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METHODOLOGY

Elucidating disease-associated mechanisms 
triggered by pollutants via the epigenetic 
landscape using large-scale ChIP-Seq data
Zhaonan Zou1  , Yuka Yoshimura1  , Yoshihiro Yamanishi2   and Shinya Oki1*   

Abstract 

Background Despite well-documented effects on human health, the action modes of environmental pollutants 
are incompletely understood. Although transcriptome-based approaches are widely used to predict associations 
between chemicals and disorders, the molecular cues regulating pollutant-derived gene expression changes remain 
unclear. Therefore, we developed a data-mining approach, termed “DAR-ChIPEA,” to identify transcription factors (TFs) 
playing pivotal roles in the action modes of pollutants.

Methods Large-scale public ChIP-Seq data (human, n = 15,155; mouse, n = 13,156) were used to predict TFs that are 
enriched in the pollutant-induced differentially accessible genomic regions (DARs) obtained from epigenome analy-
ses (ATAC-Seq). The resultant pollutant–TF matrices were then cross-referenced to a repository of TF–disorder associa-
tions to account for pollutant modes of action. We subsequently evaluated the performance of the proposed method 
using a chemical perturbation data set to compare the outputs of the DAR-ChIPEA and our previously developed dif-
ferentially expressed gene (DEG)-ChIPEA methods using pollutant-induced DEGs as input. We then adopted the pro-
posed method to predict disease-associated mechanisms triggered by pollutants.

Results The proposed approach outperformed other methods using the area under the receiver operating char-
acteristic curve score. The mean score of the proposed DAR-ChIPEA was significantly higher than that of our previ-
ously described DEG-ChIPEA (0.7287 vs. 0.7060; Q = 5.278 ×  10–42; two-tailed Wilcoxon rank-sum test). The proposed 
approach further predicted TF-driven modes of action upon pollutant exposure, indicating that (1) TFs regulating 
Th1/2 cell homeostasis are integral in the pathophysiology of tributyltin-induced allergic disorders; (2) fine particu-
lates  (PM2.5) inhibit the binding of C/EBPs, Rela, and Spi1 to the genome, thereby perturbing normal blood cell dif-
ferentiation and leading to immune dysfunction; and (3) lead induces fatty liver by disrupting the normal regulation 
of lipid metabolism by altering hepatic circadian rhythms.

Conclusions Highlighting genome-wide chromatin change upon pollutant exposure to elucidate the epigenetic 
landscape of pollutant responses outperformed our previously described method that focuses on gene-adjacent 
domains only. Our approach has the potential to reveal pivotal TFs that mediate deleterious effects of pollutants, 
thereby facilitating the development of strategies to mitigate damage from environmental pollution.
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Action modes of environmental pollutants

Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Epigenetics & Chromatin

*Correspondence:
Shinya Oki
oki.shinya.3w@kyoto-u.ac.jp
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1075-4936
http://orcid.org/0009-0001-2192-9949
http://orcid.org/0000-0003-2279-8773
http://orcid.org/0000-0002-4767-3259
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13072-023-00510-w&domain=pdf


Page 2 of 15Zou et al. Epigenetics & Chromatin           (2023) 16:34 

Background
Short- and/or long-term exposure to environmental pol-
lutants has been associated with assorted adverse human 
health outcomes, including increased respiratory symp-
toms, heart or lung disease, and even early mortality 
[1–4]. Toxic pollutants in particular are implicated in 
carcinogenesis and other serious health effects, such as 
reproductive disorders and congenital anomalies [5–7]. 
To elucidate the modes of action (MoAs) by which chem-
icals, including environmental contaminants, elicit such 
toxic responses, computational strategies utilizing bio-
medical big data analysis have attracted the attention of 
researchers in recent decades [8–10]. For example, with 
the understanding that bioactive chemicals, such as phar-
maceuticals and pollutants, affect human physiology by 
either maintaining or disrupting normal gene expression, 
respectively, comparative analyses of transcriptional pro-
files before and after chemical exposure, followed by gene 
ontology (GO) and pathway enrichment analyses, have 
been performed to elucidate chemical MoAs [11, 12]. 
However, although GO and pathway analyses can com-
prehensively extract functional characteristics from pro-
files of chemically induced differentially expressed genes 
(DEGs), considerable effort is required to identify spe-
cific primary literature that demonstrates the association 
between input DEGs and associated GOs or pathways. In 
addition, graph analytics (network analysis) is also fre-
quently employed to estimate “molecular hubs” within 
chemically responsive gene regulatory networks, despite 
limitations in terms of the biological interpretability of 
the prediction outcomes [13].

Bioactive chemicals, including some pollutants, can 
target a wide variety of molecules, such as membrane 
transport proteins, ion channels, and metabolic enzymes. 
In particular, research on steroid receptors, which are 
activated by female (estrogens) and male (androgens) 
hormones, is actively pursued owing to the reported 
effects of endocrine-disrupting chemicals, also known 
as environmental hormones, on reproduction and 
development [14, 15]. In addition, heavy metals, includ-
ing mercury and cadmium, which have been associated 
with pollution-related disorders, such as Minamata dis-
ease and Itai-itai disease, may induce epigenetic changes 
as a component of their disease mechanisms [16, 17]. 
Furthermore, both intranuclear steroid receptors and 
enzymes that regulate epigenomic states, such as DNA 
methylation and histone modifications, can function 
as transcription factors (TFs) to directly control gene 
expression. Accordingly, certain pharmaceuticals such 
as estrogen receptor inhibitors and histone deacetylase 
inhibitors have been shown to exert anticancer effects by 
directly regulating TF function [18, 19]. Together, these 
observations suggest that TFs that collectively regulate 

the on/off switches of genes whose expression is signifi-
cantly altered by exposure to environmental chemicals 
may function as direct targets or mediators of chemical 
MoAs.

