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Abstract 

Fatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes 
with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known 
about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in tran‑
scriptional and epigenomic profiles. In this study, we took up a multi‑omics approach and integrated gene expression, 
methylation signals, and chromatin signals to study the epigenomic effects of a high‑fat and alcohol‑containing diet 
on mouse hepatocytes. We identified four relevant gene network clusters that were associated with relevant path‑
ways that promote steatosis. Using a machine learning approach, we predict specific transcription factors that might 
be responsible to modulate the functionally relevant clusters. Finally, we discover four additional CpG loci and validate 
aging‑related differential CpG methylation. Differential CpG methylation linked to aging showed minimal overlap with 
altered methylation in steatosis.
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Introduction
Epigenetic changes have gained attention in recent 
research focusing on liver diseases [1]. Metabolic dys-
function-associated fatty liver disease (MAFLD) affects 
about a quarter of the global population and comprises 
a spectrum of liver pathologies that arise from different 
etiologies, all being characterized by hepatic steatosis. 
MAFLD increases the risk for the development of fibro-
sis, cirrhosis, and hepatocellular carcinoma. Fatty liver 
disease has traditionally been subdivided into the terms 
alcoholic fatty liver disease (AFLD) or non-alcoholic 
fatty liver disease (NAFLD) based on rather arbitrary 
cut-off amounts of patients’ daily alcohol consumption. 
The overarching term MAFLD has therefore been sug-
gested in order “to integrate the current understanding 
of patient heterogeneity” [2]. Interestingly, the majority 
of genes dysregulated in livers of alcoholic steatohepa-
titis (ASH) and non-alcoholic steatohepatitis (NASH) 
patients has been reported to be identical [3].

The epigenome modulates gene expression changes 
through different mechanisms, such as histone modifi-
cations, DNA methylation, and non-coding RNA-medi-
ated actions. Post-translational modifications of histones 
affect gene transcription by altering the DNA accessi-
bility to the transcriptional machinery. These aberrant 
histone modifications have been shown to be associated 
with the development of insulin resistance and conse-
quently NAFLD [4]. Exposure to ethanol has also been 
found to cause an imbalance of histone acetylation and 
deacetylation enzymes in hepatocytes. H3K9 acetylation 
was found to correlate with a transcriptional increase of 
alcohol dehydrogenase (ADH1) [5]. Furthermore, etha-
nol was reported to be a stimulator of fibrosis by alter-
ing histone-modifying enzymes in hepatic stellate cells 
(HSCs), resulting in increased expression of extracellular 
matrix proteins including elastin [6, 7]. Ethanol also has 
been reported to induce global DNA hypomethylation 
and an aberrant pattern of DNA methylation [7]. Knowl-
edge on ethanol-induced epigenetic alterations have typi-
cally been generated either by in  vitro treatment of cell 
cultures or by analyses of whole tissue. We are not aware, 
until this study was conducted, of any epigenetic studies 
employing ex  vivo material, i.e., pure cell preparations 
from animals undergoing a feeding scheme [7]. There is 
also a lack of knowledge of epigenetic alterations in iso-
lated hepatocytes for NAFLD.

DNA methylation (DNAm) is predominantly associ-
ated with chromatin condensation, inhibiting the bind-
ing of transcriptional activators, and thereby resulting 
in transcriptional silencing [8, 9]. CpG islands are pref-
erentially found in an unmethylated state in promoters 
and are associated with transcriptionally active states. 
Different methylation patterns have been proposed to 

distinguish different stages of NAFLD or fibrosis [10]. 
Comparing mild and advanced NAFLD in liver biopsies 
of patients, a general trend in hypomethylation of CpG 
sites was observed in advanced NAFLD [11]. Loomba 
et al. [12] described interesting DNAm signatures in the 
peripheral blood cells of nonalcoholic steatohepatitis 
(NASH) patients showing epigenetic age acceleration. 
Horvath et al. [13] found an increased epigenetic age in 
liver tissues from obese individuals and indications that 
body mass index might promote age acceleration via 
steatosis.

In this study, we aimed to (i) elucidate the features 
caused by epigenetic alterations in hepatocytes isolated 
from steatotic animals fed the Lieber DeCarli (LDC) 
diet (containing high fat and alcohol) by an integrative 
approach of analyzing full class epigenomes. (ii) assess 
whether methylation marks of the epigenetic clock, as 
suggested by Stubbs et al. for murine tissues [14], could 
be observed in these isolated cells. Through this work, we 
find four functionally relevant clusters of genes differen-
tially expressed in the LDC model, which are regulated 
by chromatin changes and transcription factors. This 
study reveals that LDC-induced steatosis does not corre-
late with DNAm age.

Materials and methods
Animal welfare
Animal handling was in compliance with the guide-
lines of the local animal welfare committee (permission 
number: 38/2013). Details on mouse treatment were 
described in [15]. Mice were housed in a 12/12 h light/
dark cycle under constant conditions (temperature: 
22 °C ± 2 °C; relative humidity: 55% ± 10%) with food and 
water ad  libitum. Female control C57Bl6/JxDBA/2 were 
randomly divided into the experimental groups at the age 
of 3 weeks. The control group (Co) received normal chow 
(#1320, Altromin, Lage, Germany). The other group was 
fed the Lieber-DeCarli (LDC, #F1258SP, BioServ, Flem-
ington, NJ, USA) diet as the only food source. The com-
position of the diets with regard to metabolic energy was 
24% kcal from protein, 12% kcal from fat, and 64% from 
carbohydrates for the Co diet and 17.2% kcal from pro-
tein, 40.9% kcal from fat, 15.4% from carbohydrates, and 
26.5% from ethanol, which equals 4% ethanol, for the 
LDC diet. Mice were sacrificed at the age of 9 weeks.

