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Abstract 

Background Genome‑wide DNA methylation (DNAme) profiling of the placenta with Illumina Infinium Methyla‑
tion bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal 
development. However, many technical and biological factors can lead to signals of DNAme variation between sam‑
ples and between cohorts, and understanding and accounting for these factors is essential to ensure meaningful 
and replicable data analysis. Recently, “epiphenotyping” approaches have been developed whereby DNAme data can 
be used to impute information about phenotypic variables such as gestational age, sex, cell composition, and ances‑
try. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to understand how pheno‑
typic variables relate to DNAme variability. However, the relationships between placental epiphenotyping variables 
and other technical and biological variables, and their application to downstream epigenome analyses, have not been 
well studied.

Results Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate 
epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were 
highly correlated with independent polymorphic ancestry‑informative markers, and epigenetic gestational age, 
on average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell 
composition estimates varied both within and between cohorts, as well as over very long placental processing times. 
Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing gestational 
age, and differed slightly by both maternal ethnicity (lower in white vs. non‑white) and genetic ancestry (lower 
in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest drivers 
of DNAme variation in this dataset, based on their associations with the first principal component.

Conclusions This work confirms that cohort, array (technical) batch, cell type proportion, self‑reported ethnicity, 
genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data. 
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Background
The placenta is an organ derived from cells of the con-
ceptus, and is genetically identical to the fetus. The pla-
centa is essential for fetal growth and development, and 
plays an important role in mediating maternal exposures 
that may influence newborn and child health. To better 
understand these roles of the placenta, genome-wide 
DNA methylation (DNAme) profiling has been widely 
applied, often using Illumina Infinium Methylation 
bead arrays. Alterations in placental DNAme have been 
reported in association with maternal exposures such as 
smoking [1, 2], gestational diabetes, and obesity [3–5], as 
well as in association with perinatal complications such 
as preeclampsia, chorioamnionitis, and low birthweight 
[6–11]. In some cases, these effects are intersectional: 
for example, smoking-associated changes in placental 
DNAme may be confounded, or in some cases medi-
ated, by lower birth weight [1, 2, 12], although other life-
style and exposure factors can complicate interpretation 
of these data. Despite the range of studies conducted in 
placenta, replication analyses of epigenome-wide asso-
ciation studies (EWAS) in independent populations are 
less common. Even in the context of early-onset preec-
lampsia, which is a condition associated with widespread 
alterations in DNAme of large effect size, reported find-
ings are often inconsistent in independent datasets [7, 13, 
14].

Part of the issue underlying incomplete replication 
between studies is inter-dataset heterogeneity. Prior to 
performing epigenome-wide analysis, it is important to 
understand and account for the factors driving variabil-
ity in each DNAme dataset. Relevant technical factors 
may include differences in sample processing techniques, 
batch effects, and poor data quality control, which can all 
lead to false positive EWAS results, or low signal-to-noise 
ratios [6]. Biological factors that may confound analyses 
include differences in bulk tissue sample cell composition 
[15], sex [16], and gestational or chronological age [17, 
18]. In addition, the ethnicity and/or genetic ancestry of 
subjects are known confounders in EWAS studies [19–
21], and many regions of high DNAme variability across 
individuals are influenced by genetic variation [22, 23].

Data interpretation and replicability across stud-
ies from diverse populations and using different sample 

collection methods can be improved if we can better 
assess and account for key variables and systematic dif-
ferences between datasets. “Epiphenotyping” approaches 
have been developed whereby the (epigenetic) DNAme 
data are used to extract information about phenotypic 
variables, such as age, sex, or cell composition [24–28]. 
While such approaches are increasingly used in DNAme 
profiling of blood and other tissues, they have not been 
routinely applied to the DNAme analysis of placental tis-
sue, in part as the placenta has a very unique DNAme 
profile that affects the performance of previously devel-
oped tools.

Recently, epiphenotyping tools have been developed to 
estimate placental cell composition, ancestry, and epige-
netic age from DNAme data. Since the development of 
these placental-specific epiphenotyping tools, and their 
implementation in the PlaNET R package [29], the asso-
ciations between placental epiphenotype variables, and 
with other technical and biological variables, have not 
been fully characterized. This study seeks to evaluate the 
placental epiphenotyping tools that have recently been 
made available, and to test the value of their integration 
into the processing and analysis of placental DNAme 
data.

The placental epiphenotypes investigated here include: 
(1) a placental cell-specific deconvolution method devel-
oped to estimate major cell types in bulk tissue DNAme 
data [15], which can be used to assess and account for 
sampling variation between and within datasets, and to 
identify cell composition changes underlying DNAme 
differences between exposure groups [30–32]. (2) An 
approach to estimate genetic ancestry of the placenta 
as a continuous variable directly from the DNAme 
data, as ancestry may not be well captured by self-
reported parental ethnicity [33]. The PlaNET approach 
to estimating ancestry was found to improve replication 
between EWAS studies, and to outperform PCA-based 
approaches that work well in other tissues, such as the 
Barfield et  al. [34] or EPISTRU CTU RE [35] methods 
[33], underscoring the need to develop placental-specific 
epiphenotype algorithms. (3) An epigenetic clock for 
estimation of gestational age at birth, which is sometimes 
missing or inaccurately recorded in clinical records, may 
provide researchers with a way to estimate missing data, 

We further demonstrate the specific utility of epiphenotyping tools developed for use with placental DNAme data, 
and show that these variables (i) provide an independent check of clinically obtained data and (ii) provide a robust 
approach to compare variables across different datasets. Finally, we present a general framework for the processing 
and analysis of placental DNAme data, integrating the epiphenotype variables discussed here.

Keywords DNA methylation, Placenta, Epiphenotyping, Epigenetics, Epigenetic age, Gestational age, Cell 
composition, Ancestry, PlaNET R package
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to standardize measures of gestational age across studies 
(which can be unreliable without good clinical records), 
and to study placental epigenetic age acceleration [18].

In this study, we use three cohorts of placental sam-
ples (chorionic villi sampled from the fetal-facing side) 
to assess factors contributing to within- and between-
cohort variation in placental DNAme data. We specifi-
cally apply the PlaNET R package to estimate gestational 
age, ancestry, and cell composition epiphenotype vari-
ables, and we evaluate the utility of these epiphenotyping 
approaches, assess inter-cohort differences, and examine 
their relationships to technical and biological variables. 
In addition, we explore how technical and biological vari-
ables common to placental DNAme studies are related to 
each other, and to the imputed epiphenotype variables. 
Finally, based on these extensive studies, we provide a set 
of recommendations for the use of these epiphenotyping 
tools in placental EWAS.

Results
Cohort characteristics
In this study, we use DNAme data from 204 placen-
tas across three independent cohorts to investigate the 

relationships between placental epiphenotype vari-
ables computed with the R package PlaNET, and other 
technical and biological characteristics associated with 
these samples. The placentas from the  V-NORM and 
V-SSRI  cohorts were obtained and sampled in one pro-
cessing lab located in Vancouver, Canada. The QF2011 
cohort placentas were collected and sampled in Brisbane, 
Australia, and subsequently snap-frozen and shipped to 
Montreal, Canada for DNA extractions. Samples from 
all three cohorts were assayed on the Illumina Infinium 
MethylationEPIC (850K) array at one center in Vancou-
ver, Canada, and were randomized during array pro-
cessing for key variables including cohort, SSRI and 
flood-related stress exposure, and infant sex. The sam-
ples from all cohorts were run on the EPIC array in three 
technical “batches”, with batch referring to all stages 
of array processing from bisulfite conversion, to array 
hybridization and staining, to scanning. More details are 
presented in Table 1 and in the Methods section. Maps of 
all samples included in the three array batches and their 
randomization characteristics are presented in Addi-
tional file 1: Fig. S1. Key technical and biological variables 
used in this study are reported in Table 1.

