Skip to main content


Page 1 of 18

  1. Blood-based tests have public appeal in screening cancers due to their minimally invasive nature, ability to integrate with other routine blood tests, and high compliance. This study aimed to investigate wheth...

    Authors: Jia-Yi Hou, Ning Li, Jie Wang, Li-Juan Gao, Jia-Song Chang and Ji-Min Cao
    Citation: Epigenetics & Chromatin 2023 16:35
  2. Despite well-documented effects on human health, the action modes of environmental pollutants are incompletely understood. Although transcriptome-based approaches are widely used to predict associations betwee...

    Authors: Zhaonan Zou, Yuka Yoshimura, Yoshihiro Yamanishi and Shinya Oki
    Citation: Epigenetics & Chromatin 2023 16:34
  3. Breast cancer, the most common malignancy in women worldwide, has been proven to have both altered plasma cell-free DNA (cfDNA) methylation and fragmentation profiles. Nevertheless, simultaneously detecting bo...

    Authors: Jun Wang, Yanqin Niu, Ming Yang, Lirong Shu, Hongxian Wang, Xiaoqian Wu, Yaqin He, Peng Chen, Guocheng Zhong, Zhixiong Tang, Shasha Zhang, Qianwen Guo, Yun Wang, Li Yu and Deming Gou
    Citation: Epigenetics & Chromatin 2023 16:33
  4. Cardiomyocyte growth and differentiation rely on precise gene expression regulation, with epigenetic modifications emerging as key players in this intricate process. Among these modifications, N6-methyladenosi...

    Authors: Xue-Hong Liu, Zhun Liu, Ze-Hui Ren, Hong-Xuan Chen, Ying Zhang, Zhang Zhang, Nan Cao and Guan-Zheng Luo
    Citation: Epigenetics & Chromatin 2023 16:32
  5. DNA hypermethylation is an epigenetic feature that modulates gene expression, and its deregulation is observed in cancer. Previously, we identified a neural-related DNA hypermethylation fingerprint in colon ca...

    Authors: Musa Idris, Louis Coussement, Maria M. Alves, Tim De Meyer and Veerle Melotte
    Citation: Epigenetics & Chromatin 2023 16:31
  6. Fatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular ...

    Authors: Ranjan Kumar Maji, Beate Czepukojc, Michael Scherer, Sascha Tierling, Cristina Cadenas, Kathrin Gianmoena, Nina Gasparoni, Karl Nordström, Gilles Gasparoni, Stephan Laggai, Xinyi Yang, Anupam Sinha, Peter Ebert, Maren Falk-Paulsen, Sarah Kinkley, Jessica Hoppstädter…
    Citation: Epigenetics & Chromatin 2023 16:30
  7. The function of DNA methyltransferase genes of insects is a puzzle, because an association between gene expression and methylation is not universal for insects. If the genes normally involved in cytosine methy...

    Authors: Christopher B. Cunningham, Emily A. Shelby, Elizabeth C. McKinney, Robert J. Schmitz, Allen J. Moore and Patricia J. Moore
    Citation: Epigenetics & Chromatin 2023 16:28
  8. Our understanding of the organization of the chromatin fiber within the cell nucleus has made great progress in the last few years. High-resolution techniques based on next-generation sequencing as well as opt...

    Authors: Jente van Staalduinen, Thomas van Staveren, Frank Grosveld and Kerstin S. Wendt
    Citation: Epigenetics & Chromatin 2023 16:27
  9. RNA modifications have been known for many years, but their function has not been fully elucidated yet. For instance, the regulatory role of acetylation on N4-cytidine (ac4C) in RNA can be explored not only in...

    Authors: Alena Svobodová Kovaříková, Lenka Stixová, Aleš Kovařík and Eva Bártová
    Citation: Epigenetics & Chromatin 2023 16:26
  10. Gene expression in malaria parasites is subject to various layers of regulation, including histone post-translational modifications (PTMs). Gene regulatory mechanisms have been extensively studied during the m...

    Authors: Ashley B. Reers, Rodriel Bautista, James McLellan, Beatriz Morales, Rolando Garza, Sebastiaan Bol, Kirsten K. Hanson and Evelien M. Bunnik
    Citation: Epigenetics & Chromatin 2023 16:25
  11. The three-dimensional configuration of the eukaryotic genome is an emerging area of research. Chromosome conformation capture outlined genome segregation into large scale A and B compartments corresponding mai...

    Authors: Alla Krasikova, Tatiana Kulikova, Juan Sebastian Rodriguez Ramos and Antonina Maslova
    Citation: Epigenetics & Chromatin 2023 16:24
  12. High-throughput sequencing (HTS) offers unprecedented opportunities for the discovery of causative gene variants in multiple human disorders including cancers, and has revolutionized clinical diagnostics. Howe...