To identify TFs whose binding is enriched to a given set 
of genes or genomic regions, binding motif-based meth-
ods (MotifEA) such as HOMER and MEME have widely 
been used [20, 21]. This approach predicts TF binding by 
extracting shared short nucleotide sequences, commonly 
referred to as “motifs”, from multiple input genomic 
regions. These motifs are then compared to known TF–
DNA binding motifs by comparative analysis. As an alter-
native method for identifying key TFs in chemical MoAs, 
we recently developed an approach that is independent 
of TF–DNA binding motifs, which we termed the DEG-
ChIPEA method [22]. This method is based on the ChIP-
Atlas database, which extracts actual TF binding sites on 
the reference genome by curating and integrating tens of 
thousands of previously published ChIP-Seq experimen-
tal data examining TF binding to genomic DNA [23]. 
The DEG-ChIPEA method involves inputting chemi-
cally induced DEGs and performing enrichment analysis 
based on all ChIP-Seq experiments obtained from ChIP-
Atlas (i.e., ChIP-Seq-based enrichment analysis; ChIPEA) 
to identify TFs whose binding is significantly enriched in 
the vicinity of the input DEGs. These identified TFs can 
be considered promising candidate pivotal factors that 
mediate the expression of therapeutic or adverse chemi-
cal effects. However, despite the generally high accuracy 
of DEG-ChIPEA, a potential limitation is that only TFs 
in the immediate vicinity of the transcription start site 
(transcription start site ± 5  kb) of the input chemically 
induced genes are analyzed. Thus, potential contribu-
tions to gene expression by TFs that bind to distal tran-
scriptional regulatory regions, such as enhancers and 
topologically associating domain boundaries located far 
from the gene locus, are not taken into account.

In this study, we aimed to gain further insights into the 
MoAs of chemicals, particularly those of environmental 
pollutants, with regard to health effects. To achieve this, 
we propose a novel approach, termed “DAR-ChIPEA”, 
that considers TF binding events throughout the genome, 
including both proximal and distal transcriptional regu-
latory regions of genes, in contrast to the limited purview 
of the DEG-ChIPEA method. The DAR-ChIPEA method 
involves extracting differentially accessible regions 
(DARs), which are genomic regions with significantly 
different chromatin accessibility prior to and following 
chemical exposure, using data from environmental chem-
ical perturbation epigenome experiments, such as ATAC-
Seq data sets. These DARs are then used as input for 
ChIPEA to generate a chemical–TF association matrix, 
which allows the identification of TFs whose binding is 
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significantly enriched in the input DARs. In addition, we 
constructed a chemical–TF–disorder triadic association 
by incorporating known TF–disease associations into 
the resulting chemical–TF matrix. Our approach outper-
formed methods based on TF–DNA binding motifs, as 
well as the previously developed DEG-ChIPEA method 
[22], which focuses only on TFs that bind in the vicinity 
of chemically induced DEGs.

Methods
Chemical‑ or pollutant‑perturbed transcriptome 
and epigenome data
To identify genomic regions with significant differences 
in chromatin accessibility (DARs) in response to chemi-
cal or pollutant exposure as determined through epige-
nome perturbation experiments, we used ATAC-Seq data 
sets retrieved from the DBKERO (n = 2078; DRA006903–
DRA006930) [24, 25] and TaRGET (n = 383; GSE146508) 
databases [24, 25]. In addition, RNA-Seq data sets corre-
sponding to the ATAC-Seq data sets were made available 
in these databases and used to identify DEGs induced by 
chemical or pollutant exposure as input to the DEG-ChI-
PEA or DEG-MotifEA analyses (Additional file 1: Fig. S1; 
DBKERO, n = 2012, DRA006875–DRA006902; TaRGET, 
n = 468, GSE146508). DBKERO harbors perturbation 
data of 99 chemicals in human cell lines, whereas TaR-
GET curates in-vivo exposure data for seven pollutants in 
blood and liver samples from mice. All data used in this 
analysis were archived in the National Center for Bio-
technology Information Sequence Read Archive (NCBI 
SRA) [26] and are associated with accession IDs as listed 
in Additional file 2: Tables S1–S4.

Genome‑wide TF binding and chromatin accessibility 
experimental data from ChIP‑Atlas
Genome-wide TF binding site information was obtained 
from the ChIP-Atlas database [23], which comprehen-
sively integrates nearly all publicly available ChIP-Seq 
data. Peak call data in BED format (MACS2 [27]; Q 
value < 1 ×  10–10) were used in this study. Data from ChIP-
Seq experiments examining binding of 1796 and 866 
TFs on the human (GRCh38/hg38; hereafter referred to 
as hg38) and mouse genomes (GRCm38/mm10; hereaf-
ter referred to as mm10), respectively, were used in this 
study (hg38, n = 15,155; mm10, n = 13,156). In addition, 
the information related to accessible chromatin used in 
this analysis to identify DARs induced by chemical or 
pollutant exposure was also obtained from ChIP-Atlas, 
which also provides peak call data for ATAC-Seq.

TF–disease associations
Association data between TFs and diseases were obtained 
from DisGeNET (v 7.0) [28], which is a database of 

genetic and genomic information associated with human 
diseases. DisGeNET integrates this information from 
other expert-curated repositories and PubMed literature. 
Only manually curated data that were labeled with refer-
enced PubMed IDs were retrieved, resulting in a total of 
12,857 associations between TFs and diseases, involving 
1004 TFs and 3205 diseases.

Known chemical–disease associations as standard data
Manually curated chemical–disease association data 
were acquired from the Comparative Toxicogenomics 
Database (CTD) [29]. In total, we incorporated 28,821 
chemical–disease associations involving 69 chemicals 
(DBKERO) and seven pollutants (TaRGET), and 2150 
diseases in this study.

Identification of chemical‑ or pollutant‑induced DEGs
After obtaining the SRA accession IDs of the chemical 
or pollutant perturbation RNA-Seq data from DBKERO 
and TaRGET, the raw sequencing data archived in NCBI 
SRA were downloaded and decoded into FASTQ format 
using the “fastq-dump” command from the SRA Toolkit 
(v3.0.0) [30]. Quality control was then performed using 
the “fastq_quality_filter” command from the FASTX-
Toolkit (v0.0.13) [31]. Alignment to the reference 
genomes (DBKERO, hg38; TaRGET, mm10) was per-
formed using HISAT2 (v2.1.0) [32], and expression quan-
tification was performed using featureCounts (v2.0.3) 
[33]. All commands were run with default settings and 
parameters. DEGs were detected using the R Package 
“edgeR” (v3.40.2) [34]. Information on the statistical sig-
nificance used for identification of DEGs is detailed in 
the Statistical Analyses section.