Table 1 Summary of key biological and technical variables for each cohort. SD refers to standard deviation, QC refers to quality control

* p values are based on ANOVA for continuous variables and Chi-square tests for categorical variables

V-NORM V-SSRI QF2011 p value*

n 35 64 105

Biological variables

 Gestational age at birth (mean weeks (SD)) 39.0 (1.1) 39.5 (1.3) 39.4 (1.2) 0.29

 Infant sex (n male (%)) 19 (54.3) 33 (51.6) 59 (56.2) 0.84

 Infant birthweight (mean grams (SD)) 3412.5 (537.8) 3451.7 (460.7) 3584.2 (403.4) 0.06

 Infant birthweight (mean Z‑score (SD)) − 0.02 (1.08) − 0.02 (0.81) 0.28 (0.82) 0.04

 Placental efficiency − 0.09 (1.1) − 0.10 (0.93) 0.10 (0.99) 0.37

 Population British Columbia, Canada British Columbia, Canada Queensland, Australia

 Self-reported ethnicity (n (%)) < 0.001

  White 14 (40.0) 48 (75.0) 102 (97.1)

  Asian 12 (34.3) 6 (9.4) 1 (1.0)

  Black 0 1 (1.6) 1 (1.0)

  Other 8 (22.9) 1 (1.6) 0 (0.0)

 Missing 1 (2.9) 1 (1.6) 0 (0.0)

Technical variables

 Processing time (median hours (SD)) 2.9 (18.9) 28.7 (59.8) Approximately 1 h

 Storage − 20 °C − 20 °C Snap frozen liquid nitrogen

 DNA extraction method, location Salt extraction, Vancouver Salt extraction, Vancouver Qiagen DNeasy blood 
and Tissue kit, Montreal, 
Canada

 Number of technical replicates 4 0 8

 EPIC batch distribution (n (%))

  Batch 1 0 (0.0) 64 (100.0) 94 (89.5)

  Batch 2 18 (51.4) 0 (0.0) 0 (0.0)

  Batch 3 16 (45.7) 0 (0.0) 11 (10.5)
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In addition to the analyses conducted on PlaNET epi-
phenotype variables, we note that although these three 
cohorts underwent similar sampling protocols and were 
processed for DNAme analysis at one center, there are 
some key between-cohort demographic differences 
(Table  1). First, maternal self-reported ethnicity/race 
(see Methods) differed between cohorts (p < 0.001), with 
almost all mothers from the QF2011 cohort identifying 
as white. Infant birth weight standard deviation (cor-
rected for sex and gestational age) was also slightly higher 
in the QF2011 cohort (p = 0.04). Finally, sample process-
ing and storage in the QF2011 cohort differed in subtle 
but potentially significant ways (see Methods). These key 
differences could contribute to cohort differences that 
were important to consider in data analysis.

Main drivers of DNAme variation across cohorts
Before performing DNAme array data analysis, it is use-
ful to assess the main drivers of DNAme variation in the 
raw and processed data. To that end, we used principal 
component analysis (PCA) in combination with linear 
models to assess the relationship between variation in the 
data (PCs) with major technical and biological variables 
(Fig. 1).

Our first main finding was that data processing (nor-
malization and probe filtering) attenuated the associa-
tion between DNAme variance and technical factors, 
and the reduced DNAme variance in the processed data 
was instead related to cohort and cell-type differences 
rather than technical factors. This was evidenced by the 
fact that in the raw data, the first two principal compo-
nents (PC1 and PC2) accounted for nearly half (45.2%) 
of the DNAme variability across all samples, and were 
associated with cohort (p < 0.001 for Cohort = V-NORM, 
V-SSRI, or QF2011) and technical array variables (batch, 
chip, row, all p < 0.05) (Fig. 1). After data processing, the 
proportion of DNAme variation explained by PC1 and 
PC2 decreased to 15% and 6%, respectively, and PC1 was 
no longer strongly associated with batch, chip, or row 
effects. This was reassuring as we chose not to apply a 
batch correction step, which can introduce false signal, 
especially when there is an unequal distribution of vari-
ables of interest [36]. In the processed data PC1 remained 
significantly associated with cohort (p < 0.001, R2 > 0.25) 
and cytotrophoblast proportion (p value < 0.001, 
R2 > 0.25), while PC2 was also associated with cell type 
proportions. Array batch and PlaNET-derived ancestry 
were also weakly associated with PC1 and PC2 in the pro-
cessed dataset (p values < 0.001, R2 < 0.25). The fact that 
PC1 was more strongly associated with cohort than any 
other variable suggests that there are unidentified techni-
cal and/or biological variables contributing to between-
cohort variability. In summary, data normalization and 

probe filtering are essential for reducing DNAme vari-
ance associated with technical factors, and cohort, array 
batch, cell type proportion, self-reported ethnicity, ances-
try, and sex are all important variables to consider in any 
downstream analyses of these data.

Placental genetic ancestry epiphenotype accurately 
captures SNP genotype-estimated ancestry
DNAme variation is greatly influenced by genetic varia-
tion, which differs by ancestry of the individual. However, 
genetic ancestry data are often not measured, and while 
many pregnancy studies collect maternal self-reported 
ethnicity as an alternative measurement, this approach 
is inherently limited. First, ethnicity is a social concept 
that can be related to but is fundamentally different from 
genetic ancestry. Further, if only maternal ethnicity is 
collected, it ignores the other parent’s contribution to 
the placental genome and epigenome [37]. In addition, 
genetic ancestry is interesting to study in its own right, 
as it may independently drive DNAme variation and/or 
confound other associations. Previously, we created a 
tool to estimate genetic ancestry from the DNAme data 
directly (which is implemented in the PlaNET R pack-
age [29]), and here we compare this ancestry estimate to 
(i) maternal self-reported ethnicity (for details on eth-
nicity categories see Methods) and (ii) genetic ancestry 
assessed using Ancestry Informative Markers (AIMs), an 
independent set of SNPs that were genotyped for each 
placenta [38] (Fig. 2).

Most placentas (n = 172/204) had a high estimated 
probability (score > 75%) of European ancestry and for 
most of these (n = 151/172, 88%) the maternal self-
reported ethnicity was “white”/European descent. All 17 
placentas with a high probability (score > 75%) of East 
Asian ancestry had maternal self-reported “Asian” eth-
nicity, as did 4 additional samples (n = 21/204). No cases 
had a probability score > 75% of African ancestry, but of 
the 2/204 cases with a probability score > 50% of Afri-
can ancestry, the maternal self-reported ethnicity was 
“Black” in one case. While there is a strong relationship 
between PlaNET ancestry estimates and maternal self-
reported ethnicity, importantly, 24 placental samples 
(14% of the combined cohort) did not have values > 75% 
in any one ancestry dimension. This suggests a high 
degree of genetic diversity, which is important to con-
sider in downstream analyses and cannot be captured 
by assigning samples to discrete ethnicities or ancestry 
groups. Looking at demographic and DNAme-derived 
variable relationships, we found that as expected, across 
all cohorts the various ethnicity and ancestry measures 
were associated (R2 0.22–0.95) (Additional file 1: Fig. S2).

Although both PlaNET- and AIMs-inferred ancestry 
metrics yield continuous values in multiple dimensions 
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of ancestry variation, the outputs of the two methods 
are not directly comparable. The two primary AIMs 
coordinates are sufficient to separate European, East 
Asian, and African ancestry  samples, and were thus 
compared to the three PlaNET-derived ancestry prob-
abilities (Fig.  2). In general, AIMS coordinates were 
found to correspond very well to PLANET ancestry 
probability scores, and most placentas that had val-
ues < 75% in the three PlaNET probabilities had AIMs 

scores in the first two coordinates in the mid-range 
of values. As few cases had high estimates for African 
ancestry by either method, we could not assess this 
ancestry dimension for interaction with other variables 
in subsequent analyses. As PlaNET ancestry probability 
is based on placental Illumina array data directly, it is a 
useful tool for considering genetic variation that influ-
ences DNAme variation, particularly when matched 
genotyping data are not available.
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The placental epigenetic clock can predict reported 
gestational age in term placentas
Gestational age at birth is often unavailable in public 

datasets, but this variable is important to account for in 
placental studies as DNAme changes dramatically with 
gestational age, even late in pregnancy [18]. Further, 
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clinically reported gestational age, which is estimated 
by first trimester ultrasound (gold standard), later ultra-
sound, or based on self-report of last menstrual period 
(LMP), is associated with inherent variability [39, 40]. To 
address both of these problems, gestational age can be 
predicted from DNAme data itself, using several meth-
ods. Here, we applied the refined-robust placental clock 
(RRPC) as it was developed to estimate gestational age 
specifically for term placentas, which make up the vast 
majority of our cohorts [18].

