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Abstract
Background Cis-regulatory elements (CREs) play a pivotal role in gene expression regulation, allowing cells to 
serve diverse functions and respond to external stimuli. Understanding CREs is essential for personalized medicine 
and disease research, as an increasing number of genetic variants associated with phenotypes and diseases overlap 
with CREs. However, existing databases often focus on subsets of regulatory elements and present each identified 
instance of element individually, confounding the effort to obtain a comprehensive view. To address this gap, we have 
created CREdb, a comprehensive database with over 10 million human regulatory elements across 1,058 cell types 
and 315 tissues harmonized from different data sources. We curated and aligned the cell types and tissues to standard 
ontologies for efficient data query.

Results Data from 11 sources were curated and mapped to standard ontological terms. 11,223,434 combined 
elements are present in the final database, and these were merged into 5,666,240 consensus elements representing 
the combined ranges of the individual elements informed by their overlap. Each consensus element contains curated 
metadata including the number of elements supporting it and a hash linking to the source databases. The inferred 
activity of each consensus element in various cell-type and tissue context is also provided. Examples presented here 
show the potential utility of CREdb in annotating non-coding genetic variants and informing chromatin accessibility 
profiling analysis.

Conclusions We developed CREdb, a comprehensive database of CREs, to simplify the analysis of CREs by 
providing a unified framework for researchers. CREdb compiles consensus ranges for each element by integrating 
the information from all instances identified across various source databases. This unified database facilitates the 
functional annotation of non-coding genetic variants and complements chromatin accessibility profiling analysis. 
CREdb will serve as an important resource in expanding our knowledge of the epigenome and its role in human 
diseases.
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Background
In eukaryotic organisms, cis-regulatory elements (CREs) 
such as enhancers, promoters, silencers, and transcrip-
tion factor binding sites and their selective activation pro-
vide a flexible mechanism of transcriptional regulation, 
allowing cells with the same genetic code to serve diverse 
roles throughout the body and respond to external stim-
uli such as stress [1] and drugs [2]. These regulatory ele-
ments control when genes are expressed and can play a 
pivotal role in drug development and therapeutic innova-
tion, especially as we aim to apply personalized medicine 
principles to ensure that we are providing not just the 
best drug for a specific condition, but the best drug for 
the patient [2]. In addition, genetic variants in CREs have 
been found to account for some of the common disease 
heritability [3], and the effects of several trait-associated 
genetic variants identified through genome-wide associa-
tion studies (GWAS) are mediated through their activity 
as expression modulators [4], making their understand-
ing critical for deciphering these traits and conditions.

High throughput sequencing technologies such as 
Assay for Transposase-Accessible Chromatin using 
sequencing (ATAC-seq) and Chromatin Immunopre-
cipitation Sequencing (ChIP-seq) enable researchers 
to discover the activities of regulatory elements in vari-
ous cellular contexts. High-quality databases contain-
ing annotated known regulatory elements would aid the 
characterization of the epigenetic signatures identified 
by these assays. Many such databases exist, including 
ENCODE [5], ENdb [6], and RefSeq [7], but most focus 
on a subset of regulatory elements and none define the 
relationship between all these elements to provide a 
comprehensive picture of the epigenetic regulation they 
enact. An increasing number of genetic variants found to 
associate with important human phenotypes and traits 
in GWASs fall within the intergenic or intronic regions 
and do not alter protein amino acid sequences [4]. The 
prevailing theory is that many of those variants may 
alter CRE sequences and therefore affect gene expres-
sion levels. The effort to elucidate the effects of genetic 
variants on CREs is hindered by the lack of a centralized 
database that compiles and annotates all known CREs. 
Additionally, single-cell/single-nucleus ATAC-seq has 
been increasingly adopted to study CREs and their reg-
ulatory roles at the cell type resolution. Although it has 
shown great success in uncovering CREs that are present 
in a subset of the cells, correctly annotating and classify-
ing those CREs entails a comprehensive and well-defined 
resource containing known CREs.