The diet was prepared as recommended by the manu-
facturer’s instructions and animals were fed as published 
[15, 16] with a magnetic stirrer and a magnetic stir bar. 
To one-third of the dry mix one-third of warm water was 
added, and mixed until the product dispersed. This step 
was repeated, ethanol was added and the product was 
dispensed into liquid diet feeding tubes (#13260, BioServ, 
Flemington, NJ, USA). Mice received the LDC diet for 1 
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week without ethanol, followed by 1 week of increasing 
ethanol concentrations: 2 days 1%, 2 days 2%, 3 days 4%. 
The lipid composition induced by LDC feeding was ana-
lyzed in mice treated in parallel to the animals used for 
hepatocyte isolation within this project and confirmed 
massive lipid deposition [15]. For analysis of DNA meth-
ylation related to aging, hepatocytes were isolated from 
female control C57Bl6/J mice at the age of 10  weeks 
(young) and 40 weeks (mid-aged); for DNA methylation 
analyses in liver tissues, livers from female control mice 
aged 10 (young) and 84–85 (aged) weeks were used [17].

Hepatocyte isolation
Isolation of primary hepatocytes from mouse livers was 
performed as described previously [18]. In brief, the liver 
was perfused through the vena cava with an EGTA-con-
taining buffer, followed by a perfusion with collagenase 
buffer. After digestion, the liver was excised and the liver 
capsule was opened under sterile conditions, and the 
cells were released into a suspension buffer. The cell sus-
pension was filtered through a 100 µm gauze to remove 
tissue debris and centrifuged for 5 min at 4 °C and 50×g. 
The hepatocyte pellet was washed and the centrifugation 
step was repeated. Aliquots of hepatocytes were cryopre-
served and stored at − 80 °C until further analysis.

Colorimetric Sulfo‑Phospho‑Vanillin assay
The colorimetric Sulfo-Phospho-Vanillin assay was used 
to quantify total lipids in isolated hepatocyte samples. 
Freeze-dried samples were dispersed with 18 volumes 
of hexane/2-propanol (3:2 (v/v)) for 10  min and cen-
trifuged for 10  min at 4  °C and 10,000×g. The superna-
tant was transferred into a new glass vial (#60500-1109, 
DURATEC Analysentechnik GmbH, Hockenheim, Ger-
many), dried under nitrogen stream, re-dissolved in 
200  µl chloroform–methanol (2:1 (v/v)), and stored at 
− 20  °C. As a standard solution olive oil was diluted in 
chloroform–methanol (2:1 (v/v)). 100  µg, 75  µg, 50  µg, 
25 µg, 12.5 µg and 6.25 µg olive oil were used as a stand-
ard and handled like the samples. 5 µl of the lipid extracts 
were transferred into a 1.5 ml glass vial and the solvent 
was evaporated by incubation for 2 to 5  min at 90  °C 
in a drying closet. Samples were cooled to room tem-
perature, 100 µl of sulfuric acid (95–97%, #100731.1000, 
Merck, Darmstadt, Germany) was added and incu-
bated for 20  min at 90  °C. After cooling the vials down 
to room temperature, 50  µl vanillin-phosphoric acid 
(0.2 mg vanillin per ml 17% orthophosphoric acid (85%, 
#20624, VWR, Darmstadt, Germany) was added, fol-
lowed by 10 min incubation at room temperature. 100 µl 
of the colored solution was transferred to a 96 well plate 
and the absorption was measured at 550  mm using the 

Sunrise™ absorbance microplate reader (Tecan Austria 
GmbH, Grödig, Austria).

RNA sequencing
RNA was isolated using the TRIzol method. Briefly, 1 ml 
TRIzol was added to 5,000,000 cells followed by vor-
texing, a 5-min incubation at room temperature, and 
addition of 200  μl chloroform. After mixing, further 
incubation at room temperature for 2–3  min and cen-
trifugation (12,000g) at 4  °C for 5  min, the clear super-
natant was mixed with 500 μl isopropanol and incubated 
at room temperature for 10 min. After further centrifu-
gation (12,000g) at 4 °C for 10 min, the supernatant was 
discarded and the pellet washed with 1 ml cold 75% etha-
nol followed by vortexing and centrifugation (7500g, 4 °C, 
5 min). The pellet was dried and dissolved in RNase-free 
water. The quality (QC) of total RNA as determined by 
TapeStation or Bioanalyzer (Agilent) was above RIN 9.5. 
For the preparation of the libraries, rRNA was removed 
with the Ribo-Zero™ Human/Mouse/Rat rRNA Removal 
Kit from Biozym Scientific GmbH.

The long RNA library was prepared using the TruSeq 
Stranded totalRNA Sample Prep Kit from Illumina (San 
Diego, CA) according to the manufacturer’s instructions. 
All samples were sequenced using an Illumina HiSeq 
2500 sequencer v4 (Illumina, San Diego,CA) (1 sample/
lane plus 2 × 125  bp for long RNA) at IKMB NGS core 
facilities.

Capturing DNA methylation
Bisulfite treatment and PCR
500  ng genomic DNA was subjected to bisulfite treat-
ment using the EZ DNA Methylation-Gold Kit (Zymo 
Res.) according to the manufacturer’s protocol. Two 
microliters of bisulfite treated DNA was used as template 
in a 30-μL reaction in the presence of 3 mM of Tris–HCl 
(pH 8.8), 0.7 mM of  (NH4)2SO4, 50 mM of KCl, 2.5 mM 
of  MgCl2, 0.06 mM of each dNTP, 3 U HotFire DNA pol-
ymerase (Solis BioDyne), and 167 nM of primers (Supp. 
Table 1). PCRs were performed at 95  °C for 15 min fol-
lowed by 42 cycles at 95  °C/60  s, 54  °C (58  °C for Tns1 
and Art3 reactions)/30 s, 72 °C/30 s, and a final extension 
72 °C/5 min.