Identification of chemical‑ or pollutant‑induced DARs
Referring to the SRA accession IDs for the chemical- 
or pollutant-perturbed ATAC-Seq data obtained from 
DBKERO and TaRGET, the peak call data (in BED for-
mat) for the corresponding ATAC-Seq experiments were 
acquired from ChIP-Atlas. Peak calling was performed 
using MACS2 [27] in ChIP-Atlas; only peaks with a Q 
value of < 1 ×  10–10 were considered as statistically signifi-
cant accessible chromatin regions. Next, common open 
chromatin regions across all replicates for each chemical 
or pollutant perturbation condition were extracted using 
BEDtools (v2.23.0) [35]. Differential analysis was then 
performed to identify DARs induced by the chemicals 
or pollutants. Note that the term “differential analysis” in 
this context refers to the identification of genomic regions 
with no overlap between groups with and without chemi-
cal or pollutant exposure. In this study, DARs that exhib-
ited relaxed or condensed chromatin upon chemical or 
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pollutant exposure are referred to as “opened” or “closed” 
DARs, respectively.

TF enrichment analysis fully incorporating public ChIP‑Seq 
experiments (ChIPEA)
Details of the ChIPEA procedure using the application 
programming interface are provided online [22, 36]. To 
exploit the extensive ChIP-Seq data in ChIP-Atlas [23], 
we performed ChIPEA on profile TFs whose binding 
sites were enriched around genomic regions or genes of 
interest. In particular, using the genomic coordinates of 
opened and closed DARs, or the gene symbols of up- and 
down-regulated genes by a query chemical or pollut-
ant as input, we first counted the number of intersects 
between the input data and peak-call data (MACS2; Q 
value < 1 ×  10–10) of all TF-related experiments archived 
in the ChIP-Atlas database using the "intersectBed" 
command of BEDTools (v2.23.0) [35]. Note that 5  kb 
upstream and downstream of the transcription start site 
were added for each gene when chemically induced DEGs 
were queried. Enrichment scores (−  log10Q) were then 
calculated using the two-tailed Fisher’s exact probability 
test to test whether the two data sets (opened and closed 
DARs, or up- and down-regulated genes) overlapped 
with the ChIP-Seq peak-call data with equivalent propor-
tions before performing the Benjamini-Hochberg pro-
cedure for multiple testing correction; fold enrichment 
values (opened DARs/closed DARs) were concurrently 
obtained. If a chemical– or pollutant–TF association was 
indicated by multiple ChIP-Seq experiments, only the 
highest enrichment score was adopted. Parameters used 
in application programming interface-based ChIPEA 
were as follows: “genome = hg38 (DBKERO) or mm10 
(TaRGET); antigenClass = TFs and others; cellClass = All 
cell types; threshold = 100.” Sample codes for DEG-ChI-
PEA and DAR-ChIPEA are provided as indicated in the 
Availability of Data and Materials statement below.

TF enrichment analysis focusing on TF–DNA binding motifs 
(MotifEA)
In this method, TF binding to chemical- or pollutant-
induced DARs and DEGs was estimated using MotifEA 
with STREME and TOMTOM in MEME Suite (v5.4.1) 
[21], using default settings termed DAR-MotifEA and 
DEG-MotifEA, respectively. STREME was first run to 
identify 1000 sequence motifs from queried multiple 
genomic regions, i.e., chemical- or pollutant-induced 
DARs or DEGs. Subsequently, TFs with enriched bind-
ing to the input genomic regions or genes were estimated 
by matching the identified motifs with known TF bind-
ing motifs obtained from HOCOMOCO v11 [37] using 
TOMTOM. Note that 5  kb upstream and downstream 
of the transcription start site were added for each gene 

when chemically induced DEGs were queried. Sample 
codes for DEG-MotifEA and DAR-MotifEA are provided 
as indicated in the Availability of Data and Materials 
statement below.

Establishment of chemical– or pollutant–TF–disorder 
triadic associations
Using TFs enriched in chemical- or pollutant-induced 
DEGs and DARs as mediators, the TF–disease asso-
ciations retrieved from DisGeNET [28] were integrated 
with the chemical– or pollutant–TF matrices obtained 
as outcomes of MotifEA or ChIPEA, thereby establishing 
chemical– or pollutant–TF–disorder triadic associations. 
The enrichment scores obtained via ChIPEA or MotifEA 
were continuously used as a quantitative measure to 
assess the degree of newly constructed chemical– or pol-
lutant–disorder associations.

Calculation of global area under the receiver operating 
characteristic curve (AUROC) and area under the precision 
recall curve (AUPR) scores
All predicted chemical– or pollutant–disorder associa-
tions were first reorganized into a single matrix contain-
ing enrichment scores with dimensions of m × n, where 
m and n represent the total number of chemical or pol-
lutant perturbation conditions and the number of dis-
orders, respectively (Additional file  1: Fig. S1). Among 
various TFs linking a specific chemical–disease pair, we 
selectively adopted the most statistically significant TF, 
i.e., the one with the highest enrichment score. We then 
utilized the maximum enrichment score as a statistical 
measure to represent the association between this chemi-
cal and the disease. After referencing known chemical–
disease associations from CTD [29], chemicalwise ROC 
(which plots the true positive rate against the false posi-
tive rate) and PR (which plots the precision [positive pre-
dictive value] against the recall [sensitivity]) curves were 
generated (R Package “ROCR” v1.0-11) [38]. The perfor-
mance results were summarized into a global AUROC 
score, in which 1 represents perfect classification and 0.5 
represents random classification, and an AUPR score, in 
which 1 represents perfect inference and the proportion 
of positive examples in the standard data corresponds to 
random inference.

Mouse phenotype ontology enrichment analysis
GO enrichment analysis on opened DARs induced by 
pollutant exposure was performed using the Genomic 
Regions Enrichment of Annotations Tool (GREAT) 
(v4.0.4) [39]. Default parameters were used in this analy-
sis, namely, “Species assembly: mm10; Association rule: 
Basal + extension: 5000  bp upstream, 1000  bp down-
stream, 1,000,000  bp max extension, curated regulatory 
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domains included.” Ontologies categorized as “Mouse 
Phenotype” were then extracted. Parent category infor-
mation for individual ontology terms was obtained with 
reference to the Mouse Genome Informatics database 
[40].