In each of the three cohorts, we observed a moderate 
correlation between reported and estimated gestational 
age (Pearson’s R = 0.54, 0.59, and 0.66 for V-NORM, 
V-SSRI, and QF2011, respectively). The median devia-
tions between predicted and reported gestational age 
were < 1  week in all three cohorts (median deviations 
− 0.51, − 0.87, and − 0.57  weeks for V-NORM, V-SSRI, 
and QF2011, respectively) (Fig.  3). Considering the 
three cohorts together, the average median deviation 
between the RRPC and the reported gestational age was 
− 0.6 weeks, or − 4.3 days.

To further evaluate the gestational age epiphenotype, 
we compared both reported gestational age and RRPC-
estimated gestational age to birth weight, as we expected 
both measurements of gestational age to correlate with 
infant size. Overall, clinically reported gestational age 
was more strongly correlated with birth weight than 
was the RRPC-estimated gestational age (Pearson’s R of 
0.54 and 0.37, respectively) (Fig. 3). We found that these 
gestational age–birth weight relationships were not sig-
nificantly different by sex or maternal ethnicity (white vs. 
non-white), although both measures of gestational age 
tended to be more strongly correlated with birth weight 
in placentas that were female or of non-white maternal 
ethnicity (Fig.  3). These results suggest that the RRPC-
predicted gestational age is less accurate than clini-
cally reported gestational age, at least in these cohorts, 
in which the range of gestational age at birth was small. 
However, these results also indicate that the RRPC is still 
quite accurate and could be used to predict gestational 
age when such data are missing, or when comparing ges-
tational age across datasets, which may have different 
standards of gestational age estimation or reporting.

Cell composition epiphenotype estimates can identify 
systematic differences between cohorts
The cell composition can vary between chorionic villi 
(bulk tissue) samples due to localized heterogene-
ity within the placenta, or due to systematic differences 
in sampling techniques between cohorts. As DNAme 
profiles vary markedly between cell types, they can be 
used to estimate the relative cell type proportions in 
whole chorionic villi samples (i.e., bulk tissue). Cell type 

proportions can then be compared between cohorts, 
datasets, or disease status groups to identify systematic 
between-group differences.

In assessing the inter-relationships between the dif-
ferent cell type proportions calculated with PlaNET, we 
found that cytotrophoblast proportion was inversely cor-
related (Pearson correlation) with syncytiotrophoblast 
proportion, and that there were no strong relationships 
between cytotrophoblasts or syncytiotrophoblasts and 
any other cell type proportions (Additional file 1: Fig. S2). 
The estimated proportions of Hofbauer cells and nRBCs, 
which are both typically very small, were also unrelated 
to other cell proportions.

The estimated distribution of major placental cell types 
was found to be similar across all three cohorts in our 
study (Fig.  4). We observed that the total proportion of 
trophoblasts (sum of syncytiotrophoblast and cyto-
trophoblast proportions) contributed to an average of 
80.9% of each chorionic villus sample (SD = 3.6%; range 
66.9–91.9%), while nucleated red blood cells (nRBCs) 
were present in only minor amounts (range 0.0–2.4%). 
The high trophoblast and low nRBC proportions confirm 
that, in these three cohorts, fetal blood contamination is 
negligible, and samples originate predominantly from the 
intermediate and terminal chorionic villi [15].

When comparing relative cell proportions across 
cohorts, some subtle but significant differences were 
noted. A slight decrease in stromal cells was observed 
in V-SSRI samples as compared to the other two cohorts 
(Fig. 4B). As the V-SSRI cohort was an outlier in that it 
contained multiple samples with very long processing 
times (> 100 h), we sought to evaluate whether process-
ing time was associated with cell composition estimates 
(Additional file 1: Fig. S3). Increased processing time cor-
related with a reduction in stromal cell proportions, even 
when the SSRI dataset was removed to assess dataset-
processing time confounds (R = − 0.37, p < 0.05). Beyond 
this small impact on stromal cells, however, processing 
time appeared to have little effect on placental cell com-
position estimates.

Samples from the QF2011 cohort displayed a slightly 
higher median estimate of syncytiotrophoblasts, and a 
lower median estimate of cytotrophoblasts, as compared 
to the other two cohorts (Fig. 4B), leading to a lower cyt
otrophoblast:syncytiotrophoblast ratio. We therefore 
sought to evaluate whether any demographic variables 
might also be associated with cytotrophoblast:syncyt
iotrophoblast ratio, and observed a lower ratio in asso-
ciation with increasing gestational age, male sex, white 
maternal ethnicity, and European PlaNET ancestry prob-
ability > 75% (Fig.  4C–F). To distinguish the impact of 
ancestry/ethnicity and fetal sex on cell types, as opposed 
to possible cohort effects (as the QF2011 cohort mainly 
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included mothers that self-reported as white and pla-
centas with European predicted ancestry) we investi-
gated the associations between cytotrophoblast:syncy
tiotrophoblast ratio and maternal white ethnicity and 

fetal sex in the V-SSRI and V-NORM cohorts separately. 
Considering only these two cohorts, we found no asso-
ciation between sex and estimated cell proportions, how-
ever, lower cytotrophoblast:syncytiotrophoblast ratio 
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Fig. 3 Relationships between PlaNET‑estimated gestational age, clinically reported gestational age, sex, birth weight, and self‑reported ethnicity. 
A PlaNET‑estimated gestational age (GA) using the refined‑robust placental clock, compared to clinically reported gestational age. Shading 
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remained associated with both maternal white ethnicity 
and with a high (> 75%) European ancestry probability 
(Additional file  1: Fig. S4). Because ethnicity has been 
reported to potentially associate with gestational age at 
birth [41], we hypothesized that the observed trophoblast 
ratio/ethnicity relationship may be arising from a con-
founding association between trophoblast ratio and ges-
tational age. In these cohorts, we did observe a slightly 
lower gestational age at birth in cases of non-white versus 
white maternal ethnicity (p = 0.0012), and also observed 
a decrease in cytotrophoblast:syncytiotrophoblast ratio 
with increasing gestational age (p = 0.00052). However, 
when the linear model testing for association between 
white/non-white ethnicity and cytotrophoblast:syncytiot
rophoblast ratio was adjusted for gestational age, tropho-
blast ratio remained associated with ethnicity (higher 
ratio in non-white ethnicity) (p = 3.18e−7).

Further evaluation of relationships 
between epiphenotypes and biological and technical 
variables
Before performing statistical analysis, it is important 
to assess inter-relationships and possible collineari-
ties between demographic and technical variables in a 

dataset, including any relevant epiphenotype variables, 
and any necessarily related demographic variables, such 
as birth weight and gestational age. As the datasets 
originally used to construct the PlaNET epiphenotyping 
tools may have inherent biases towards different techni-
cal or biological variables, investigating the relationships 
between these epiphenotypes and other dataset metrics 
in these three well-characterized cohorts could provide 
useful knowledge for future applications of these tools. 
Reassuringly, beyond the factors already discussed, we 
did not detect further associations between PlaNET epi-
phenotype variables and other biological or technical 
variables (Additional file 1: Fig. S2).