    Authors: Mohammad Salma, Elina Alaterre, Jérôme Moreaux and Eric Soler
    Citation: Epigenetics & Chromatin 2023 16:23
  13. Interactions among topologically associating domains (TADs), and between the nuclear envelope (NE) and lamina-associated domains (LADs) are expected to shape various aspects of three-dimensional (3D) chromatin...

    Authors: Igor S. Tolokh, Nicholas Allen Kinney, Igor V. Sharakhov and Alexey V. Onufriev
    Citation: Epigenetics & Chromatin 2023 16:21
  14. During epididymal transit spermatozoa acquire specific morphological features which enhance their ability to swim in a progressive manner and interact with the oocytes. At the same time, sperm cells undergo sp...

    Authors: Emanuele Capra, F. Turri, B. Lazzari, S. Biffani, A. Lange Consiglio, P. Ajmone Marsan, A. Stella and F. Pizzi
    Citation: Epigenetics & Chromatin 2023 16:20
  15. Patients with balanced X-autosome translocations and premature ovarian insufficiency (POI) constitute an interesting paradigm to study the effect of chromosome repositioning. Their breakpoints are clustered wi...

    Authors: Adriana Di-Battista, Bianca Pereira Favilla, Malú Zamariolli, Natália Nunes, Alexandre Defelicibus, Lucia Armelin-Correa, Israel Tojal da Silva, Alexandre Reymond, Mariana Moyses-Oliveira and Maria Isabel Melaragno
    Citation: Epigenetics & Chromatin 2023 16:19
  16. Dynamic chromatin remodeling is associated with changes in the epigenetic pattern of histone acetylations and methylations required for processes based on dynamic chromatin remodeling and implicated in differe...

    Authors: Eva Monte-Serrano, Patricia Morejón-García, Ignacio Campillo-Marcos, Aurora Campos-Díaz, Elena Navarro-Carrasco and Pedro A. Lazo
    Citation: Epigenetics & Chromatin 2023 16:18
  17. Proteolysis of the histone H3 N-terminal tail (H3NT) is an evolutionarily conserved epigenomic feature of nearly all eukaryotes, generating a cleaved H3 product that is retained in ~ 5–10% of the genome. Altho...

    Authors: Benjamin H. Weekley and Judd C. Rice
    Citation: Epigenetics & Chromatin 2023 16:16
  18. Single-cell technologies to analyze transcription and chromatin structure have been widely used in many research areas to reveal the functions and molecular properties of cells at single-cell resolution. Sampl...

    Authors: Betelehem Solomon Bera, Taylor V. Thompson, Eric Sosa, Hiroko Nomaru, David Reynolds, Robert A. Dubin, Shahina B. Maqbool, Deyou Zheng, Bernice E. Morrow, John M. Greally and Masako Suzuki
    Citation: Epigenetics & Chromatin 2023 16:14
  19. IDH1/2 hotspot mutations are well known to drive oncogenic mutations in gliomas and are well-defined in the WHO 2021 classification of central nervous system tumors. Specifically, IDH mutations lead to aberrant h...

    Authors: Xinyu Wang, Lijun Dai, Yang Liu, Chenghao Li, Dandan Fan, Yue Zhou, Pengcheng Li, Qingran Kong and Jianzhong Su
    Citation: Epigenetics & Chromatin 2023 16:13
  20. Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients. Hyperglycemic myocardial microenvironment significantly alters chromatin architecture and the transcriptome, resulting in aberran...

    Authors: Rohini Dhat, Dattatray Mongad, Sivarupa Raji, Silpa Arkat, Nitish R. Mahapatra, Nishant Singhal and Sandhya L. Sitasawad
    Citation: Epigenetics & Chromatin 2023 16:12
  21. Epigenetic reprogramming is involved in luteinizing hormone (LH)-induced ovulation; however, the underlying mechanisms are largely unknown.

    Authors: Jiamin Jin, Peipei Ren, Xiang Li, Yinyi Zhang, Weijie Yang, Yerong Ma, Mengru Lai, Chao Yu, Songying Zhang and Yin-Li Zhang
    Citation: Epigenetics & Chromatin 2023 16:11
  22. Eukaryotic cells can rapidly adjust their transcriptional profile in response to molecular needs. Such dynamic regulation is, in part, achieved through epigenetic modifications and selective incorporation of h...

    Authors: Syed Nabeel-Shah, Jyoti Garg, Kanwal Ashraf, Renu Jeyapala, Hyunmin Lee, Alexandra Petrova, James D. Burns, Shuye Pu, Zhaolei Zhang, Jack F. Greenblatt, Ronald E. Pearlman, Jean-Philippe Lambert and Jeffrey Fillingham
    Citation: Epigenetics & Chromatin 2023 16:10
  23. Polycomb group RING finger protein 6 (PCGF6) plays an important role as a regulator of transcription in a variety of cellular processes, including tumorigenesis. However, the function and expression of PCGF6 i...