Statistical analyses
Statistical analysis was performed using R (v4.1.3). 
Unpaired two-tailed Wilcoxon rank-sum tests were used 
to compare AUROC and AUPR scores between two 
groups, Bonferroni correction was performed to pre-
sented adjusted P values (Q values). Fisher’s exact test 
was used for 2 × 2 contingency analysis, and the Benja-
mini-Hochberg procedure was used for multiple testing 
correction. Sample sizes and Q values are shown in the 
figures, and a Q value < 0.05 was considered statistically 
significant. NS denotes no significance. Chemical- and 

pollutant-induced DEGs were identified using the R 
package edgeR (v3.40.2), and a P value < 0.05 (DBKERO) 
or an adjusted P value < 0.1 (TaRGET) with an absolute 
value of  log2 fold change > 1 was recognized as statisti-
cally significant.

Results
Study design: elucidation of chemical MoAs focusing 
on chemically reorganized chromatin accessibility
To expand upon our prior approach (DEG-ChIPEA) [22], 
here, we present a novel analytical approach to eluci-
date chemical MoAs focusing on chemically reorganized 
chromatin assembly. Specifically, we utilize chemically 
induced DARs as input to cover the full spectrum of TF 
binding to both proximal and distal transcription regu-
latory regions (e.g., promoters and enhancers; Fig.  1a). 
Our approach identifies TFs that integratively regulate 

Fig. 1 Overview of the proposed DAR-ChIPEA approach. a Schematic diagram illustrating the difference between our previously reported 
DEG-ChIPEA method [22] and the proposed DAR-ChIPEA approach. The DEG-ChIPEA method is restricted to analyzing TF binding to the vicinity 
of gene loci. In contrast, the DAR-ChIPEA approach comprehensively covers TF binding to accessible chromatin regions (obtained from ATAC-seq) 
across the genome including proximal (e.g., promoters) and distal (e.g., enhancers) regulatory elements. The circles surrounded by dotted lines 
represent the TFs binding to distal regulatory elements that are not detected in the DEG-ChIPEA method. b To demonstrate the feasibility 
of DAR-ChIPEA, we identified the TFs enriched at pollutant-induced DARs by analyzing large-scale ChIP-Seq data. Overlaps were evaluated 
between the DARs (green box) and peak-call data (black lines) of TF-related ChIP-Seq experiments archived in ChIP-Atlas
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chemical- or pollutant-induced DARs by comprehen-
sively analyzing tens of thousands of publicly available 
ChIP-Seq data obtained from the ChIP-Atlas database 
(Fig.  1b) [23]. In addition, we integrated the predicted 
chemical–TF associations with disease-associated TF 
data obtained from the DisGeNET database [28]. The 
resulting chemical–TF–disorder triadic associations 
were then statistically validated using a known chemical–
disease association data set from CTD as standard data 
(Additional file 1: Fig. S1) [29].

Validation of the proposed DAR‑ChIPEA approach to predict 
TF‑driven actions for in vitro chemical perturbation
Because TaRGET [25] contains information on only a 
few types of pollutants, it is not sufficient to statistically 
evaluate the reliability of DAR-ChIPEA. To validate the 
proposed DAR-ChIPEA approach to predict TF-driven 
actions for in vitro chemical perturbation, we first evalu-
ated the prediction accuracy of our method using the 
DBKERO database [24], which contains data on hun-
dreds of chemical perturbations to cell cultures, provid-
ing correlated RNA-Seq and ATAC-Seq data sets. After 
retrieving pre-processed peak call data sets of ATAC-Seq 
from cell lines with and without chemical treatment in 
the DBKERO database from ChIP-Atlas, we performed a 
comparative analysis to detect DARs opened or closed by 
chemical perturbation (Additional file  1: Fig. S2). Next, 
we fully exploited almost all publicly available human 
TF ChIP-Seq data in ChIP-Atlas to identify TFs enriched 
for binding to the extracted DARs using ChIPEA (DAR-
ChIPEA). This allowed us to generate chemical–TF 
associations for each drug treatment condition. Further-
more, to evaluate the pivotality of TFs in drug MoAs, 
chemical–TF–disorder associations were constructed 
by assigning TF-related disease information obtained 
from DisGeNET to the resulting chemical–TF associa-
tion matrix. For comparison, in the chemical–TF asso-
ciation generation step, we also used chemically induced 
DEGs as input to ChIPEA (DEG-ChIPEA), as previously 
reported (Additional file  1: Fig. S2) [22]. For the same 
purpose, a more conventional and commonly used TF 
enrichment analysis method focusing on TF–DNA bind-
ing motifs (MotifEA) was also performed with DEGs or 
DARs as input (hereafter referred to as DEG-MotifEA 
and DAR-MotifEA; Fig. 2a).

We observed that the statistically significant maxi-
mum enrichment scores (–log10Q value) obtained from 
the proposed DAR-ChIPEA method were globally 
higher than those from our previously developed DEG-
ChIPEA method (Fig.  2b; mean maximum enrichment 
score = 10.25 and 8.139, respectively; P = 3.013 ×  10−4; 
two-tailed Wilcoxon rank-sum test), indicating that DAR-
ChIPEA has a wider dynamic range than DEG-ChIPEA. 

Thus, DAR-ChIPEA offers a significant advantage in 
discriminating associated and non-associated TFs with 
regard to individual chemicals.

We then examined whether the chemical–TF–disor-
der triadic associations derived from DAR-ChIPEA that 
exhibited higher statistical significance were congruent 
with existing knowledge. The distribution of AUROC and 
AUPR scores for each dosing condition, generated using 
manually curated chemical–disease association data 
obtained from CTD as reference data (1457, 1711, 1621, 
and 1800 conditions for DEG-MotifEA, DAR-MotifEA, 
DEG-ChIPEA, and DAR-ChIPEA, respectively), was 
depicted using bee swarm plots (Fig.  2c, d; Additional 
file 2: Table S5). The mean AUROC and AUPR scores of 
the DAR-ChIPEA approach across all dosage conditions 
were 0.7287 and 0.4164, respectively. These scores were 
significantly higher than those of other methods per-
formed for comparison (DEG-MotifEA: mean AUROC 
0.6736; mean AUPR 0.3488, DAR-MotifEA: mean 
AUROC 0.6769; mean AUPR 0.3641, and DEG-ChIPEA: 
mean AUROC 0.7060; mean AUPR 0.3862; P < 0.05 for 
all; two-tailed Wilcoxon rank-sum test).