SNuPE/HPLC analysis
Primer extension was performed as previously described 
[19]. Five μl of PCR products were treated with 1U of 
ExoCIAP (mixture of Exonuclease I [Jena Bioscience] 
and Calf Intestine Alkaline Phosphatase [Calbiochem]) 
for 30 min at 37 °C. To inactivate the ExoCIAP enzymes, 
the reaction was incubated for 15  min at 80  °C. After-
wards, 14 μl of primer extension mastermix (50  mM 
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of Tris–HCl, pH 9.5, 2.5  mM of  MgCl2, 0.05  mM of 
ddNTPs, 1.6  μM of each SNuPE primer (Additional 
file  1: Table  S1), and 2.5 U of Termipol DNA polymer-
ase [Solis BioDyne]) were added. Primer extension reac-
tions were performed at 96 °C for 2 min, followed by 50 
cycles at 96 °C/30 s, 50 °C/30 s, and 60 °C/20 s. Separa-
tion of products was conducted on an XBridge BEH C18 
2.5 µm 4.6 mm × 50 mm column (Waters) at 0.9 ml/ min 
at 50  °C by continuously mixing buffer B (0.1 M TEAA, 
25% acetonitril) with buffer A (0.1 M TEAA) (Additional 
file  1: Table  S1). Methylation indices were determined 
by measuring the height (h) of the methylated (M) and 
unmethylated (UM) peak using the equation h(M)/
(h(M) + h(UM)).

Reduced representation bisulfite sequencing (RRBS)
Library preparation was conducted as described previ-
ously in a one-tube reaction [20]. Briefly, 500 ng genomic 
DNA was digested with MspI, repaired and A-tailed 
using Klenow fragment enzyme (NEB), subsequently Illu-
mina TruSeq universal adaptors were ligated (T4 ligase, 
NEB). Bisulfite treatment was performed using the EZ 
DNA Methylation-Gold Kit (Zymo Res.) according to the 
manufacturer’s protocol. Library preparation was accom-
plished by amplification with indexed TruSeq adaptor 
sequences (12 cycles) to add sample-specific 6 bp identi-
fiers. Sequencing was conducted on the HiSeq2500 (Illu-
mina) on a 100 bp single-read flow cell aiming at 25–30 
Mio reads per sample.

DNaseI sequencing
DNase I sequencing (DNase-seq) was performed as pre-
viously described [21, 22]. Briefly, nuclei were isolated 
from 1 × 10^7 cells by using buffer A (60 mM KCl, 15 mM 
Tris–HCl (pH 8.0), 15 mM NaCl, 1 mM EDTA (pH 8.0), 
0.5  mM EGTA (pH 8.0), 0.5  mM spermidine free base) 
supplemented with IGEPAL (0.1% final concentration) 
and incubation on ice for 15  min. Nuclei were treated 
with different DNase I concentrations (2,25 × 10^6 nuclei 
each, with 0–80U/ml) for 3  min at 37  °C and the reac-
tion was stopped at 55 °C for 1 h with stop buffer (50 mM 
Tris–Cl (pH 8.0), 100  mM NaCl, 0.1% SDS, 100  mM 
EDTA (pH 8.0), 1  mM spermidine and 0.3  mM sper-
mine) supplemented with proteinase K (50 µg/ml). DNA 
was then purified using phenol chloroform extraction 
and double-hit fragments of 100–500  bp were selected 
by sequential purifications with Agencourt AMPure XP 
Beads (Beckman Coulter, Brea, USA). Sequencing librar-
ies were prepared from 8 ng of purified DNA (from 80 U/
ml-digest) using the TruSeq ChIP Library Preparation kit 
(Illumina, San Diego, USA) according to the manufactur-
er’s protocol and sequenced on an Illumina HiSeq2500 
(v3 paired-end flow cell). Raw reads were processed with 

the DEEP pipelines GALv1 and DHSv3 [23] (https:// 
github. molgen. mpg. de/ DEEP/ comp- metad ata).

Chromatin Immunoprecipitation (ChIP sequencing)
Cells were crosslinked in 1% formaldehyde for 5  min at 
room temperature under rotation, followed by quench-
ing in 0.125 M glycine for 10 min. The crosslinked cells 
were then pelleted by centrifugation for 5  min at 4  °C. 
ChIP seq was performed according to the Nexson pro-
tocol [24]. In brief 625,000 cells were used per ChIP. 
Cell were first lysed in 500  μl of Farmen Buffer (5  mM 
PIPES pH8, 85  mM KCl, 0.5% Igpal, 1 × complete pro-
tease inhibitor) and then briefly sheared on a Diagenode 
Bioruptor Plus for 6 cycles (15  s ON/30  s OFF), to free 
nuclei. Nuclei were isolated by brief centrifugation at 
2000 rpm for 5 min at 4  °C. Nuclei were then lysed and 
resuspended by homoginization with a 27 guage syringe 
in 440  μl of 0.33% SDS shearing buffer (100  mM NaCl, 
50 mM Tris–HCl pH8.1, 0.2% NaN3, 0.33%SDS, 3% Tri-
ton X-100) and divided into 4 tubes for shearing on a 
Bioruptor Pico for 45 cycles (30 s ON/ 30 s OFF) on high 
frequency. The chromatin was then diluted to 0.11% SDS 
prior to peforming the ChIP on the IPstar with (50 mM 
Tris–HCl pH8.6, 100  mM NaCl, 5  mM EDTA pH 8.0, 
0.2% NaN3). ChIPs were performed on the Diagenode 
IPstar automated machine using the following set up 
parameters: Indirect method, the Auto Histone ChIP Kit 
(Diagenode)-200 μl, 1 μg antibody—Diagenode H3K27ac 
(pAb-196–050), H3K27me3 (pAb-195–050), H3K36me3 
(pAb-192–0500), H3K4me1 (pAb-194–050), H3K4me3 
(pAb-003–050), H3K9me3 (pAb-193–050) and 10 h anti-
body incubation, 5 h bead incubation, 5 min washes. The 
ChIPs were then de-crosslinked on the IPstar for 4 h at 
65∙C. ChIP samples were then removed and treated with 
2 µl RNase A (10 mg/ml) 30 min at 37 °C followed by 3ul 
Proteinase K treatment for 3 h at 55 °C. DNA was purified 
with Zymo concentrator ChIP DNA clean up columns. 
ChIP DNA was then quantified by Quibit. ChIP libraries 
were generated using NEBNext® Ultra DNA Library Prep 
Kit for Illumina® (E7370S/L) according to the manufac-
turer’s instructions. The PCR cycles were as follows: 5 
Steps: 1 Cycle: 98 °C for 30 s; 10 Cycles: 98 °C for 2 min; 
1 Cycle: 98 °C for 10 s and 65 °C for 75 s; 1 Cycle: 65 °C 
for 5  min; Hold at 4  °C. The libraries were paired-end 
sequenced on an Illumina HiSeq 2500 platform.