To address this gap, we have combined regulatory ele-
ment data from 11 sources into a database with over 
10  million human regulatory elements across 1,058 cell 
types and 315 tissues. These data were aligned to standard 
ontological terms and structured in database-compatible 

tables. Consensus tables were generated from data of all 
available datasets to provide consensus calls for elements, 
their activity within each biosample in the database, and 
all elements with genomic overlap that may represent 
similar activity. This database provides a comprehensive 
resource for evaluating epigenetic signatures and simpli-
fies the process of evaluating all elements simultaneously.

Results
Data curation
Data were extracted from the eleven data sources (see 
Supplemental Methods) including 3,326,498 enhanc-
ers, 390,522 promoters, 5,236,880 silencers, 1,760,581 
TF clusters, and 508,953 other elements along with their 
relevant metadata. The distribution of the extracted 
elements by source and element type can be found in 
Fig. 1A and B. A total of 21,328,433 gene-CRE pairs were 
included as well as 44,861 enhancer-promoter interac-
tions. To provide cellular and physiological contexts to 
CRE activities, CREdb defined and cataloged 3,675 raw 
biosample terms, representing 1,058 cell types, 315 tissue 
types, and 202 diseases.

Combined and consensus results
A total of 11,223,434 combined elements are present in 
the final database, and 5,666,240 consensus elements 
were derived from these to better define the genomic 
range of each element to facilitate more inclusive detec-
tion of these elements from sequencing data. Each con-
sensus element contains metadata including the number 
of elements supporting this consensus and a hash indi-
cating which of the databases these supporting ele-
ments were derived from to assist in gauging the relative 
strength of these consensus elements in downstream 
analysis. The data supporting the confidence level in 
these consensus elements are shown in Fig. 1C and D. A 
total of 641,405,593 consensus activity rows are present 
in the final database, defining the activity state of each 
consensus element in each biosample it was measured in. 
The distribution of consensus elements by tissue can be 
found in Fig. 2A. We also perform hierarchical clustering 
of the tissues based on their CRE usage patterns (Fig. 2B), 
which confirms that related tissues tend to share similar 
CRE activities. For instance, different brain regions are 
clustered together.

Activity by contact (ABC) results
A total of 19,864,642 candidate enhancers across 131 bio-
samples were extracted from the data provided by Nasser 
et al. [8]. As these data were published after the con-
struction of the database, they were not included in the 
primary model of CREdb. Instead, they are provided as 
a separate table with the relevant information needed to 
align them with the existing elements in CREdb.
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Examples of applying CREdb to facilitate genomic research
One potential application of the comprehensive CRE 
database, as we presented here, is to provide functional 
context to genomic regions that are found to associate 
with certain traits or phenotypes. We extracted consen-
sus elements that are active in only one of the three tis-
sues: liver, neural tissue, and heart, and intersected those 
regions with SNPs that are reported to associate with any 
of the phenotypes compiled in the GWAS catalog [9]. 
For each tissue, we then tested the enrichment of each 
phenotype by comparing the observed and expected 
number of lead SNPs that fall within the tissue-specific 
regulatory elements. Figure 3 A shows the top five most 
enriched phenotypes for each of the three tissues. For 

liver, the phenotypes whose lead SNPs significantly over-
lap with liver-specific regulatory elements include liver 
enzyme levels (serum GGT and alkaline phosphatase) 
and metabolism (cholesterol and fatty acid levels). For 
neural-specific regulatory elements, the most enriched 
phenotypes appear to be related to brain physiology 
such as cortical surface area, sphingomyelin level, neu-
roticism, and insomnia. Similarly, atrial fibrillation and 
electrocardiographic measures are the top phenotypes 
whose lead SNPs are enriched in heart-specific regula-
tory elements. This analysis uncovers the link between 
tissue specific CREs and the physiology and function of 
the tissue. Additionally, it demonstrates the possibility of 
using CREs to better annotate and understand the signals 

Fig. 1 CRE Distribution by source and confidence level. (A) Log10 number of CREs derived from each data source. (B) Percentage of CREs from each data 
source belonging to each type of CRE. (C) Log10 number of consensus CREs grouped by the number of elements supporting them, as well as how many 
within these groups are experimentally validated. Of note, most enhancers were experimentally validated. (D) Log10 number of consensus CREs grouped 
by the number of data sources that provided supporting elements to them, as well as how many within these groups are experimentally validated. Of 
note, mostly enhancers were experimentally validated
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derived from association studies. One can also expand 
beyond the lead variant to include variants in the credible 
set or the linkage disequilibrium (LD) block, which will 
likely increase the sensitivity of the analysis.