In addition, because the maximum enrichment scores 
varied drastically depending on the given dosing con-
ditions, we were concerned that the discrimination of 
items was limited when comparing TFs within a dosing 
condition with low maximum enrichment scores. There-
fore, we also calculated “global” statistics using an inter-
chemical merged enrichment score vector to emphasize 
the significance of the actual values of the enrichment 
scores (detailed in the Methods section). The global 
AUROC and AUPR scores of the proposed approach 
were 0.7894 and 0.6137, respectively, significantly out-
performing those of other methods (P < 0.05; two-tailed 
Wilcoxon rank-sum test; Fig.  2c, d). These results sug-
gest that the ChIPEA method using chemically induced 
DARs as input is a powerful approach for identifying 
pivotal TFs, elucidating key factors for specific chemical 
MoAs and predicting disorders or phenotypes associated 
with chemical treatments. The use of this approach may 
ultimately lead to increased predictive power compared 
to that of the existing DEG-ChIPEA and MotifEA-based 
computational methods.

Application of the DAR‑ChIPEA approach to predict TF‑driven 
MoAs upon pollutant administration in vivo
We next employed the DAR-ChIPEA method to predict 
disorders caused by pollutants and TF-driven MoAs 
upon pollutant administration in  vivo. After retriev-
ing ATAC-Seq peak call data sets obtained with and 
without pollutant exposure from the TaRGET database 
available in ChIP-Atlas, we identified opened and closed 
DARs induced by various pollutants, as described in the 
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Methods section (Additional file  1: Fig. S2). We used 
publicly available mouse TF ChIP-Seq data in ChIP-
Atlas to generate pollutant–TF associations using the 
proposed DAR-ChIPEA approach. We simultaneously 
performed analyses using the other methods for com-
parison, namely, DEG-ChIPEA, DEG-MotifEA, and 

DAR-MotifEA (Fig.  3a). The resulting pollutant–TF 
matrices were then used to generate pollutant–TF–disor-
der associations, focusing on pivotal TFs, with reference 
to TF–disease associations from the DisGeNET database. 
We evaluated the accuracy of the predicted pollutant–
disorder associations using ROC and PR curves using 

Fig. 2 Validation of the proposed DAR-ChIPEA approach to predict TF-driven MoAs of in vitro chemical perturbation. a Schematic diagram 
for TF enrichment analyses using in vitro chemical perturbation data sets. DEGs or DARs upon chemical perturbation were detected using data 
from RNA-Seq or ATAC-Seq, respectively, followed by enrichment analyses to profile TF binding. Methods used for TF enrichment analysis are shown 
in blue; the proposed method (DAR-ChIPEA) is highlighted in bold. b Ranking plot of maximum enrichment scores (–log10Q value) for each dosing 
condition obtained using the DAR-ChIPEA and DEG-ChIPEA methods. c, d Distribution of AUROC (c) and AUPR (d) scores for each chemical–TF–
disorder triadic association predicted using DEG-MotifEA, DAR-MotifEA, DEG-ChIPEA, and DAR-ChIPEA. Orange dots represent mean scores; global 
scores are noted below the plots. Differences between the methods are presented as Q values (two-tailed Wilcoxon rank-sum test) above the bee 
swarm plots
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known chemical–disease association data sets from CTD 
as a standard.

The maximum enrichment scores attained using 
the proposed DAR-ChIPEA approach were glob-
ally higher than those achieved with our previously 

developed DEG-ChIPEA method, similar to the results 
obtained using in-vitro input data, further supporting 
the wider dynamic range for discrimination of associ-
ated TFs for individual pollutants (Fig. 3b; mean maxi-
mum enrichment score = 76.77 and 11.57, respectively; 
P = 8.421 ×  10−8; two-tailed Wilcoxon rank-sum test).

Fig. 3 Application of the DAR-ChIPEA approach to predict TF-driven modalities of pollutant administration in vivo. a Schematic diagram for TF 
enrichment analyses using in vivo pollutant exposure data sets. DEGs or DARs upon pollutant exposure were detected using RNA-Seq or ATAC-Seq, 
respectively, followed by enrichment analyses to profile TF binding. Methods used for TF enrichment analysis are shown in blue, with the proposed 
DAR-ChIPEA method highlighted in bold. b Ranking plot of maximum enrichment scores (–log10Q value) for each exposure condition as obtained 
using the DAR-ChIPEA and DEG-ChIPEA methods. c, d Distribution of AUROC (c) and AUPR (d) scores for each pollutant–TF–disorder triadic 
association predicted using DEG-MotifEA, DAR-MotifEA, DEG-ChIPEA, and DAR-ChIPEA. Orange dots represent mean scores; global scores are noted 
beneath the bee swarm plots. Differences between the methods are presented as Q values (two-tailed Wilcoxon rank-sum test) above the bee 
swarm plots
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In addition, we utilized a large set of publicly avail-
able Bisulfite-Seq experimental data (mm10; n = 34,793) 
integrated into ChIP-Atlas to assess the DNA methyla-
tion status within the DARs induced by representative 
pollutants. The results revealed that opened and closed 
DARs were enriched by either hyper- or hypo-methyl-
ated regions, suggesting DNA methylation change within 
pollutant-induced DARs (Additional file 1: Fig. S3).