Bioinformatic analyses
Differential gene expression analysis
RNA reads were trimmed for adapter and low-quality 
tails (Q < 20) with TrimGalore (http:// www. bioin forma 
tics. babra ham. ac. uk/ proje cts/ trim_ galore/) and sub-
sequently aligned to the mm10 reference genome with 
gene models from GENCODE (version M2) 11 by the 

https://github.molgen.mpg.de/DEEP/comp-metadata
https://github.molgen.mpg.de/DEEP/comp-metadata
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/


Page 5 of 14Maji et al. Epigenetics & Chromatin           (2023) 16:30  

IHEC supported pipeline grape-nf (https:// github. com/ 
guigo lab/ grape nf/ tree/ 35e44 730f5 da02a 41e2a ef7d9 7a722 
e20c5 773f ). tGrape-nf wraps STAR (version 2.4.0j)12 and 
RSEM (version 1.2.21)13.

DESeq2 (Version 1.18.1) was used to detect differen-
tially expressed genes (DEGs) with maximal adjusted 
p-value of 0.05. Genes for which less than four samples 
had an FPM (fragments per million mapped reads) above 
0.1 were discarded.

Differentially expressed genes (DEGs) with adjusted 
p < 0.05 were used for GO functional (MF, BP and CC) 
and biological pathway enrichment (KEGG, Reactome 
and WikiPathways) using g:Profiler [25].

Moreover, these DEGs were used to build the PPI net-
work using STRING v11 [26]. The active interaction 
sources were taken from literature, experiments, data-
bases, co-expression and co-occurrences of the nodes (or 
proteins). A confidence score (> 0.7) was chosen to get 
the interacting nodes. Following this, k-means clustering 
of the genes was performed. The optimal number of clus-
ters (k = 4) was chosen based on the significant associa-
tion and enrichment of GO terms and KEGG pathways 
for the genes (in each cluster).

Differential DNase peak analysis
TEPIC v2 [27] was used to compute the TF gene scores 
based on the differential DNase peaks regions for LDC 
over Co (pseudocount set to 1 e-6). A base mean cutoff of 
10 was used to filter for expressed TFs from the results of 
differential gene expression analysis. This resulted in 265 
motifs, out of 380 total motifs from JASPAR [28], HOC-
OMOCO [29] and KELLIS ENCODE Motif database [30] 
(included in TEPIC v2). The Differential DNase I peaks 
were obtained using edgeR [31]. The positive and nega-
tive peaks for the steatosis (LDC) vs control (Co) were 
identified based on positive log fold change i.e. logFC > 0 
(and vice versa). GENCODE (vM21) was used for refer-
ence genome sequence annotations.

Prediction of transcription factors involved in gene 
regulation
DYNAMITE (from TEPIC v2 [27] package) was then 
used (parameters: –Ofolds = 10 –Ifolds = 6 –alpha 0.01) 
to identify the transcriptional regulators that regulate the 
differentially expressed genes (LDC over Co). The TFs 
were ranked based on absolute regression coefficient, and 
the top 15 TFs (absolute coefficient >  = 0.125) were used 
for further analysis. The TF effect score (or TF enrich-
ment) is calculated (as in Eqs. 1 and 2) by the difference 
of the median log2 quotient Qt,i (for each TF, obtained 
from the TF gene score) for all the DE genes in each clus-
ter and mean of the median Log2 quotients (of others) 
(Fig. 2b).

where, At,g is the TF affinity score for TF t regulating gene 
g. The affinity score of a gene is the sum of TF affinity val-
ues for all open-chromatin regions (peaks) in LDC or Co 
in a window around gene g. Et,i is the TF effect score for 
transcription factor t in cluster i.

Differential chromatin domain annotation
Chromatin state segmentation tracks were computed 
using ChromHMM (v1.15) [32] with default parameters 
using the 18-state model published by the Roadmap Epig-
enomics Consortium [33] for the ChIP-seq data of the six 
histone modifications H3K36me3, H3K27ac, H3K27me3, 
H3K9me3, H3K4me3, H3K4me1 plus the Input control. 
The input short-read alignment (BAM) files were filtered 
with sambamba (v0.6.8) [34] to retain only properly 
paired reads that were not marked as duplicate or supple-
mentary alignments, and that were aligned with a map-
ping quality (MAPQ) of at least 5 as reported by the read 
aligner.

Next, we used SCIDDO (development version 
#39de43a) [23] to identify larger domains of chroma-
tin differences among the two conditions control (Co) 
and steatosis (Ldc). We executed SCIDDO with default 
parameters, using the emissions of the 18-state Chrom-
HMM model (see above) to set the scoring scheme. The 
identified differential chromatin domains (DCDs) were 
then reduced to domains unique to the respective con-
dition of interest (using bedtools v2.27.1 [35], command 
“intersect -v”), and the unique domains further inter-
sected with gene bodies of protein-coding genes (GEN-
CODE vM21, [36]) to obtain a list of genes putatively 
affected by differential chromatin marking.