Of the remaining variables of interest, birth weight 
Z-score and placental efficiency (residual of fetal weight 
regressed on placental weight, sex, and gestational age) 
are both metrics of fetal growth during gestation, and are 
interesting to evaluate relative to the PlaNET tools for 
their relationships to both successful gestation and path-
ologic conditions such as preeclampsia or fetal growth 
restriction. Birthweight Z-score characterizes fetal 
growth by contextualizing infant birthweight relative 
to population-based reference groups of sex- and gesta-
tional-age-matched peers, while placental efficiency is a 
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metric reflects the growth (mass) of a fetus relative to the 
growth (mass) of its own placenta. In principle, larger pla-
centas can support larger infants, but the most “efficient” 
placentas are those that support adequate fetal growth 
with less relative placental mass. Birthweight Z-score 
and placental efficiency were significantly associated 
with each other, but were not strongly associated with 
other variables (Additional file 1: Fig. S2). It is worth not-
ing, however, that birth weight Z-score and gestational 
age were both higher in placentas with high PlaNET 
European ancestry probability score (p < 0.001; p < 0.01, 
respectively), and in cases with maternal white ethnicity 
(p < 0.01; p < 0.001). We found that fetal:placental weight 
ratio was higher at lower gestational ages as reported in 
[42], and this ratio was thus also associated with altered 
cell type proportions (Additional file  1: Fig. S5). The 
residual of fetal weight regressed on placental weight, as 
an improved measure of placental efficiency, however, 
was not associated with either gestational age or cell type 
composition (Additional file 1: Fig. S5). Beyond the fac-
tors already discussed, we did not detect further associa-
tions between PlaNET epivariables and other biological 
or technical variables.

Accounting for epiphenotypes in statistical analysis 
reduces test statistic inflation
As a final investigation into the utility of epiphenotype 
variables in analysis of placental DNAme data, we evalu-
ated whether accounting for epiphenotypes during sta-
tistical analysis may help attenuate test statistic inflation 
(lambda) [43]. To that end, we produced a series of lin-
ear models testing for between-cohort DNAme differ-
ences across all filtered autosomal CpGs (n = 746,261), 
in all samples (n = 204). We also ran a series of equiva-
lent models in only the V-NORM and V-SSRI samples 
(n = 99) as there was a systematic difference in the data 
collection method for gestational age between QF2011 
(rounded to the nearest week) and the other two cohorts, 
see Methods.

The base model we assessed was adjusted for the addi-
tive covariates of sex and Sentrix Position (array row), 
and took the form: DNAme ~ Cohort + Sex + Sentrix 
Position + ε. We computed the lambda value across all 
p values obtained from this model, and compared this 
lambda to models iteratively adjusted for gestational age, 
RRPC gestational age epiphenotype, PlaNET ancestry, 
cell composition, and the combination of RRPC, ances-
try, and cell composition. In the full dataset (n = 204), 
accounting for epiphenotypes of ancestry and cell type 
led to the largest reductions in lambda (approximately 
− 2 and − 8, respectively). In the series of models run on 
the V-SSRI and V-NORM samples only, accounting for 
reported gestational age had a similar magnitude of effect 

on lambda as did accounting for the RRPC gestational 
age epiphenotype (approximately − 0.5). See Additional 
file 1: Table S1, and Fig. S6.

The models run on the full dataset all had higher 
lambda values (median lambda = 19.26) than models 
run on the V-SSRI and V-NORM samples only (median 
lambda = 4.08). This example scenario does not reflect 
a complete analysis of the data, and is only meant to 
illustrate the impact of adjusting for epiphenotypes on 
epigenome-wide DNAme analysis. Typically, analysts 
would be investigating other outcomes with possibly dif-
ferent lambda values (beyond cohort effects), and given 
the lambda values obtained here, should also consider 
adjusting for unmeasured technical effects [43].

Discussion
In this analysis, we have demonstrated the applicability 
of placental epiphenotyping tools to independent data, 
and our findings indicate that these tools are appropriate 
for routine use in placental DNAme data processing and 
analysis pipelines in a variety of contexts. We have also 
reported how these epiphenotypes vary in association 
with extended sample characteristics such as gestational 
age, ethnicity, and processing time; our major findings in 
this regard are presented in Table 2. In summary, we find 
that placental epiphenotype variables first enable detailed 
technical assessment of data quality, for instance high-
lighting inter-cohort disparities, and sampling differences 
by comparing cell composition across samples. Next, 
epiphenotypes enable analysts to evaluate associated 
data accuracy by comparing each epiphenotype variable 
to analogous clinically reported data, such as comparing 
PlaNET ancestry to genetic ancestry (AIMs), or compar-
ing epigenetic age to reported gestational age. Finally, 
we show that epiphenotype variables are useful covari-
ates to include in downstream analysis, and they enable 
analysts to adjust for a portion of the unwanted variation 
that exists between datasets. We suggest the regular inte-
gration of epiphenotype variables into placental DNAme 
array data processing and analysis pipelines, and present 
our suggested framework for their inclusion in Fig. 5.

PlaNET can first be used to estimate ancestry along 
three continuous axes of variation. The main utility of 
these PlaNET ancestry probabilities is that they can 
account for ancestry-driven genetic variation that influ-
ences DNAme, particularly when genetic ancestry data 
are absent. Self-reported ethnicity is often collected and 
used as an estimate genetic ancestry, but even when 
both maternal and paternal ethnicity data are available 
for prenatal samples such as placenta, ethnicity is a cat-
egorical identity and a poor proxy for genetic ancestry, 
which is continuous in nature and more closely reflects 
genetic variation [44–46]. While human populations are 
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much more diverse than can be captured on the three 
dimensions predicted by this tool (African, East-Asian, 
European) [44], it is a useful method for ancestry estima-
tion when independent genetic data are unavailable. As 
DNAme data from more diverse populations becomes 
available, new tools can and should be created that 
improve upon the current ability to distinguish diverse 
genetic ancestries. It is also important to note that 
PlaNET or genetic ancestry estimates are not a substitute 
for self-reported ethnicity, which may be associated with 
important social determinants of health [46], includ-
ing lifestyle and exposure factors interacting with the in 
utero environment. It is difficult to examine the effects 
of self-reported ethnicity independently from genetic 
ancestry, as the two are typically associated, though in 
this dataset, maternal ethnicity showed a slightly stronger 
association with PC1 (largest proportion of DNAme vari-
ation in the processed data) than did estimated ancestry. 
Both ancestry and ethnicity or race should be considered 

in DNAme analyses when applicable; many methylated 
sites are strongly associated with nearby genetic variants 
[47], and environmental effects (which may be captured 
by self-reported ethnicity) should be examined in the 
context of this underlying genetic variation.

The PlaNET placental gestational age clock (RRPC) 
was less strongly correlated with birth weight than was 
clinically reported gestational age, which implies reduced 
accuracy of the DNAme-derived estimate. Nonethe-
less, the RRPC gestational age on average deviated only 
by − 4.3 days from the reported gestational age, which is 
less than reported in the original publication of this tool 
(r = 0.26 with an absolute mean deviation of 7 days) [18]. 
The Lee et al. [40] study utilized publicly available placen-
tal DNAme datasets, and it is possible these were subject 
to variable quality of clinical records, which may explain 
the higher accuracy observed in our samples. In addi-
tion, gestational age measurements are approximations 
and are subject to variability even with the most modern 
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measurement techniques, such as ultrasound, as a study 
of > 500,000 pregnant individuals in California reported 
that LMP-based gestational age had an absolute devia-
tion > 14 days in 17.2% of cases compared to ultrasound-
derived gestational age. Further, gestation length has 
been found to vary by self-reported race/ethnicity (based 
on studies from the United States and United Kingdom 
[48, 49]); we were not powered to see an effect of self-
reported maternal ethnicity on placental epigenetic ges-
tational age in these dataset, but it is possible that such 
an effect may be observable in more diverse cohorts.