The distribution of AUROC and AUPR scores for each 
exposure condition (40, 28, 40, and 21 conditions for 
DEG-MotifEA, DAR-MotifEA, DEG-ChIPEA, and DAR-
ChIPEA, respectively) was visualized using bee swarm 
plots (Fig.  3c, d; Additional file  2: Table  S6). The mean 
AUROC of the proposed DAR-ChIPEA approach across 
exposure conditions was 0.6748, significantly higher 
than those of the other methods (DEG-MotifEA, 0.6071; 
DAR-MotifEA, 0.6147; DEG-ChIPEA, 0.6575; P < 0.05; 
two-tailed Wilcoxon rank-sum test). However, the DAR-
ChIPEA AUPR score did not significantly (P > 0.05) 
exceed those of the other methods (DEG-MotifEA, 
0.7656; DAR-MotifEA, 0.7908; DEG-ChIPEA, 0.7890; 
proposed: DAR-ChIPEA, 0.7929). The global AUROC 
and global AUPR scores of DAR-ChIPEA were 0.7492 
and 0.8491, respectively. These results suggest that the 
DAR-ChIPEA method performed satisfactorily in terms 
of AUROC; the absence of significant differences regard-
ing AUPR may be attributed to the limited number of 
data sets analyzed.

Biological interpretation of the predicted pollutant–TF–
disorder associations
In the proposed DAR-ChIPEA method, high AUROC 
scores were obtained for tributyltin (TBT) (blood sam-
ples),  PM2.5 (blood samples), and lead (liver samples; 
AUROC = 0.7028, 0.7030, and 0.7349, respectively; Addi-
tional file  2: Tables S4, S6; highlighted with bold red 
font), which motivated us to evaluate the results of puta-
tive pivotal TFs involved in the MoAs of these pollutants 
in further detail, particularly with regard to the biological 
interpretation of the predicted pollutant–TF–disorder 
associations (Fig. 4; Additional file 2: Tables S7–S9).

The organotin compound TBT is widely utilized in 
various industrial applications, such as pesticides, paints, 
preservatives, and heat stabilizers for plastics. Nev-
ertheless, TBT has been associated with a potentially 
increased risk of a number of lifestyle-related diseases, 
including obesity, fatty liver, cardiovascular disease, and 
abnormal glucose metabolism [41–44]. We initially con-
ducted ontology enrichment analysis to discern any com-
mon nature of genes located proximal to opened DARs 
of blood samples upon TBT exposure using mamma-
lian phenotype (MP) ontology. Notably, we found that 
the enriched gene sets were prominently manifested in 

phenotypic features of the immune system and hemat-
opoietic system (upper left panel in Fig.  4). To further 
understand the transcriptional regulatory mechanisms 
involved in the response to TBT exposure, we then per-
formed DAR-ChIPEA (upper right panel in Fig.  4). The 
genes encoding the top-20 enriched TFs exhibited robust 
expression in both control and TBT-exposed samples, 
and the same applied for  PM2.5 and lead, as detailed 
below (Additional file 1: Fig. S4). The results of DAR-ChI-
PEA showed that the opening of specific DARs suscepti-
ble to TBT exposure could enhance the enriched binding 
of Pparg, a master regulator of adipogenesis [45]. This is 
consistent with the in-vitro findings that TBT stimulates 
lipid accumulation by activating Pparg [46].

In addition, TBT can induce apoptosis in diverse tis-
sues and cell categories, such as human peripheral blood 
lymphocytes and human amnion cells, and high-dose 
exposure to TBT has been reported to induce T lym-
phocyte apoptosis and thymic atrophy [47–49]. Further-
more, TBT suppresses the differentiation of naive  CD4+ 
cells into Th1 cells, while stimulating differentiation into 
Th2 cells, thereby causing allergic disorders through the 
overproduction of Th2 cells, although the MoAs remain 
incompletely understood [50]. Our results showed that 
TBT exposure led to the enrichment of TFs, such as Rela, 
Stat1, and Rbpj in opened DARs, consistent with the pro-
inflammatory nature of TBT. Conversely, the binding 
of Bcl11b and Tbx21 was markedly enriched in closed 
DARs. BCL11B has apoptosis-inhibitory properties and 
is involved in maintaining T cell differentiation, as sup-
ported by the reduced numbers of T cells observed in 
Bcl11b-deficient mice [51, 52]. Notably, TBX21 also plays 
a key role in Th1 cell differentiation, with Tbx21-deficient 
naive Th cells exhibiting distorted Th2 cell polarization, a 
phenotype somewhat similar to that observed upon TBT 
exposure [53, 54]. These findings suggest that Bcl11b and 
Tbx21 may contribute to TBT-induced disruption of the 
Th1/Th2 balance.

PM2.5 is fine particulate matter suspended in the 
atmosphere with a diameter of 2.5 μm or less, which has 
the ability to transport pollutants in the environment. 
Exposure to  PM2.5 is associated with respiratory diseases, 
such as asthma, bronchitis, and pneumonia, as well as 
heart diseases, such as arrhythmias and atherosclerosis, 
and significantly increases mortality from lung cancer 
[55–60]. Moreover,  PM2.5 can worsen bacterial infections 
such as pneumonia caused by Streptococcus pneumoniae 
by impairing the function of macrophages in the lungs 
[61]. Oxidative and inflammatory damage and increased 
cellular autophagy and apoptosis have been implicated in 
the induction of various diseases by  PM2.5; however, the 
underlying MoAs remain to be elucidated. Notably, the 
results of the MP ontology enrichment analysis for  PM2.5 
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Fig. 4 Biological interpretations of the predicted pollutant–TF–disorder associations for three representative pollutants. Mouse phenotype 
ontologies enriched for the genes proximal to pollutant-induced opened DARs are shown in the left panels. Bars representing individual ontology 
terms are colored based on their parent categories, which were obtained from the Mouse Genome Informatics database. Volcano plots illustrating 
the results of the proposed DAR-ChIPEA approach are shown in the right panels. Dots indicate individual TFs and are colored based on cell 
type classes obtained from ChIP-Atlas. Positive and negative values of  log2 fold enrichment (opened DARs/closed DARs; X-axis) indicate TFs 
enriched in relaxed and condensed chromatin induced by pollutant exposure, respectively. The enrichment score (–log10Q value; Y-axis) indicates 
the statistical significance of ChIPEA
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exhibited strong similarity to those of TBT, highlight-
ing the prominent enrichment of phenotypes related to 
the immune and hematopoietic systems following  PM2.5 
exposure, consistent with previous research (middle left 
panel in Fig.  4) [62]. Furthermore, the results of DAR-
ChIPEA revealed that the binding of blood cell differ-
entiation-related factors such as Cebpe, Cebpb, Cebpa, 
Rela, and Spi1 was enriched in the DARs of blood sam-
ples closed by  PM2.5 exposure, i.e., showed binding in the 
unexposed samples (middle right panel in Fig. 4). Among 
the enriched TFs, the C/EBP family members Cebpe 
and Cebpb are essential factors for differentiation and 
functional maintenance of granulocytes and the mono-
cyte–macrophage axis, respectively, whereas Cebpa 
contributes to the regulation of growth arrest and differ-
entiation of various cell types, including progenitor cells 
in bone marrow [63–65]. In addition, Rela is important to 
erythropoiesis, and Spi1 is important to early differentia-
tion of B cells and bone-marrow cells [66, 67].