To explore the utility of CREdb in enhancing single-cell 
ATAC-seq analysis, we downloaded and analyzed a pub-
lic single-nucleus ATAC-seq dataset generated from a 
postmortem human brain (substantia nigra) sample [10]. 
Among the major cell types identified in this dataset is 
a smooth-muscle-cell-like population that is character-
ized by high activity score (measured as promoter and 

gene body DNA accessibility) for genes such as TALGN 
(encoding Transgelin) and MYL9 (Myosin regulatory 
light polypeptide 9). We noticed that an open chroma-
tin region specific to this smooth muscle cell population 
happens to fall within a CREdb consensus element (TAK-
CRE003692821) which is active only in smooth muscle 
cell of the brain vasculature (Fig.  3B). Remarkably, this 
open chromatin region was not identified in the original 
analysis presumably because it is only present in a small 
number of cells and could be missed by the peak calling 
algorithm. This example highlights the potential value 

Fig. 3 Example Uses of CREdb. (A) Top five phenotypes whose significant GWAS hits are enriched in consensus elements active in liver, neural tissue and 
heart, respectively. (B) Example single-nucleus ATAC-Seq analysis utilizing CREdb to identify CREs not detected by standard peak-calling analysis. Each 
track in the signal profile represents a cell cluster with Cluster8 (shown in pink) representing smooth muscle cells

 

Fig. 2 Distribution of elements by tissue source. (A) Distribution of active elements by tissue source. (B) Hierarchical clustering of tissues based on CRE 
activity patterns. CREs that are too rare (active in fewer than 3 tissues) or too common (active in more than half of all the tissues) are excluded from the 
clustering analysis. Active elements are in red, inactive elements in white
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of complementing peak calling with a list of pre-anno-
tated CREs in single-cell/single-nucleus ATAC-seq data 
analysis.

Conclusions
Cis-regulatory elements from multiple publicly available 
databases were mapped to standard ontologies to better 
support their use, combined into consensus elements to 
increase their sensitivity in detecting the availability of 
these elements from sequencing results, and compiled 
into a database made available for public use as CREdb.

CREdb enables researchers to better understand the 
human genome by providing a broader and more in-
depth look at experimental results in the context of 
known regulatory elements across the current literature. 
For example, it can aid in annotating GWAS signals in 
non-coding regions by aligning these signals to consen-
sus elements and identifying in what tissue and cell types 
those elements were active. In the case where the target 
genes of the elements are available, it provides a clue as 
to what genes may play a role in the trait/phenotype in 
question. It can also be used to identify candidate CRE 
regions in single-cell ATAC-seq analysis to detect peaks 
in consensus element regions that might not be detected 
with a single dataset. Within the rapidly expanding field 
of single-cell chromatin accessibility sequencing, this 
should aid in expanding our knowledge of the epigenome 
and its role in human disease.

Linking a locus associated with a trait of interest to the 
causal gene is crucial in drug target discovery and pri-
oritization efforts. Conversely, carefully examining all 
the traits that are associated with a given gene may reveal 
potential safety concerns and therefore inform safety 
evaluation for candidate drug targets. CRE-gene linkage 
information provided in CREdb such as enhancer-gene 
pairs and activity by contact measurements may comple-
ment existing models (for instance, Open Targets Genet-
ics L2G score) in facilitating the nomination of causal 
genes at GWAS loci. Existing databases of CREs typically 
focus on one or several types of CREs, making a system-
atic evaluation of all CRE types cumbersome. Further-
more, each database only contains CREs derived from 
a limited range of cellular contexts (cell types, diseases, 
conditions) or methodologies. CREdb aims to overcome 
those limitations by compiling CRE-related information 
from all major data sources and provides a one-stop-shop 
repository.

