaluation of bisulfite short read mapping tools. Adv Bioinform. 2014;2014:472045.
Article
Google Scholar
Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13:R87.
Article
PubMed
PubMed Central
Google Scholar
Klopfenstein DV, Zhang L, Pedersen BS, Ramirez F, Warwick Vesztrocy A, Naldi A, Mungall CJ, Yunes JM, Botvinnik O, Weigel M, Dampier W, Dessimoz C, Flick P, Tang H. GOATOOLS: a python library for gene ontology analyses. Sci Rep. 2018;8:10872.
Article
CAS
PubMed
PubMed Central
Google Scholar