While the present study focused on evaluating tools 
presented in the PlaNET R package, two other placen-
tal gestational age clocks, exist, developed by Mayne 
et al. [50] and Haftorn et al. [51]. The first was trained on 
publicly available placental DNAme datasets of diverse 
pathologies and has a median absolute deviation of (pre-
dicted–reported age) ± 1.47  weeks, while the Haftorn 
et al. clock was trained on placental samples from a well-
characterized Finnish cohort, and had a mean absolute 
deviation of ± 3.6 days, similar to what we observed in the 
present study with the RRPC. Recently, we also observed 
much higher correlation (R = 0.94) between PlaNET-pre-
dicted gestational age (RPC) in a separate dataset with 
a broad range of gestational ages (25–38  weeks), also 
with median absolute error of 4 days [52]. Although reli-
able clinical data are best, application of the gestational 
age clocks provides a useful data check when epigenetic 
gestational age is compared to reported gestational age, 
and can aid in identifying potential metadata errors, or 
sample mix-ups. Additionally, epigenetic gestational age 
can provide an estimate of gestational age in cases where 
this information is not reported. For example, PlaNET-
inferred gestational age was used to harmonize gesta-
tional age measurements across all samples in a study that 
combined multiple DNAme datasets where this informa-
tion was missing [52]. In our analyses, we used the RRPC 
clock, which was developed specifically in term uncom-
plicated pregnancies. In contrast, the RPC clock may 
be more appropriate if samples include many preterm 
births, as this clock was trained on both control and path-
ological samples across gestation and was designed to be 
robust to pathology [18]. If researchers wish specifically 
to examine epigenetic gestational age acceleration, then it 
may be preferable to use the CPC clock, which was devel-
oped on uncomplicated “control” samples across a range 
of gestational ages. Using the CPC clock, we previously 
tested for an association between epigenetic age accelera-
tion metrics and SSRI exposure or maternal mood (Ham-
ilton Depression score) in the V-SSRI cohort, and found 
no association [53]. That said, the utility of these placen-
tal epigenetic clocks for studying epigenetic age acceler-
ation is as yet largely unexplored and may have limited 

power due to the relatively short time frame of human 
gestation. Even in conditions such as preeclampsia which 
exhibit pathology associated with accelerated aging, the 
predicted gestational age is only slightly overestimated 
relative to reported gestational age [18, 50].

Regarding cell composition, the placenta is a heteroge-
nous solid tissue with multiple cell types, derived from all 
three components of the blastocyst: (1) trophoblast from 
trophectoderm; (2) placental endothelial and endodermal 
cells from hypoblast [54, 55], and (3) Hofbauer cells from 
epiblast [15]. Each cell type in the placenta has a unique 
DNAme signature, which contributes to DNAme differ-
ences across samples of bulk chorionic villi [15]. Cell type 
composition differences are known to be a major source 
of variation in DNAme data in general, beyond just the 
placenta [56]. Although we could not validate our cell 
type proportion estimates (as the bulk of nuclei come 
from the multinucleated syncytiotrophoblast and accu-
rate counts are not possible), the ratios observed here 
were consistent with our sampling technique, which aims 
to obtain consistent samples of free floating intermediate 
and terminal villi free of very large vessels and washed 
well of any contaminating blood [57, 58]. Using the 
PlaNET cell proportions has also been shown to be supe-
rior to reference-free approaches applied to the placenta 
[59]. Overall, based on cell proportions, placental sam-
pling technique applied here appears to have been con-
sistent between QF2011 (sampled in Brisbane, Australia) 
and the two Vancouver cohorts: V-NORM and V-SSRI. 
This between-cohort consistency in cell composition is 
reassuring, although in other studies we have observed 
large variations in cell composition between public data-
sets [15]. We thus suggest that when estimated placental 
cell composition indicates that total trophoblast propor-
tions are significantly beyond the range of ~ 0.65–0.92, 
as seen here in our three representative cohorts, studies 
may benefit from sample removal to ensure homogene-
ous study groups, or the region of the placenta/method 
of sampling should be considered for possible interaction 
with results. Specifically, we anticipate that the propor-
tions of total trophoblast, endothelial cells, and stromal 
cells in a sample may be related to sampling technique. 
For example, we have observed that trophoblast levels are 
lower if placental chorionic villi are sampled closer to the 
fetal-facing surface of the organ (immediately under the 
chorionic membrane), where larger vessels reside (stem 
villi) [15].

The cytotrophoblast:syncytiotrophoblast ratio was 
found to be strongly associated with gestational age 
over the last few weeks of gestation, which is consistent 
with the decrease of cytotrophoblast populations over 
time as these cells fuse to form the multinucleated syn-
cytiotrophoblast, which in turn becomes increasingly 
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abundant towards full term [15, 60]. The association 
between cytotrophoblast:syncytiotrophoblast ratio and 
maternal ethnicity/placental genetic ancestry (lower ratio 
in non-white and in low probability European placentas) 
can be partly explained by a reduced gestational age in 
these cases; however, given the association observed in 
our data between non-white ethnicity and reduced birth 
weight standard deviation (even when accounting for ges-
tational age), socio-cultural influences may also be at play 
and should be explored in more depth in future studies. 
As placental pathology or environmental exposures may 
be associated with altered cell composition, which in turn 
contributes to changes in DNAme in bulk tissue, analysts 
should carefully consider how and when to correct for 
cell type composition in bulk tissues epigenetic analyses.

The inter-relationships between variables that affect 
placental DNAme are important to understand before 
undertaking further analysis. While we identified a 
small number of variables that differed between cohorts, 
including differences in ancestry composition and slight 
differences in trophoblast ratios, none of these factors 
individually explained as much variation in DNAme as 
the “cohort” variable itself did (significantly associated 
with PC1). This is an expected result, and cohort-level 
differences likely arise from the combination of many 
factors including different procedures used in sample 
processing, storage and DNA extraction, and differences 
in environmental exposure between samples compris-
ing each cohort (e.g., diet, medication, environmental 
exposure, stress). This is particularly relevant as in this 
study, the QF2011 cohort was exposed to an acute envi-
ronmental stressor (flood), which will be explored in a 
future study for its effect on DNAme. Although a subset 
of the V-SSRI cohort was exposed to SSRIs and gesta-
tional maternal depression, in a previous study we found 
no consistent signature of altered placental DNAme in 
association with these exposures, and thus this particu-
lar exposure variable is likely not a large driver of cohort-
level differences [53].

Obstetrical outcomes can differ by the sex of the con-
ceptus; for example, male (XY) placentas tend to be 
larger and more prone to proinflammatory response than 
female (XX) placentas [61]. Accordingly, we explored 
whether any epiphenotype variables were associated with 
sex, and found that overall sex was not strongly associ-
ated with ancestry, gestational age, or cell composition 
epiphenotype variables. Sex was also not associated with 
the first two principal components of DNAme variation 
in these three cohorts. Interestingly, a slightly higher cyt
otrophoblast:syncytiotrophoblast ratio was observed 
in female samples, but this effect was limited to the QF 
cohort (Additional file  1: Fig. S4). We did not observe 
sex differences in placental cell proportions in a previous 

study with a combined cohort size of n = 343 [16], imply-
ing that the observed higher female cytotrophoblast:syn
cytiotrophoblast ratio finding could either be due to sta-
tistical noise in these cohorts, or be related to unmeas-
ured cohort-specific factors. Sex differences in DNAme 
[16, 62, 63] and gene expression profiles [64] have been 
observed at autosomal loci in the placenta, likely second-
ary to sex chromosome-related gene expression sex dif-
ferences [16]. Additionally, a recent study indicated that 
placental DNAme patterns associated with gestational 
age may be driven by changes in cell composition across 
gestation, and suggested that these changes in cell com-
position across gestation may also differ between male 
and female placentas, although effect sizes were small 
[65]. Thus, if estimated placental cell composition and 
gestational age do vary by sex, this variation is likely of 
small effect size.