Analysis of RRBS data
Raw DNA methylation data for hepatocytes and whole 
liver has been processed by the pipeline implemented 
within the DEEP project (https:// github. molgen. mpg. 
de/ DEEP/ comp- metad ata) to generate BED files. These 
files were used as input to RnBeads [37] for further anal-
ysis. We filtered for CpGs that are covered by at least 5 
sequencing reads and conducted differential analysis 
between the aged and young samples using the limma 
method [38] as implemented in RnBeads [37]. The result-
ing p-values were corrected for multiple testing using 
the Benjamini–Hochberg method and the following cri-
teria were used to select differentially methylated CpGs: 

(1)Qt,i = Median

{

log2
ALDC
t,g

ACo
t,g

; ∀ g ∈ clusteri

}

(2)Et,i = Qt,i −
1

j

∑

j,j �=i

Qt,j

https://github.com/guigolab/grapenf/tree/35e44730f5da02a41e2aef7d97a722e20c5773f
https://github.com/guigolab/grapenf/tree/35e44730f5da02a41e2aef7d97a722e20c5773f
https://github.com/guigolab/grapenf/tree/35e44730f5da02a41e2aef7d97a722e20c5773f
https://github.molgen.mpg.de/DEEP/comp-metadata
https://github.molgen.mpg.de/DEEP/comp-metadata
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mean methylation difference of at least 0.05, methylation 
variance in both of the groups less than 0.05 and a FDR-
adjusted p-value less than 0.05.

Results
Generation of epigenome and expression data 
of hepatocytes
We used the Lieber-DeCarli (LDC) diet, containing both 
high fat and alcohol, model for female mice to investigate 
transcriptional and epigenomic differences in ex  vivo 
mouse hepatocytes (Fig.  1). After sorting liver hepato-
cytes from LDC or control (Co) mice we conducted a 
number of genome-wide assays to profile matched tran-
scriptional and epigenetic activity in these cells.

Body weight change was 209 ± 1.5% in LDC-fed mice 
compared to 226 ± 11% in control animals. Lipid content 
of the isolated hepatocytes was 31.33 ± 0.99 lipids/mg 
liver tissue dry weight in LDC vs. 18.04 ± 0.24  µg in Co 
analyzed by colorimetric Sulfo-Phospho-Vanillin assay. 
In the same experiment in which the animals for this 
manuscript were fed the LDC diet and their hepatocytes 
were isolated, mice of the same experimental groups 
were used to obtain bulk tissue and whose livers were 
examined histopathologically. The latter animals have 
been investigated previously [15], and it was reported 

that LDC-fed animals show a microvesicular steato-
sis linked to an increased steatosis score, although liver 
weight and AST/ALT levels were not changed. No bal-
looning of hepatocytes was observed. Hepatocyte death 
was induced in LDC fed mice, while inflammation was 
not altered. Further, serum triglyceride and cholesterol 
levels were increased in the LDC fed animals compared 
to the control mice.

Differential gene expression analysis and clustering
We started with the analysis of RNA-seq generated from 
LDC and Co mice. Differential gene expression analysis 
of LDC against Co was performed using DESeq2, result-
ing in 355 differentially expressed genes (DEGs) with 
adjusted p-value < 0.05. Of these, 148 were downregu-
lated and 207 were upregulated (Additional file  2). The 
355 DEGs were used to explore possible associations 
between them. In this direction, a high confidence pro-
tein–protein association (PPA) network of the DEGs was 
constructed using STRING v11 [26] (confidence > 0.7) 
(Additional file  7: Figs. S1, S2, S3, S4). Thereafter, the 
DEGs were split into different clusters (k-means clus-
tering with k = 4), so that they could be associated with 
functional categories. Table 1 shows a subset of enriched 
functional categories that could be associated with the 

Fig. 1 Experimental setup: Upper left: Hepatocytes were isolated from female mice (aged 9 weeks) fed a control diet (Co, 12% kcal from fat) or a 
Lieber‑DeCarli (LDC) diet (4% ethanol and 40.9% kcal from fat) for 6 weeks (n = 2 per group). Thereafter, RNA‑seq, ChIP‑seq, DNase1‑seq, and RRBS 
were performed for epigenomic analysis. Lower left: Hepatocytes were isolated from young (10 weeks) or mid‑aged (40 weeks) mice were fed a 
control diet and underwent RRBS analyses (n = 4). Top right: Validation was done in liver tissues from young (10 weeks, n = 4), mid‑aged (40 weeks, 
n = 7), and aged (85 weeks, n = 4) female mice fed a control diet by SNuPE and MiSeq. Figure created with BioRender.com 
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encoding genes in each of the 4 clusters. All of these four 
clusters are related to functions, which are altered in 
MAFLD: mitochondrial dysfunction, extracellular matrix 
(ECM), alcohol metabolism, and signaling pathways, 
such as PI3K, JAK-STAT, and MAPK.

Analysis of open chromatin and transcription factor 
binding
In addition to the analysis of differential expression, 
DNase1-sequencing was performed for LDC and Co 
samples. After data processing we obtained regions that 
show differential DNase-1 abundance between LDC and 
Co resulting in 58,370 regions with differential accessibil-
ity. The latter data was used to investigate the binding of 
transcription factors (TFs) that may regulate the genes, 
which show differences in gene expression. Briefly, the 
peaks were separated into positive or upregulated peak 
regions (28,358) and negative or downregulated peak 
regions (30,012) for LDC vs Co based on fold change 
of the DNase-1 data. Among the downregulated LDC 
regions, 67.9% overlapped with gene bodies, 20.2% with 
promoters, and the remaining 11.9% with intergenic 
regions. The upregulated LDC regions overlapped simi-
larly to 68.05% with gene bodies, 12.6% overlapped with 
promoters and the remaining 19.4% with intergenic 
regions (Fig. 2a).