We plan to continuously improve and enhance CREdb 
in the future. As new technologies linking CREs to their 
target genes such as activity-by-contact (ABC) measure-
ments become more widely applied, we will regularly 
update new ABC results/predictions as they become 
available for more cell types and thereby augment 

CREdb’s ability to link putative CREs to their target genes 
in a context dependent manner.

Methods
Database design
A data model was designed to store information related 
to regulatory elements including promoters, enhanc-
ers, silencers, transcription factors, and called segments 
(other elements). In addition to these elements, the data 
model also stores the genes they interact with, biosamples 
with data supporting the regulatory elements, biological 
activity of regulatory elements in these biosamples, and 
the data sources used to collect these elements. The con-
ceptual form of this data model is presented in Fig. 4C, 
and detailed information about their attributes is pro-
vided in Supplemental Methods.

Data sources
Regulatory element data with corresponding biospeci-
men annotations were collected from the following data-
bases for inclusion in CREdb: ENCODE SCREEN [5], 
ENdb [6], RefSeq [11], SilencerDB [12], Silencer-Can-
didates [13], ReMap2020 [14], GeneHancer [15], FAN-
TOM5 [16], EpiMap [17], Ensembl Regulatory Build [18] 
and EnhancerAtlas [19]. Gene data were collected from 
the following databases for inclusion in CREdb: HGNC 
[20], Gencode [11], and RefSeq [7]. These databases were 
downloaded on 22Jul2021.

Data curation
Data from each database were filtered to only human 
regulatory elements and genes. Duplicate entries were 
removed, and available data were mapped to the CREdb 
database tables. Database-specific choices were made 
during the curation process to convert the available data 
into the universal format provided by the data model. 
For data sources where the elements were aligned to 
GRCh37, the elements were remapped to GRCh38 
to harmonize all elements against the same reference 
genome. The data sources that required remapping were 
FANTOM5, EPIMAP, SilencerDB, EnhancerAtlas, Silen-
cerCandidates, and ENdb. Specifics of these choices are 
specified in Supplemental Methods. A diagram of the 
curation and mapping process can be found in Fig. 4A.

To harmonize the metadata for biosamples across vari-
ous data sources, raw values were classified into distinct 
categories, including “cell line,” “primary cell,” “in vitro 
differentiated cells,” “tissue” or “disease.” Original biologi-
cal source values were then mapped to standard ontolo-
gies widely accepted by the biomedical community. For 
example, for “cell line” type, the raw values are mapped 
to Experimental Factor Ontology (EFO), Cellosaurus 
(CVCL), and Cell Line Ontology (CLO) terms. For “pri-
mary cells” and “in vitro differentiated cells”, most of 
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the values are mapped to the Cell Ontology (CL) stan-
dard terms. For the “tissue” and “disease” types, most 
of the values are mapped to Uber-anatomy ontology 
(UBERON) and the Human Disease Ontology (DOID), 
respectively. To enrich the annotations for cell lines and 
primary cells, additional information about correspond-
ing diseases and tissues were extracted as well.

Standard ontology alignment was generated using 
a custom Excel plugin based on SciGraph [21], which 
stores and manages ontologies. The plugin automatically 
searches for the closest term in a selected ontology and 
returns the preferred term (PT), Ontology, Ontology ID, 
and a matching score. Manual review by domain experts 
was then performed for all terms with a matching score 
below 0.80 (where 1 is the highest score for the exact 
match).

Consensus generation
The harmonized data were used to generate three sets 
of combined tables utilizing data from all available 
databases:

1. A combined element table generated by 
concatenation and genomic re-sorting of all element 
tables, activity tables, and element-gene interaction 
Table .

2. A consensus element table derived from the 
combined element table using the ‘bedmap’ tool from 

the ‘bedops’ tool suite [22] to perform clustering 
by a reciprocal overlap of 20% with all elements of 
the same type (enhancers, promotors, silencers, 
and called segments). Transcription factors were 
excluded as they are a product of ReMap’s clustering, 
and elements less than 10 bp or greater than 
50,000 bp were excluded based on size. An overview 
of this methodology is presented in Fig. 4B.