Cohort of origin, array batch, cell type proportions, 
self-reported ethnicity, genetic ancestry, and biological 
sex are important variables to consider in any analyses 
of Illumina DNAme data [66–68]. However, comprehen-
sive evaluation of the impact of these factors on placen-
tal DNAme has not routinely been possible for various 
reasons, including lack of routine collection of genetic 
ancestry information (often only maternal ethnicity is 
collected), and the lack of cell type deconvolution algo-
rithms for placenta, until very recently. Further, due to 
the unique DNAme profile of the placenta as compared 
to other tissues, epiphenotyping methods previously 
developed for application to blood and other somatic tis-
sues are not applicable to studies of placental DNAme, as 
has been previously reported for the ancestry, age, and 
cell type deconvolution algorithms presented in PlaNET 
[15, 18, 33]. Estimating epiphenotype variables (gesta-
tional age, ancestry, cell proportions) from the placental 
DNAme data itself provides an independent check of 
the clinical data (thus flagging potential sample mix-ups 
or data errors) and can also provide a robust approach 
to compare metadata variables across different datasets 
with possibly different reporting standards (to identify 
systematic differences, e.g., in sampling approach). The 
epiphenotyping tools presented in PlaNET give research-
ers the potential to understand placental DNAme data 
more deeply, from both technical and biological perspec-
tives. We note that the analyses presented in this work 
were conducted with data from the Infinium Methylatio-
nEPIC v1 array. Illumina has recently released the new 
MethylationEPIC v2 array, with expanded coverage of the 
genome (> 900,000 CpGs), and explicit exclusion of sev-
eral poor-quality probes that are routinely removed from 
analysis of v1 data. While the PlaNET tools have not 
yet been validated with v2 placental DNAme data, the 
majority of CpGs that PlaNET utilizes for epiphenotype 
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estimation are still present on the v2 array. For gesta-
tional age (all three clocks) and cell type (first and third 
trimester) estimation, 90% of the PlaNET probes are 
covered on the v2 array. The CpGs used by PlaNET for 
genetic ancestry estimation are only 63% covered by the 
v2 array, however, those CpGs included in the v2 array 
have significantly higher “importance” values for pre-
diction classification than do the CpGs that are omitted 
from v2 (p < 0.05). While it still needs to be experimen-
tally confirmed, this suggests that PlaNET ancestry esti-
mation will still be a valid tool if applied to placental 
DNAme data collected with the v2 array.

We suggest integration of epiphenotype variables dur-
ing both the processing and analysis of placental DNAme 
data; see Fig.  5. First, we recommend that analysts per-
form PCA on both the raw and processed data (after 
normalization & probe filtering), incorporating epivari-
ables into the interpretation of the processed data PCA, 
to identify whether major axes of variation in a dataset 
are associated with factors such as cell composition. 
Beyond PCA, several other quality control steps, and 
data normalization, are important to perform to ensure 
the quality of the data (see Table  2), including analysis 
of the control probes included on the Illumina arrays, 
evaluation of the SNP probes, and fluorescence intensity 
checks [69, 70]. Data must be normalized by one of sev-
eral different algorithms, the choice of which may depend 
on tissue or dataset [71]. Analysts may consider apply-
ing batch-correction tools to DNAme array data, though 
doing so can introduce unwanted noise and false signal 
in the data, particularly if sample sizes are small and/or 
all potential confounding variables are not very well bal-
anced across rows, chips, and array batches [36, 72]. If 
any technical batch signals remain after data processing, 
as detected by examination of the epiphenotype variables 
or DNAme data directly, we suggest that these factors 
can be adjusted for in statistical modeling [73], or exam-
ined post hoc as possible confounders after data analysis.

As a proof-of-principle experiment, we demonstrated 
that accounting for epivariables in differential DNAme 
analysis of placental data can help attenuate test statistic 
inflation. This was demonstrated by running a series of 
linear models with “Cohort” as the primary variable of 
interest, and iteratively adjusting for the epiphenotype 
variables as additive covariates in these models. Small but 
progressive decreases in the lambda values, i.e., decreas-
ing inflation of the p values, was observed with adjust-
ment for epiphenotypes [43]. This reduction in lambda 
values was particularly apparent when cell type propor-
tions were adjusted for, and was also observable most 
clearly in the reduced dataset models (V-NORM and 
V-SSRI samples only). Additionally, the difference in 
lambda values between the models run on the full dataset 

versus models run on the reduced dataset (QF2011 sam-
ples excluded) suggests that even small between-cohort 
differences can have a large impact on statistical analy-
sis, and experiments should be designed with this in 
mind. Other approaches are also available to further 
attenuate technical effects during DNAme data analysis, 
and should be considered in placental research [43]. To 
encourage transparency, we also recommend analysts 
calculate and report the lambda inflation parameter in 
placental DNAme studies.

We note that the method by which biological and epi-
phenotype variables are accounted for in analyses fol-
lowing data processing should be carefully considered, 
given the associations observed here between cell com-
position, ethnicity, genetic ancestry, and gestational age/
birth weight Z-score. Adjusting or “controlling” for these 
factors in statistical models can mask important relation-
ships between these variables and the outcomes of inter-
est. As factors such as cell composition, ethnicity, genetic 
ancestry, and gestational age/birth weight may all inter-
act with fetal health in unique ways, they should be stud-
ied directly when possible. If sample size is sufficient, for 
example, data should be analyzed separately by maternal 
self-reported ethnicity groups, and by sex, since DNAme 
alterations associated with other variables of interest may 
differ within these groups. Though not explored here, it is 
also worth noting that epiphenotypes could be used for 
metadata harmonization across cohorts with different 
reporting standards (one could calculate the epigenetic 
gestational age for all samples and using these values in 
downstream analysis). We also note that these epiphe-
notype variables can be analyzed directly in relation to 
outcome variables of interest, such as disease status (e.g., 
Are cell type proportions altered in disease contexts? 
Does epigenetic age increase relative to reported gesta-
tional age in disease contexts?). We acknowledge that an 
important limitation of our study is the relatively small 
sample size limited to pregnancies at or near term. It 
will be interesting to explore these questions and further 
validation of the epivariables in larger and more diverse 
cohorts in the future.

Overall, we recommend the application of epipheno-
typing approaches, followed by detailed exploration the 
interrelated nature of biological, technical, and epiphe-
notype variables in any dataset before beginning analysis, 
and further recommend that analysts exercise due cau-
tion in interpreting results.

Materials and methods
Cohorts
204 placentas from three cohorts were processed for 
DNAme arrays in Vancouver, Canada. The three cohorts 
consisted of: (i) V-NORM, a normative population of 
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pregnancies recruited at BC Women’s Hospital (BCWH) 
in Vancouver, Canada (n = 35), as part of a study on Epi-
genetics in Pregnancy Complications (EPIC) [7, 74, 75]; 
(ii) V-SSRI, a population of pregnant individuals recruited 
in Vancouver, Canada, in the 20th week of gestation 
(n = 64), with/without clinical depression, and with/
without the use of selective serotonin reuptake inhibitors 
(SSRIs) [53, 76]; and (iii) QF2011, a population of preg-
nancies exposed to a sudden-onset disaster during gesta-
tion due to catastrophic flooding in the Australian state 
of Queensland in early January 2011 (n = 105) [77]. Ethics 
approval for the V-NORM and V-SSRI cohorts, as well 
as overall approval for the present study was obtained by 
the University of British Columbia/Children’s and Wom-
en’s Health Centre of British Columbia Research Ethics 
Board (H04–70488, H12-00733, and H16-02280, respec-
tively). The QF2011 study received ethics approval for the 
initial and follow-up protocols from the Mater Hospital 
Human Research Ethics Committee (1709  M, 1844  M). 
The QF2011 study also has ethics approval from the 
University of Queensland Human Research Ethics Com-
mittee (2013001236). For all cohorts, written informed 
consent was obtained from all participants, and all pro-
cedures complied with the ethical standards on human 
experimentation and with the Helsinki Declaration of 
1975 (revised in 2008). A subset of V-NORM participants 
were recruited by the BC Children’s Hospital BioBank 
(BCCHB) (Vancouver, BC) an institutional biobank that 
collects samples and data from both children and women 
at BC Children’s and Women’s Hospitals and Health Cen-
tres for future, ethically approved research.

The V-SSRI and QF2011 were prospectively recruited 
cohorts, and, except for four individuals giving birth 
between 35.7 and 37.0  weeks, all births occurred at 
term. Cases for V-NORM were thus retrospectively 
selected for having similar gestational ages at birth 
(i.e., ≥ 36  weeks) to match the other two cohorts, with 
four samples included between 36 and 37  weeks gesta-
tional age. Of note, gestational age was only available to 
the nearest week for the QF2011 cohort, with three miss-
ing values in the 105 placentas that were imputed to the 
median of all other measurements (39 weeks). Exclusion 
criteria applied to all cohorts included pregnancies with 
multiple fetuses and chromosome abnormalities. Addi-
tionally, V-SSRI excluded mothers with bipolar illnesses, 
hypertension, current substance abuse, any diabetes, 
or infants with congenital brain malformations or fetal 
growth. V-NORM excluded any pregnancies affected by 
preeclampsia, while QF2011 was not subject to any addi-
tional specific exclusions. The respective exclusion cri-
teria were applied to all cohorts to enable examination 
of key variables of interest without the presence of large 
confounding factors (such as chromosome abnormalities 

or preeclampsia being associated with DNAme altera-
tions, or bipolar illness possibly confounding depression 
analyses in the V-SSRI study).