Then, an integrative strategy was conducted using the 
DYNAMITE method [27] to combine DNase1 and gene 
expression data. DYNAMITE uses annotation of TF 
binding motifs in differential epigenome peaks linked to 
genes to explain differentially expressed genes between 
LDC and Co via a logistic regression classifier (see 
Methods).

Figure  2b illustrates the top 15 ranked TFs based on 
the absolute normalized regression coefficients from 
the DYNAMITE method. We have further investigated 
whether these 15 TFs show particular strong deviations 
in their binding behavior for genes according to the 4 

gene clusters. The TF effect score (see Methods) pro-
vides a means of understanding the regulation of the TF 
in the cluster of interest. A positive effect score therefore 
means that there is a stronger regulation of cluster genes 
in LDC with respect to genes in other clusters. Interest-
ingly, NFIL3 showed higher binding preference in LDC 
samples for genes from cluster 1 and cluster 2, whereas 
JUNB showed preferences in LDC for genes in cluster 2 
and 4. Many of the top TFs did not show differences with 
respect to the gene clusters, such as SPIB, CSX2, SP2, 
XBP1, and RFX2 pointing to more general roles of these 
TFs in the transcriptional response.

Investigation of larger domains with chromatin changes
The occupancy of six histone modifications (H3K36me3, 
H3K27ac, H3K27me3, H3K9me3, H3K4me3, H3K4me1) 
was investigated using ChIP-seq in Co and LDC in order 
to clarify if there are larger systematic changes in the epi-
genome of steatotic samples. After chromatin state anno-
tation with ChromHMM, the SCIDDO method was used 
to predict differential chromatin domains (DCDs), which 
are larger genomic regions that show a consistent differ-
ence in chromatin states between the epigenome (Addi-
tional file  3). Overall, SCIDDO reported 1018 DCDs, 
which were overlapping 272 genes. Among these 272, 8 
were also differentially expressed in the RNA-seq data, 
when considering the closest gene within a window of 
50 KB.

Functional categorization (using gProfiler [20]) of these 
272 genes shows enrichment of molecular functions, 
such as intracellular calcium activated chloride chan-
nel activity ([39], and reviewed in [40]). Cell adhesion 
and developmental processes were enriched as biological 
processes. Col4a2, among the 8 DEGs, (also intersecting 
with DMRs) was reported to be significantly correlated 
with hepatocarcinogenesis, HCC progression, and prog-
nosis [41].

Table 1 Functional analysis of the DEG clusters

The first column gives the snapshot of the PPA network of each of the 4 clusters built with the DEGs Additional file 7: Fig. S1–4 contain the figures for each cluster, with 
the cluster ID). The second column gives the number of participating genes (of the DEGs). The third and fourth columns are the overlapping DEGs with differential 
chromatin domains (DCDs) and differentially methylated regions (DMRs), respectively. Finally, the fifth column provides a summary of the studied functional 
categories that the genes in the cluster have been linked to

Cluster ID DEGs per cluster DEGs overlapping DCDs DEGs with proximal DMRs Enriched functions

1 94 1 41 Mitochondrial dysfunction

2 79 0 32 Extracellular matrix collagen

3 61 3 16 Alcohol metabolism

4 84 1 31 Steatohepatitis associated pathways:
 PI3K‑AKT
 JAK‑STAT 
 MAPK
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The distribution of the lengths of the DCD regions for 
each chromosome is shown in. Figure 2c. Overall, only a 
few larger genomic domains showed significant changes 
in histone modifications between LDC and Co, epig-
enomic changes were mostly limited to smaller regions.

Differential methylation in young, aged, and steatotic 
livers
Human steatotic livers share alterations in function, cel-
lular signaling, as well as in metabolism with aged liv-
ers [42]. It has been described that on the one hand liver 

Fig. 2 Integrative analysis of epigenomics data reveals involved transcription factors in LDC gene regulation. a Distribution of the downregulated 
and upregulated DNase‑1 regions in LDC (over Co) among gene bodies, promoters, and intergenic regions. b Integrative analysis of differential 
DNase1 peaks from deregulated genes lead to the prediction of involved transcription factors using logistic regression. The top panel shows 
the absolute normalized coefficients of 15 TFs (absolute regression coefficient > 0.125), which are most predictive for the differential genes. The 
bottom panel shows the TF effect score (Eq. 2) of the ranked TFs in each of the 4 clusters. A positive TF effect score (blue) signifies stronger regulation 
of DEGs in the cluster in LDC (over Co) than the TF effect score for DEGs in other clusters. c Violin plot showing the distribution of the lengths of 
the Differential Chromatin Domain (DCD) regions over all the chromosomes. The DCDs were obtained using SCIDDO from histone ChIP‑seq data 
(p‑value <  = 0.05)
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disease reveals specific alterations in DNA methylation 
and on the other hand epigenetic aging signatures are 
affected by dietary conditions. Thus, the impact of LDC 
feeding on epigenetic aging marks was investigated. 
According to the human epigenetic clock described by 
Horvath [13], Stubbs et al. [14] reported an RRBS-based 
murine epigenetic clock [14], which allows to investigate 
more precisely aging effects in mouse models. Based on 
their work, liver-specific CpG loci obtained from mid-
aged mice (41  weeks old) were selected based on an 
absolute methylation difference of more than 30% (FDR-
adjusted p-value < 0.1, Additional file  4) linked to the 
genes Tns1, Fgfr3, Art3, Cpn2, and Inpp5a (Fig. 3, Addi-
tional file 7: Fig S5, Table 2). In order to assess whether 
these altered methylations found in liver tissues can be 
observed in isolated hepatocytes or whether they are 
rather a result from an altered cell composition with 
age, we performed RRBS analyses of hepatocytes iso-
lated from young (10  weeks) and mid-aged (40  weeks) 
mice. RRBS data confirmed a lower degree of methyla-
tion in hepatocytes from mid-aged compared to young 
animals for Fgfr3, Ndrg2, Tns1, Art, and Cpn2. RRBS data 
were excluded when the number of reads (coverage) for 
the respective CpG was below 3, as it was the case for 
Smarca2 (Fig. 3c) and Inpp5a (Additional file 7: Fig. S5d). 