    Authors: Meng Zhu, Ruo-Nan Zhang, Hong Zhang, Chang-bao Qu, Xiao-chong Zhang, Li-Xin Ren, Zhan Yang and Jun-Fei Gu
    Citation: Epigenetics & Chromatin 2023 16:9
  24. Allele-specific methylation of the imprinting control region (ICR) is the molecular basis for the genomic imprinting phenomenon that is unique to placental mammals. We previously showed that the ICR at the mouse

    Authors: Hitomi Matsuzaki, Shokichi Sugihara and Keiji Tanimoto
    Citation: Epigenetics & Chromatin 2023 16:7
  25. Structural Maintenance of Chromosomes (SMC) complexes are molecular machines driving chromatin organization at higher levels. In eukaryotes, three SMC complexes (cohesin, condensin and SMC5/6) play key roles i...

    Authors: L. Mahrik, B. Stefanovie, A. Maresova, J. Princova, P. Kolesar, E. Lelkes, C. Faux, D. Helmlinger, M. Prevorovsky and J. J. Palecek
    Citation: Epigenetics & Chromatin 2023 16:6
  26. Cellular differentiation is marked by temporally and spatially coordinated gene expression regulated at multiple levels. DNA methylation represents a universal mechanism to control chromatin organization and i...

    Authors: William Chang, Yilin Zhao, Danielle Rayêe, Qing Xie, Masako Suzuki, Deyou Zheng and Ales Cvekl
    Citation: Epigenetics & Chromatin 2023 16:4
  27. Preconception exposure to phthalates such as the anti-androgenic dibutyl-phthalate (DBP) impacts both male and female reproduction, yet how this occurs largely remains unknown. Previously we defined a series o...

    Authors: G. M. Swanson, F. L. Nassan, J. B. Ford, R. Hauser, J. R. Pilsner and S. A. Krawetz
    Citation: Epigenetics & Chromatin 2023 16:3
  28. Sex determination and differentiation are complex and delicate processes. In female chickens, the process of sex differentiation is sensitive and prone to be affected by the administration of aromatase inhibit...

    Authors: Xiuan Zhang, Jianbo Li, Xiqiong Wang, Yuchen Jie, Congjiao Sun, Jiangxia Zheng, Junying Li, Ning Yang and Sirui Chen
    Citation: Epigenetics & Chromatin 2023 16:2
  29. Many human disease phenotypes manifest differently by sex, making the development of methods for incorporating X and Y-chromosome data into analyses vital. Unfortunately, X and Y chromosome data are frequently...

    Authors: Amy M. Inkster, Martin T. Wong, Allison M. Matthews, Carolyn J. Brown and Wendy P. Robinson
    Citation: Epigenetics & Chromatin 2023 16:1
  30. Regulatory elements such as promoters, enhancers, and insulators interact each other to mediate molecular processes. To capture chromatin interactions of regulatory elements, 3C-derived methods such as Hi-C an...

    Authors: Beoung Hun Lee, Zexun Wu and Suhn K. Rhie
    Citation: Epigenetics & Chromatin 2022 15:41

    The Correction to this article has been published in Epigenetics & Chromatin 2023 16:22

  31. Epigenome-edited animal models enable direct demonstration of disease causing epigenetic mutations. Transgenic (TG) mice stably expressing epigenome-editing factors exhibit dramatic and stable changes in targe...

    Authors: Takuro Horii, Sumiyo Morita, Mika Kimura and Izuho Hatada
    Citation: Epigenetics & Chromatin 2022 15:40
  32. Nucleosome-mediated chromatin compaction has a direct effect on the accessibility of trans-acting activators and repressors to DNA targets and serves as a primary regulatory agent of genetic expression. Unders...

    Authors: John L. Carter, Colton E. Kempton, Emily D. S. Hales and Steven M. Johnson
    Citation: Epigenetics & Chromatin 2022 15:38
  33. The cohesin complex organizes the genome-forming dynamic chromatin loops that impact on all DNA-mediated processes. There are two different cohesin complexes in vertebrate somatic cells, carrying the STAG1 or ...

    Authors: Ana Cuadrado, Daniel Giménez-Llorente, Magali De Koninck, Miguel Ruiz-Torres, Aleksandar Kojic, Miriam Rodríguez-Corsino and Ana Losada
    Citation: Epigenetics & Chromatin 2022 15:37
  34. Epigenetic modifications to histone proteins serve an important role in regulating permissive and repressive chromatin states, but despite the identification of many histone PTMs and their perceived role, the ...