3. A master activity table was created by taking the 
consensus at the biosample level by merging within 
each consensus element the activity profiles of 
all biosample replicates, then aggregating these 
across all datasets to determine consensus activity. 
FANTOM5 and EnhancerAtlas were handled 
differently, with gene TPM (Transcripts Per 
Million) aggregated by taking the median across 
replicates; and the percentile expression calculated 
by subsequently rank-normalizing within sample. An 
element was considered active in the master activity 
table if any of the following were true:

a) it had greater than or equal to two datasets where it 
was called active.

b) FANTOM5 and EnhancerAtlas expression percentile 
both greater than zero.

c) FANTOM5 or EnhancerAtlas expression percentile 
greater than 20%.

Fig. 4 Methodology and Structure of CREdb (A) Curation methodology for the generation of CREdb. Raw data is extracted from databases containing 
data pertaining to CREs, biosamples, and genes. Relevant metadata is then collected for the biosamples and these samples are mapped to standard 
ontologies to facilitate efficient comparisons between source datasets. CREs and genes are filtered to only human sources and standardized to the same 
terminology and, where necessary, reference genome. Consensus data elements are then generated based on overlap between each group. Curated 
CREs, genes, and biosamples are then mapped to the data model to generate the final CREdb. (B) Consensus generation of elements. For each element 
type (promoter, enhancer, etc.), elements were clustered where they had at minimum 20% overlap and condensed into a consensus range for the ele-
ment. In this example, five promoters have sufficient overlap to be considered a part of a single consensus element. This allows for more sensitive detec-
tion of the element when querying with data that might not match any one variant of the site identified in the source databases. (C) Data model of final 
CREdb resource. This conceptual model represents the entities and relationships of the final CREdb. Regulatory elements sit at the center of the model, 
with interactions between themselves (enhancer/promoter interactions). For each biosample, relationships are identified between genes, regulatory ele-
ments, and their respective activity in that sample
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Activity by contact data
Candidate enhancers identified using the Activity by 
Contact (ABC) model by Nasser et al. [8] were included 
as a separate table by extracting each candidate and its 
relevant information from the provided bed files.

Enrichment of GWAS signals in tissue-specific CREs
GWAS lead variants were downloaded from the GWAS 
Catalog (https://www.ebi.ac.uk/gwas/api/search/down-
loads/alternative). A BED file was generated by expand-
ing 100 bps both upstream and downstream of each lead 
variant. The overlap between GWAS signals BED file and 
tissue specific consensus regulatory elements were per-
formed using bedtools (version 2.27.1) intersect com-
mand. Experimental Factor Ontology (EFO) mapping 
provided by the GWAS Catalog was used to annotate the 
trait/phenotype of each GWAS study. The enrichment 
analysis was carried out with hypergeometric testing 
with Python library Scipy (v1.7.3). Each unique variant-
phenotype pair is counted only once. Phenotypes with 
fewer than ten hits in a tissue were excluded from subse-
quent analysis.

snATAC-seq analysis
The snATAC-seq dataset was downloaded from 
GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSM6459701) in the form of fragment align-
ment genomic coordinates (GSM6459701_NOSN01_
snATAC.fragments.tsv.gz) and peak by cell count matrix 
(GSM6459701_NOSN01_snATAC.filtered_peak_bc_
matrix.h5). Signac R package (version 1.11.0) was used to 
load the downloaded dataset and perform downstream 
analysis. LSI dimensionality reduction was carried out 
by implementing term frequency-inverse document 
frequency (TF-IDF) transformation followed by singu-
lar value decomposition (SVD). The top 30 LSI projec-
tions (except the first one) were used to compute Shared 
Nearest Neighbors (SNNs), which were then used to 
cluster nuclei based on the SLM algorithm in the Find-
Clusters function. Gene activity scores were computed 
for protein-coding genes by summing snATAC-seq 
reads mapped in the gene body and the promoter (5 kb 
upstream to TSS) by using GeneActivity function. Cell 
clusters were annotated by inspecting gene activity scores 
of known marker genes of neural cell types. The genomic 
coordinates of smooth muscle cell specific CREs were 
lifted over to hg19 using the liftOver command in the 
rtracklayer R package (version 1.60.1) to be compatible 
with the snATAC-seq fragment coordinates.
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