Further validation was done for these CpGs as well as 
for Smarca2 and Inpp5a via MiSeq and SNuPE analy-
ses of liver tissues from young, mid-aged, and aged 
(85–86  weeks) mice. These analyses confirmed a lower 
degree of methylation as reported by Stubbs et  al. [14] 
in liver tissue not only from mid-aged, but also from 
aged mice: CpGs linked to Fgfr3, Ndrg2, Tns1, Art3, and 
Cpn2 showed significant hypermethylation in livers from 
young compared to (mid-)aged mice (see Fig. 3A, B, D–F 
respectively), while values for Smarca2 did not reach sta-
tistical significance (Fig. 3c).

Subsequently, we performed RRBS and identified new 
CpG loci (Table  2) in hepatocytes with a consistently 
altered methylation in aged livers: two hypomethylated 
CpGs linked to Arhgef19 and Tars (Additional file 7: Fig. 
S5A, Fig.  3G), and one hypermethylated CpG linked to 
Tent5a and Scx, respectively (Additional file 7: Fig. S5B, 
Fig. 3H), (also Additional file 5).

Comparing aging-related CpG methylation with CpG 
methylation in hepatocytes or livers from LDC-fed ani-
mals, none of the sites showed an aging-related pattern: 
Scx showed a significant CpG hypermethylation in aged 
(both SNuPe and MiSeq) over young (Fig.  3H), while it 
was not significantly different in LDC (over Co). Tars 
(Fig. 3G), Fgfr3 (Fig. 3A), Ndrg2 (Fig. 3B), Art3 (Fig. 3E), 
and Cpn2 (Fig. 3F) showed a lower CpG methylation in 
livers from aged than young mice, but the opposite in 
livers from LDC vs. control-fed animals. Tns1 (Fig.  3D) 
CpG methylation was reduced in aged livers, but no 
clear effect could be observed upon the LDC diet. The 
Arhgef19 (Additional file  7: Fig. S5A) locus had signifi-
cantly higher CpG methylation in young (over aged), as 
detected by SNuPE experiments, with similar tendency 
in MiSeq experiments.

A CpG of the Prdm16 gene was used as a consistently 
highly methylated control (Additional file  7: Fig. S6). 
Though Tent5a (Additional file  7: Fig S5b) did not have 
significant differences in aging or LDC, the aged samples 
in tendency showed a higher extent of methylation (com-
pared to young).

Discussion
In this study, different layers of the epigenome were ana-
lyzed in hepatocytes isolated from mice that were fed a 
diet containing alcohol and high fat. One limitation of 
the study is that the epigenome assays were produced 
from two mouse replicates (n = 2 per group). To the 
best of our knowledge, no comparable data have been 
reported in the literature. In order to decipher which epi-
genetic mechanisms cause the observed transcriptional 
alterations, we investigated expression, DNA methyla-
tion, histone modifications, and chromatin changes. We 
acknowledge that variation in chromatin accessibility or 
DNA methylation does not imply the changes observed 
in gene expression. However, keeping these assumptions 
in mind and with the help of integrative approaches, 
biological interactions of different epigenetic and tran-
scriptional mechanisms could be identified for LDC and 
might be also relevant in human disease.

The four clusters resulting from differential gene 
expression analysis are all relevant for the pathogenesis of 

(See figure on next page.)
Fig. 3 Analysis of CpG methylation in established and novel aging associated loci. A–F Analysis of CpG methylation status of selected Stubbs 
Loci (see Table 2) in LDC (over Co) mice from liver hepatocytes (using RRBS) and in bulk liver (using SNuPE). The CpG methylation is compared to 
bulk liver from aging mice using SNuPE and MiSeq. G, H The CpG methylation of the new aging loci was also measured in LDC (over Co) mice and 
compared to aging bulk liver using SNuPE and MiSeq. t test (parametric, unpaired) was used to compare and evaluate the significance between 
groups Co vs LDC and young (Y = 10 wks), mid‑aged (MA = 40 wks) vs aged (A = 85 wks) for each of the technologies, in female mice. All differences 
that are significant (* p < 0.05) are marked in the plot. In each case, comparisons were made only between two groups (LDC vs. Co, Y vs. A or Y vs. 
MA for each technology). The gene associated with the measured CpG is mentioned at the bottom of each plot. The source of the sample and their 
age are mentioned on top. For better comparison, methylation index values obtained from SNuPE analyses were normalized to the range of [0,100]. 
RRBS data was excluded when read coverage for the respective CpG was below 3 (concerns Smarca2, Inpp5a). SNuPE analysis of CpGs with low read 
coverage were excluded
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steatosis and steatohepatitis (Table  1). Cluster 1 depicts 
mitochondrial dysfunction, although being based on only 
a few DEGs. In general, NAFLD and AFLD are associ-
ated with mitochondrial dysfunction [43, 44]. NAFLD 

is associated with an increased mtDNA mutation rate 
and mtDNA variability drives NAFLD progression [45], 
including the genes differentially expressed in LDC in 
the current study. Cluster 2 represents changes in genes 