Self-reported ethnicity and/or race are increasingly 
recognized as important variables to consider in health 
research, but there have not been consensus definitions 
of race or ethnicity [78–80]. Further, socially meaning-
ful groupings may differ across countries and cultures, or 
even change for an individual over time [78]. To harmo-
nize these self-reported variables across cohorts, as well 
as to create groups with sufficient sample size for analy-
sis, we have chosen to group samples by maternal self-
declared race/ethnicity as follows: (i) “white” if reported 
as white, Caucasian, European, or from any European 
country; (ii)“Asian” if reported as Asian, Chinese, Japa-
nese, Korean, Filipino, Vietnamese or Thai; (iii)“Black” if 
reported as Black or African; (iv) and “Other” if reported 
as Pacific Islander, South Asian, South American, Mid-
dle Eastern, Latin American, any specific country within 
those areas, or mixed ethnicity. We acknowledge, how-
ever, that these are imperfect descriptors, and that 
these groupings may not accurately reflect the intended 
response of the participants.

Infant birth weight is presented as standard devia-
tion Z-scores from the mean sex- and gestational age-
specific birth weights, based on Canadian birth charts 
[81]. Placental efficiency was calculated as the residual 
of birth weight regressed on placental weight, adjusted 
for gestational age and sex [42]. This residual is inde-
pendent of gestational age, whereas infant birth weight 
to placental weight ratio is positively correlated with 
gestational age [42]. Untrimmed placental weight (pla-
cental weight including the reflected amniotic and cho-
rionic membranes), rather than trimmed weight, was 
used for placental efficiency calculations as it was avail-
able in a greater number of cases, and the trimmed and 
untrimmed values were highly correlated in cases for 
which both measurements were available (n = 75, Spear-
man’s Rho = 0.97, p < 2.2e−16). Between-cohort dif-
ferences were evaluated by ANOVA for continuous 
variables and Chi-square tests for categorical variables.

Placental sampling
Placental sampling after delivery followed two similar 
but distinct sampling processes. First, the V-NORM and 
V-SSRI cohorts were sampled by a single lab in Vancou-
ver, Canada, using a standardized sampling protocol [75]. 
Briefly, 1.5–2   cm3 samples of chorionic villi were taken 
from each of four distinct cotyledons (sites) from below 
the surface of the fetal-facing side of the placental disc 
at a depth that targeted intermediate and tertiary villi 
and well-washed of blood. Any potential contaminating 
maternal tissue (i.e., decidua or maternal infarcts) was 
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carefully avoided. Placental processing time (number 
of hours from placenta delivery until sampling) ranged 
from 0.5 to 288  h (with 5 samples missing data). The 
samples were washed thoroughly to remove blood, and 
any thick vessels were removed. Samples were frozen 
at − 20  °C until use. DNA was then extracted from all 
four cotyledon samples using a salting-out DNA extrac-
tion procedure [82], and extracted DNA from the four 
sites was pooled in equimolar proportions to provide a 
representative sample of each placenta. The second sam-
pling process involved the QF2011 placentas, which were 
processed in Brisbane, Australia, within 60 min of deliv-
ery, and eight sites (1   cm3 each) representing different 
cotyledons were sampled across the fetal-facing side of 
each placenta. These samples were snap-frozen in liquid 
nitrogen and subsequently shipped to Montreal, Can-
ada. Pools of five samples were ground over dry ice, and 
DNA was extracted using the DNeasy Blood & Tissue Kit 
(Qiagen, Valencia, CA, USA) in Montreal before being 
shipped to Vancouver on dry ice for DNAme processing.

DNAme arrays and data quality checks
DNA samples from all three cohorts were run on Illu-
mina Infinium MethylationEPIC v1 arrays in Vancou-
ver, BC, Canada. Processing included DNA purification 
after extraction using the DNeasy Blood & Tissue Kit 
(Qiagen, Valencia, CA, USA), bisulfite conversion using 
the EZ DNAme Kit (Zymo Research, Orange, CA, USA), 
and hybridization to and processing of the Illumina Infin-
ium MethylationEPIC BeadChip arrays according to the 
manufacturer’s protocol (Illumina, San Diego, CA, USA). 
Samples from the three cohorts were distributed and run 
in 3 array batches across 44 eight-sample chips as illus-
trated in Additional file 1: Fig. S1. Samples were carefully 
distributed across array chips (1–44) and rows (1–8) with 
respect to the following variables, to minimize poten-
tial batch effects: exposure groups (SSRI exposed/non-
exposed and QF2011 objective flood stress high/low) and 
infant sex (all cohorts). All samples from V-SSRI and the 
majority of samples from QF2011 were run together in 
EPIC array Batch 1. A small number (n = 11) of QF2011 
samples were received in Vancouver at a later date and 
were included in Batch 2. All samples from V-NORM 
were run in EPIC array batches 2 and 3, along with pla-
cental samples that were part of other, related projects.

DNAme data from raw IDAT files were read into R 
v4.2.2 [83] and annotated with the Illumina Infinium 
MethylationEPIC v1.0 B4 Manifest. Several data qual-
ity control checks were undertaken using the R pack-
ages minfi [84, 85], wateRmelon [86, 87], and ewastools 
[69]. First, each sample was assessed at 17 Illumina 
control probes to evaluate bisulfite conversion effi-
ciency and array run quality; all samples passed the 

manufacturer-recommended thresholds at the control 
probes. Next, average total (methylated + unmethyl-
ated) fluorescence intensity was assessed between sam-
ples, and between array batches. All samples had similar 
total fluorescence, though samples run on the EPIC 
array in Batch 3 had slightly higher average intensities 
than those in Batch 1 and 2. Sample sex was assessed 
with the ewastools package [69], using the mean total 
fluorescence intensity (methylated + unmethylated) of 
the X and Y chromosome probes, normalized to the 
per-sample mean autosomal total fluorescence inten-
sity, and was confirmed to match the clinically reported 
sex of the infant in all cases. Sample genetic identity 
was assessed using the 59 SNP (‘rs’) probes on the EPIC 
array with the “call_genotypes” and “enumerate_sam-
ple_donors” functions (ewastools) [69]. Finally, DNAme 
beta value density plots of all samples were visually 
assessed to determine overall similarity of the beta 
value distributions between samples, with no outliers 
identified.