    Authors: David A. Vinson, Kimberly E. Stephens, Robert N. O’Meally, Shri Bhat, Blair C. R. Dancy, Robert N. Cole, Srinivasan Yegnasubramanian and Sean D. Taverna
    Citation: Epigenetics & Chromatin 2022 15:36
  35. Three-dimensional (3D) cell culture has emerged as an alternative approach to 2D flat culture to model more accurately the phenotype of solid tissue in laboratories. Culturing cells in 3D more precisely recapi...

    Authors: Stephanie Stransky, Ronald Cutler, Jennifer Aguilan, Edward Nieves and Simone Sidoli
    Citation: Epigenetics & Chromatin 2022 15:35
  36. Histones have a long history of research in a wide range of species, leaving a legacy of complex nomenclature in the literature. Community-led discussions at the EMBO Workshop on Histone Variants in 2011 resul...

    Authors: Ruth L. Seal, Paul Denny, Elspeth A. Bruford, Anna K. Gribkova, David Landsman, William F. Marzluff, Monica McAndrews, Anna R. Panchenko, Alexey K. Shaytan and Paul B. Talbert
    Citation: Epigenetics & Chromatin 2022 15:34
  37. Cannabis legalization is expanding and men are the predominant users. We have limited knowledge about how cannabis impacts sperm and whether the effects are heritable.

    Authors: Rose Schrott, Jennifer L. Modliszewski, Andrew B. Hawkey, Carole Grenier, Zade Holloway, Janequia Evans, Erica Pippen, David L. Corcoran, Edward D. Levin and Susan K. Murphy
    Citation: Epigenetics & Chromatin 2022 15:33
  38. The eutherian IGF2R imprinted domain is regulated by an antisense long non-coding RNA, Airn, which is expressed from a differentially methylated region (DMR) in mice. Airn silences two neighbouring genes, Solute ...

    Authors: Teruhito Ishihara, Oliver W. Griffith, Shunsuke Suzuki and Marilyn B. Renfree
    Citation: Epigenetics & Chromatin 2022 15:32
  39. Epigenetics refers to inheritable phenotypic changes that occur in the absence of genetic alteration. Such adaptations can provide phenotypic plasticity in reaction to environmental cues. While prior studies s...

    Authors: Rachel M. Reardon, Amanda K. Walsh, Clairine I. Larsen, LauraAnn H. Schmidberger, Lillian A. Morrow, Adriane E. Thompson, Isabel M. Wellik and Jeffrey S. Thompson
    Citation: Epigenetics & Chromatin 2022 15:31
  40. Cohesin is an important structural regulator of the genome, regulating both three-dimensional genome organization and gene expression. The core cohesin trimer interacts with various HEAT repeat accessory subun...

    Authors: Nicole L. Arruda, Audra F. Bryan and Jill M. Dowen
    Citation: Epigenetics & Chromatin 2022 15:30
  41. Loss-of-function mutations of the multiple endocrine neoplasia type 1 (MEN1) gene are causal to the MEN1 tumor syndrome, but they are also commonly found in sporadic pancreatic neuroendocrine tumors and other typ...

    Authors: Koen M. A. Dreijerink, Ezgi Ozyerli-Goknar, Stefanie Koidl, Ewoud J. van der Lelij, Priscilla van den Heuvel, Jeffrey J. Kooijman, Martin L. Biniossek, Kees W. Rodenburg, Sheikh Nizamuddin and H. T. Marc Timmers
    Citation: Epigenetics & Chromatin 2022 15:29
  42. Prenatal vitamin use is recommended before and during pregnancies for normal fetal development. Prenatal vitamins do not have a standard formulation, but many contain calcium, folic acid, iodine, iron, omega-3...

    Authors: John F. Dou, Lauren Y. M. Middleton, Yihui Zhu, Kelly S. Benke, Jason I. Feinberg, Lisa A. Croen, Irva Hertz-Picciotto, Craig J. Newschaffer, Janine M. LaSalle, Daniele Fallin, Rebecca J. Schmidt and Kelly M. Bakulski
    Citation: Epigenetics & Chromatin 2022 15:28
  43. Imprinting Control Regions (ICRs) are CpG-rich sequences acquiring differential methylation in the female and male germline and maintaining it in a parental origin-specific manner in somatic cells. Despite the...

    Authors: Basilia Acurzio, Francesco Cecere, Carlo Giaccari, Ankit Verma, Rosita Russo, Mariangela Valletta, Bruno Hay Mele, Claudia Angelini, Angela Chambery and Andrea Riccio
    Citation: Epigenetics & Chromatin 2022 15:27

Annual Journal Metrics

  • 2022 Citation Impact
    3.9 - 2-year Impact Factor
    5.1 - 5-year Impact Factor
    1.097 - SNIP (Source Normalized Impact per Paper)
    2.586 - SJR (SCImago Journal Rank)

    2022 Speed
    4 days submission to first editorial decision for all manuscripts (Median)
    91 days submission to accept (Median)

    2022 Usage 
    1,319 Altmetric mentions