Lead (Pb) has historically been used in a variety of 
applications, including paints and cosmetic dyes, and 
remains a common component of water pipes, solder, 
and other materials. Pb poisoning is typically a chronic 
condition that may not present with acute symptoms. 
Regardless of the absence of acute symptoms, Pb poison-
ing ultimately exhibits irreversible effects, such as cogni-
tive impairment, peripheral neuropathy, and progressive 
renal dysfunction [68–70]. Chronic Pb exposure may 
also induce fatty liver disease, which may be associated 
with changes in the gut microbiota [71]. Consistent with 
these observations, MP ontology enrichment analysis on 
liver samples exposed to Pb corroborated the significant 
enrichment of genes associated with the regulation of 
liver physiology, as well as lipid homeostasis and metabo-
lism, in the proximity of DARs induced by Pb adminis-
tration (lower left panel in Fig. 4). DAR-ChIPEA further 
revealed that Nr1d1 (also known as Rev-erbα), an impor-
tant member of the feedback loop regulating the circa-
dian clock composed of Clock and Arntl (also known as 
Bmal1) [72], was the most enriched TF in Pb-induced 
opened DARs. In addition, Ep300 and CREB-binding 
protein (Crebbp), transcriptional coactivators and mem-
bers of the Clock/Bmal1 activator complex, were also 
found to be enriched in opened DARs (lower right panel 
in Fig. 4). These findings suggest that circadian rhythms 
in the liver may be disrupted by Pb exposure. Moreover, 
clock genes have been shown to act on the promoter and 
introns of adipogenic Ppara [73, 74]. In the liver, Ppara 
enhances lipid metabolism and is generally considered to 
have an inhibitory effect on hepatic steatosis, although 
some reports suggest that Ppara may promote the patho-
genesis of non-alcoholic steatohepatitis [75, 76]. These 
findings, together with those from MP ontology analysis, 

suggest that Pb induces fatty liver not only through the 
gut microbiota pathway, but also by disrupting the nor-
mal regulation of lipid metabolism by circadian rhythms 
in the liver.

Discussion
In this study, we used the ATAC-Seq data set, derived 
from samples perturbed by environmental chemicals, 
from public databases to identify pivotal TFs involved in 
chemical MoAs. We extracted DARs and applied ChI-
PEA, taking full advantage of large-scale ChIP-Seq exper-
iments, to identify TFs that were enriched for binding 
to these genomic regions. In addition, we integrated the 
TF-associated disease data set with the putative chemi-
cal–TF associations to estimate key TFs mediating chem-
ical-induced disorder induction and in turn understand 
chemical MoAs. The proposed DAR-ChIPEA approach 
outperformed other existing computational methods in 
terms of accuracy.

In general, when cells or tissues are exposed to chemi-
cal substances, a series of events occur, initialized by 
pioneer factors, which are TFs that modulate chromatin 
accessibility. Subsequently, various cooperative TFs, often 
acting in complexes (e.g., Arntl/Ep300/Cebp in Fig.  4), 
bind to the newly opened or closed genome regions, 
causing alterations in the expression of genes regulated 
by these TFs. Moreover, the DNA methylation status 
undergoes modifications, contributing to the fixation of 
gene expression alteration. This entire cascade ultimately 
leads to phenotypic changes induced by chemical sub-
stances. The proposed method can provide insights into 
identifying key DNA-binding proteins involved in the 
MoAs of chemicals, including both pioneer factors and 
cooperative TFs. In addition, the public Bisulfite-Seq data 
set in our previously developed ChIP-Atlas database can 
also be utilized to infer DNA methylation status change 
upon chemical exposure (Additional file 1: Fig. S2).

When dealing with health hazards caused by air pollu-
tion or industrial wastewater, it can be difficult to isolate 
a single pollution-causing molecule from such complex 
contexts. Application of approaches that focus on the 
detailed molecular structure of chemicals to analyze 
their MoAs, such as docking simulation and supervised 
learning using molecular structure as features, can thus 
be challenging [8–10, 77]. In this respect, the enrich-
ment analysis-based approaches presented in this study 
are advantageous in that they use omics data as input 
and thus are better suited to analyze complex mixtures. 
In parallel with the processes used for causative molecule 
isolation, in the proposed DAR-ChIPEA method, chemi-
cally induced DAR information is obtained from experi-
ments involving exposure to polluted air and water and 
passed through the proposed analysis pipeline, allowing 
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for rapid and rough estimation of the key TFs involved 
in the MoAs of pollutants. This approach is expected to 
serve as an efficient complementary approach for investi-
gating the causes of clinically relevant pollution damage.

We found that the ChIPEA approach, an enrichment 
analysis method based on actual ChIP-Seq experiments, 
was more accurate than MotifEA, a numerical analysis 
method based on DNA binding motifs of TFs, in esti-
mating chemical–disorder associations via key TFs. The 
moderate performance of MotifEA likely occurred, in 
part, because the presence of a particular binding motif 
does not necessarily indicate the actual binding of a TF, 
and conversely, it is not uncommon for a TF to bind to 
genomic regions that are distinct from known motifs. 
Furthermore, binding motifs can vary greatly depend-
ing on the tissue or cell type. In comparison, ChIPEA is 
highly reliable for studying the interaction between TFs 
and genomic DNA, because it extracts TF binding sites in 
the genome based on a large number of ChIP-Seq experi-
ments reported in the literature in a motif-independent 
manner [22, 36]. However, it should be acknowledged 
that the number of ChIP-Seq data currently available var-
ies considerably across different tissues and cell types, 
and thus, ChIPEA may be less effective in  situations in 
which available data are insufficient to generate statisti-
cally significant results.