Fig. 3 (See legend on previous page.)
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associated with ECM/collagen. Alterations in the ECM 
of steatotic livers are well known to contribute to mor-
phological changes in the liver in ALD as well as NAFLD. 
Fibrosis is characterized by collagen deposition as well 
as ECM remodeling. Cluster 3, which is associated with 
metabolism, e.g. alcohol metabolism, well reflects the 
LDC model used in this study. Cluster 4 includes genes 
of several PI3K-AKT, JAK-STAT, and MAPK pathways 
by a KEGG analysis. All of these pathways can be con-
nected with steatohepatitis, although most of the genes 
in this cluster have not been quite studied with respect 
to the liver. By using a machine learning approach that 
uses TF binding profiles and the differential gene expres-
sion profiles from LDC and Co [27], we were able to pre-
dict specific transcription factors which might cause the 
observed DEG profile for specific clusters, respectively. 
Based on the TF prediction we found a number of TFs 
that have been previously linked to steatosis. NFIL3 and 
JUNB have been reported to play a role in all stages of 
human NAFLD [46]. NFIL3 was described as part of an 
enhancer hotspot associated gene in NASH-prone liv-
ers [47] and mechanistically affects gluconeogenesis in 
hepatocytes [48, p. 3] and lipid accumulation [49]. The 
preference of JunB for ECM cluster genes (cluster 2) con-
firmed a recently described positive correlation of JunB 
levels with liver fibrosis in human and murine samples in 
hepatic stellate cells [50]. Regarding hepatocytes, a recent 
study found JUN, JUND, and JUNB as the three top pre-
dicted transcription factors in NASH [51]. The paper also 
suggested a major crosstalk between hepatocytes and 
non-parenchymal cells during NASH progression. This 
crosstalk comprises genes coding, e.g., for cell adhesion 
molecules (integrins) or phosphatases as found in cluster 

2. The most strongly upregulated gene in this cluster is 
Krt23, which has been described to be the gene that has 
the clearest upregulation in livers from alcoholic hepatitis 
patients compared to NASH patients [3]. Genes encod-
ing ECM-regulating proteins, such as Timp3, which have 
been shown to be protective in steatosis and HCC when 
overexpressed in hepatocytes, were downregulated in our 
study [52].

E2F7 has been previously found to inhibit liver tumor 
growth and through regulation of polyploidy also be 
involved in different hepatic diseases. ATF2 has been 
previously linked to non-alcoholic fatty liver disease [53]. 
SPIB has not been linked to liver pathogenesis so far, but 
belongs to the group of interferon regulatory factors and 
therefore is involved in inflammatory conditions [54]. 
Taken together, the TF enrichment analysis well recapitu-
lates what is known from the literature regarding human 
and murine fatty liver disease.

Since the characteristics of a NAFLD liver were sug-
gested to recapitulate the main aspects of the aged liver 
phenotype, previously published DNA methylation aging 
marks were examined in LDC hepatocytes. Although epi-
genetic clocks are a relatively novel tool, they are already 
established as highly valuable age prediction methods 
[55]. Several studies identified altered DNA methylation 
CpG sites in liver tissues from patients with obesity of 
type 2 diabetes, both conditions being associated with 
MAFLD [56–59]. Vice versa, epigenetic aging signatures 
are slowed by caloric restriction in mice [60]. However, 
interestingly, Horvath et al. [13] observed a strong corre-
lation between high body mass index and the epigenetic 
age of liver tissue, but no association with the NAFLD 
activity score (NAS), steatosis, inflammation, or fibrosis 

Table 2 Investigated CpGs with association to genetic age

The first, second, and third columns give the position and the associated annotation of the respective CpG. The fourth column denotes if a CpG was discovered as a 
new locus or reported before [14]. mm10 was used as the reference genome

Position Gene Annotation Source

chr 4: 141,251,015–141,251,016 Arhgef19 (+) exon 13 New locus

chr 15: 11,383,946–11,383,947 Tars (+) 3’UTR New locus

chr 9: 85,324,737–85,324,738 Tent5a (+) exon 3 New locus

chr 15: 76,457,712–76,457,713 Scx ( +) exon 1 New locus

chr 6: 94,667,253–94,667,254 Lrig1 (+) intron Stubbs et al., 2017 [14]

chr 5: 33,729,707–33,729,708 Fgfr3 (+) exon 5 Stubbs et al., 2017 [14]

chr 16: 30,260,867–30,260,868 Cpn2 (−) exon 2 Stubbs et al., 2017 [14]

chr 1: 73,959,153–73,959,154 Tns1 (−) intron Stubbs et al., 2017 [14]

chr 14: 51,908,372–51,908,373 Ndrg2 (−) exon 9 Stubbs et al., 2017 [14]

chr 19: 26,640,521–26,640,522 Smarca2 (+) intron Stubbs et al., 2017 [14]

chr 5: 92,364,789–92,364,790 Art3 (+) intron Stubbs et al., 2017 [14]

chr 4: 154,557,099–154,557,100 Prdm16 (−) exon/intron Stubbs et al., 2017 [14]

chr 7: 139,559,949–139,559,950 Inpp5a (+) intron Stubbs et al., 2017 [14]
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[13], which might explain the lack of DNA methylation 
age marks in the LDC model in the current study. In gen-
eral, the relationship between aging and fatty liver disease 
is controversial [61, 62]. According to the inflamm-aging 
theory, aging promotes liver inflammation [63]. However, 
although aging has been reported to increase hepatic 
lipid accumulation [17, 64–66], aging per se has no effect 
on steatosis in mid-aged mice [67]. Interestingly, there 
are inconclusive data on the progression of steatosis to 
NASH in the very elderly [68]. The discrepancy between 
the studies was suggested to be due to the fact that some 
of the studies were conducted in moderately aged rather 
than in very old mice and humans [62].

Our data confirmed reduced methylation for CpG 
loci as originally measured by Stubbs et  al. [14] both 
for liver tissue as well as for isolated hepatocytes from 
mid-aged mice and could also confirm them for liver 
tissue from aged animals. Interestingly, our data do 
not suggest similarities in the methylation status of 
respective loci between aging and steatosis. In con-
trast, methylation patterns of livers or hepatocytes 
from LDC-fed animals rather had similarities with 
those from young animals. This is also true for newly 
identified loci characteristic for aged hepatocytes and 
livers.

Taken together, this study highlights four clusters of 
differentially expressed genes being relevant in the LDC 
model. The regulation of transcription of these genes 
was shown to be affected by chromatin changes and 
transcription factors. Steatosis was not associated with 
DNAm age in this model.
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