Epiphenotype estimation
The PlaNET R package [29] was used to determine 
DNAme-based estimates of genetic ancestry, placen-
tal cell type composition, and gestational age at birth. 
These metrics were calculated based on BMIQ-noob 
normalized data before probe filtering, as recom-
mended in the PlaNET package documentation [29]. 
PlaNET-derived genetic ancestry can be described as a 
continuous variable on three axes of variation that sum 
to one, representing contributions of African, East-
Asian, and European ancestry [33]. PlaNET-derived 
cell composition was calculated using the robust par-
tial corrections method, which yields six compositional 
estimates of the major placental cell types (endothelial 
cells, stromal cells, Hofbauer cells, nucleated red blood 
cells, cytotrophoblasts, and syncytiotrophoblasts) [15]. 
To avoid confusion, we use the term “Cytotrophoblast” 
for the cell type PlaNET reports as “Trophoblasts”, as 
these were single-nuclear trophoblasts derived from 
chorionic villi, and represent stem and columnar cyto-
trophoblast, but would not be expected to have sig-
nificant contribution from extra-villous trophoblast or 
syncytiotrophoblast [15]. PlaNET-derived gestational 
age can be calculated using 3 different built-in tools: 
the robust placental clock (RPC), the control placen-
tal clock (CPC), and the refined-robust placental clock 
(RRPC). The RRPC is most appropriate to the present 
dataset as it was developed using exclusively sam-
ples > 36 weeks of gestational age (including pathologi-
cal samples) to improve prediction over the narrow age 
range at term [18].
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Data processing
After estimation of epiphenotype variables, raw data 
were normalized for analysis, using noob and dasen 
combined normalization methods [86, 88]. Several nor-
malization algorithms were considered for application 
to this dataset (functional, BMIQ, SWAN, and quantile, 
all evaluated with and without noob where possible [70, 
84, 89–91]). We selected between these algorithms by 
assessing the extent to which each normalization pro-
cedure adjusted the dynamic range of Type II probes to 
more closely resemble the distribution of Type I probes. 
Quantitatively, we compared the shape of the Type I and 
Type II probe beta value distributions by computing the 
difference between the maxima and minima before ver-
sus after normalization. Dasen + noob was found to out-
perform other normalization approaches in this dataset 
with respect to minimizing the difference between the 
distributions of Type I and Type II probes and increas-
ing the correlation of technical replicate pairs after nor-
malization.. Subsequently, poor-quality probes (detection 
p value > 0.01 or bead count < 3 or missing values in > 5% 
of samples) were removed from the dataset (n = 4783), as 
were cross-hybridizing probes and probes overlapping 
single-nucleotide polymorphisms (MASK_general col-
umn of [92], n = 99,360). Technical replicates of 12 genet-
ically distinct samples (11 replicate pairs and one sample 
run in quintuplicate) were used to assess data process-
ing by calculating the correlation between all DNAme 
beta values of replicate sample pairs in the raw and pro-
cessed datasets. The highest quality replicate from each 
pair was retained for the rest of the analysis, and all oth-
ers removed (n = 15 replicate samples removed). One 
additional non-replicate sample was removed for failing 
probe quality checks (> 1% of array probes failed detec-
tion P/bead count). After data processing and qual-
ity control, a total of 746,608 probes in 204 samples 
remained for analysis. Of note, we elected not to apply 
ComBat [93], a commonly used batch-correction tool, 
as our samples were well-distributed across the techni-
cal (array) batches with respect to biological variables 
(cohort, infant sex, and exposure groups: SSRI exposure 
and objective flood stress), and ComBat can lead to false 
positive discoveries [36, 72].

Principal component analysis
Principal component analysis (PCA) was used to assess 
the primary drivers of DNAme variance in the data using 
the R package irlba [94]. Linear models were run to assess 
covariance between each principal component and tech-
nical and biological variables (PC ~ dependent variable) 
using the plomics package [95], and visualized in a heat-
map method similar to [96].

AIMs data processing
Ancestry informative markers (AIMS) were used as an 
independent assessment of genetic ancestry. Genotypes 
at 57 single-nucleotide polymorphisms informative to 
assess African, East Asian, and European ancestry [38, 97] 
were obtained using the Sequenom iPlexGold assay for 
192/204 samples, and analyzed as previously described 
[38]. Briefly, for each sample individually, AIMS data 
were combined with external data from 2418 individu-
als from the 1000 Genomes Project (1 KGP), serving as 
ancestry reference populations. Multidimensional scal-
ing (MDS) was then run on the Euclidean distance matrix 
based on genotype of these samples (coded numerically 
by the B allele frequency as 0, 1, or 2). The top two MDS 
coordinates were used to describe ancestry for each sam-
ple across a continuum relative to 1 KGP samples of East-
Asian, African, and European ancestry, and are denoted 
throughout the article as AIMs coordinates.

Evaluation of test-statistic inflation in linear models 
accounting for epivariables
DNAme data at all filtered autosomal CpGs (n = 746,261) 
were converted to M values, and subjected to linear mod-
eling, testing for between-cohort DNAme differences, 
with sex and Sentrix Position (array row) included as 
additive covariates. Subsequent linear models were run 
that included additional additive covariates beyond sex 
and Sentrix Position: reported gestational age, RRPC ges-
tational age epiphenotype, PlaNET ancestry estimates 
as continuous values, and PlaNET cell composition esti-
mates as continuous values. The two compositional epi-
phenotype variables (ancestry and cell composition) were 
adjusted for using a “leave one out” structure, where all 
but one continuous variable from each epivariable set 
were included in the linear models (for example, cell type 
estimates were adjusted for by including additive covari-
ates of all cell types except syncytiotrophoblast (cyto-
trophoblast, stromal, Hofbauer, endothelial, nucleated 
red blood cells), as recommended in the package vignette 
[29]). Linear models were run using the limma R package 
[98], and lambda values were calculated from the full set 
of “Cohort” term p values for each linear model using the 
QCEWAS R package [99].

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13072‑ 023‑ 00507‑5.

Additional file 1: Fig. S1. Sample map for EPIC array processing. 
Depiction of sample distribution across Illumina Infinium MethylationE‑
PIC array chips, colored by randomization variables (sex, SSRI exposure 
status, COSMOSS stress score, replicate status, trimester, cell type). Chips 
are grouped by batch. Fig. S2. Heatmap of the strength of association 
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between pairs of covariates.  R2 values of linear models run on Covari‑
ate ~ Covariate demographic variables. “Ethn” denotes ethnicity, “P(African/
Asian/European)” refer to the continuous PlaNET ancestry probabilities, 
“SD” refers to standard deviation, “wt” refers to weight, “GA” refers to 
gestational age at birth, “Cyto” refers to cytotrophoblast, and “nRBC” refers 
to nucleated red blood cells. Fig. S3. Relationship between processing 
time and cell type proportions. (A) Placental processing time in hours 
after delivery (Proc time) is plotted along the Y axis, with cohort plotted 
along the X axis. (b) Estimates of cell type proportions (Y axis) were plot‑
ted against placenta processing time (hours) from all cohorts. Significant 
Pearson correlations (Estimate ~ Cell Type) are indicated with p < 0.05 in 
the figure legend. (C) Samples from the V‑SSRI cohort were excluded, 
to evaluate the impact of processing time on cell type proportions 
independent of the few samples in V‑SSRI with unusually long processing 
times. Significant Pearson correlations are indicated with p < 0.05 if the 
figure legend. Fig. S4. Relationship between cell type proportions 
and sex, self-reported maternal ethnicity, and PlaNET ancestry. (A, 
C, E) All Cohorts, (B,D,F) Vancouver‑collected cohorts only, QF2011 cohort 
excluded. Significance of comparisons are indicated when p < 0.05. Fig. 
S5. Relationship between cell type proportions and placental to fetal 
weight ratio and residual. (A) Fetal to placental weight ratio associa‑
tion with cell type proportions. Significant correlations are indicated with 
p < 0.05 in the legend. (B) Residual of fetal weight regressed on placental 
weight showed no significant association with any cell type proportion. 
Fig. S6. Distribution of all nominal p values for linear models run 
with adjustment for epiphenotype variables. “Base” refers to the base 
linear model of DNAme ~ Cohort + Sentrix Position + Sex + ε. Additional 
models refer to the base model plus the specified additive covariate. 
For example, GA (gestational age) refers to DNAme ~ Cohort + Sentrix 
Position + Sex + GA + ε. P values investigated are those associated with 
the term “Cohort”. RRPC indicates robust refined placental clock, Ancestry 
refers to adjustment for PlaNET ancestry continuous values, Cells refers to 
adjustment for continuous PlaNET cell composition estimates. Listing > 1 
variable indicates additive adjustment for all indicated variables (such as 
adjustment for both ancestry and cell composition as indicated by the 
notation Ancestry_Cells). A horizontal dashed line indicates p = 0.05. The 
p values shown in this plot arise from linear models run on V‑SSRI and 
V‑NORM (n = 99) at all filtered autosomal CpGs. Table S1. Lambda values 
from linear models for differential DNAme by Cohort. Lambda was 
calculated in each case from all nominal p values associated with the 
Cohort term in each model. GA refers to gestational age, RRPC refers to 
the robust refined placental clock gestational age, Ancestry and Cell Types 
refer to the PlaNET epiphenotype variables for ancestry and cell composi‑
tion, included as continuous additive covariates.
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