Notably, the pivotal TFs found using our proposed 
approach may also serve as potential targets for drug dis-
covery aimed at mitigating health hazards posed by envi-
ronmental pollutants. Therefore, our approach is not only 
useful for elucidating the MoAs of environmental chemi-
cals, but also for screening candidate compounds for 
potential pharmaceuticals. Owing to its ability to achieve 
an adequate depth of analysis with as few as 500 cells, 
ATAC-Seq provides the possibility to perform large-scale 
analyses of various compounds using small-well plates 
[78]. RNA-Seq may also be employed simultaneously to 
evaluate the pharmacological effects of the input com-
pounds. In addition to the DBKERO database used in 
this study, other databases are also available that focus 
on predicting the medicinal effects and toxicity of various 
chemicals by analyzing changes in gene signatures upon 
chemical perturbation. For example, the LINCS L1000 
project and Open TG-GATEs have obtained extensive 
transcriptome data on tens of thousands of drugs applied 
to various cell lines and laboratory animals [79, 80]. To 
further clarify the molecular cues that mediate gene 
expression changes in response to chemical administra-
tion, ATAC-Seq data should be incorporated into the 
compound screening pipeline in these projects, thereby 
facilitating the effective application of the proposed 
DAR-ChIPEA method. Furthermore, because ChIPEA is 
already publicly available through the ChIP-Atlas website 

in both a user-friendly graphical user interface and a 
command-based application programming interface, it 
could be easily applied in various situations to elucidate 
drug MoAs. Realization of this potential application 
could help identify TFs that are critical for the expres-
sion of drug effects, allowing the formulation of strategies 
to minimize unexpected risk, especially for compounds 
with potential adverse effects. In addition, identifica-
tion of novel targets will allow the repositioning of drugs 
that have successfully passed safety testing as therapeu-
tic agents for other diseases. Thus, the proposed DAR-
ChIPEA approach could also contribute to lower drug 
discovery costs and a more efficient drug repositioning in 
the future.

Conclusions
In this paper, we introduced a computational approach 
for highlighting genome-wide chromatin change upon 
pollutant exposure to elucidate the epigenetic land-
scape of pollutant responses, which outperformed other 
methods focusing on gene-adjacent domains only. The 
proposed method can be adopted to identify pivotal 
TFs involved in the MoAs of pollutants from an epige-
netic perspective, thereby facilitating the development 
of strategies to mitigate environmental pollution dam-
age. The proposed DAR-ChIPEA approach can also be 
used to further understand the MoAs of candidate drug 
compounds as well as to discover unexpected therapeutic 
and side effects of approved drugs to reduce costs during 
drug discovery.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13072- 023- 00510-w.

Additional file 1: Fig. S1. Workflow of the proposed approach. First, 
we detected the pollutant-induced DARs using ATAC-Seq data sets 
obtained from the TaRGET database (in vivo pollutant exposure). We 
then performed ChIPEA with pollutant-induced DARs to predict TFs that 
play a pivotal role in the pharmacological effects of pollutants on health. 
The prediction phase was completed upon construction of pollut-
ant–TF–disorder triadic associations integrating TF-disease associations 
retrieved from DisGeNET with the pollutant–TF matrices obtained as 
outcomes of ChIPEA. Subsequently, in the validation phase, we checked 
the authenticity of the predicted pollutant–disorder associations (shown 
as blue-colored continuous matrix) by referencing known chemical–dis-
order associations from CTD (shown as green-colored Boolean matrix) 
and summarized the results as AUROC and AUPR scores. The in vitro 
chemical perturbation data set obtained from the DBKERO database was 
also used to evaluate the prediction accuracy of the proposed method. 
The performance of other methods that utilize chemically induced DEGs 
as input or employ motif-based enrichment analysis (MotifEA) rather than 
ChIPEA were simultaneously assessed using the same workflow. Fig. S2. 
Summary of the number of DEGs or DARs used as input to the enrich-
ment analyses. Ranking plots are illustrated for individual chemical dosing 
or pollutant exposure conditions, and are sorted by the summation of the 
number of up- and down-regulated DEGs or opened and closed DARs. 
Fig. S3. Results of the Bisulfite-Seq enrichment analysis for three repre-
sentative pollutants. Dots indicate individual Bisulfite-Seq peak sets from 
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ChIP-Atlas. Peak sets obtained from Bisulfite-Seq on blood (in the case of 
TBT and  PM2.5 exposure) and liver (in the case of lead exposure) samples 
are colored (hyper-methylated regions, red; hypo-methylated, blue). Posi-
tive and negative values of log2 fold enrichment (opened DARs/closed 
DARs; X-axis) indicate peak sets enriched in opened and closed chromatin 
induced by pollutant exposure, respectively. The enrichment score (–
log10Q value; Y-axis) indicates the statistical significance of Bisulfite-Seq 
enrichment analysis. Fig. S4. Expression levels of TFs mentioned in Fig. 4 
in mouse tissues before and after exposure to TBT,  PM2.5, and lead. Genes 
encoding the top 20 enriched TFs in Fig. 4 (right panels) are colored (rank 
1–10, orange; rank 11–20, blue). CPM, count per million.

Additional file 2: Table S1. In vitro chemical perturbation RNA-Seq 
data set (DBKERO). Table S2. In vitro chemical perturbation ATAC-Seq 
data set (DBKERO). Table S3. In vivo pollutant exposure RNA-Seq data 
set (TaRGET). Table S4. In vivo pollutant exposure ATAC-Seq data set 
(TaRGET). Data shown in bold font are those that yielded high AUROC 
scores, as reported in the main text; see also Table S6. Table S5. AUROC 
and AUPR scores for in vitro chemical perturbation data sets (DBKERO). 
Table S6. AUROC and AUPR scores for in vivo pollutant exposure data sets 
(TaRGET). Data shown in bold font are those that yielded high AUROC 
scores, as reported in the main text; see also Table S4. Table S7. Result 
of DAR-ChIPEA for exposing blood samples to TBT. Table S8. Result of 
DAR-ChIPEA for exposing blood samples to  PM2.5. Table S9. Result of DAR-
ChIPEA for exposing liver samples to lead.
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