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Abstract 

Histone methyltransferase SETDB1 (SET domain bifurcated histone lysine methyltransferase 1, also known 
as ESET or KMT1E) is known to be involved in the deposition of the di‑ and tri‑methyl marks on H3K9 (H3K9me2 
and H3K9me3), which are associated with transcription repression. SETDB1 exerts an essential role in the silencing 
of endogenous retroviruses (ERVs) in embryonic stem cells (mESCs) by tri‑methylating H3K9 (H3K9me3) and inter‑
acting with DNA methyltransferases (DNMTs). Additionally, SETDB1 is engaged in regulating multiple biological 
processes and diseases, such as ageing, tumors, and inflammatory bowel disease (IBD), by methylating both his‑
tones and non‑histone proteins. In this review, we provide an overview of the complex biology of SETDB1, review 
the upstream regulatory mechanisms of SETDB1 and its partners, discuss the functions and molecular mechanisms 
of SETDB1 in cell fate determination and stem cell, as well as in tumors and other diseases. Finally, we discuss the cur‑
rent challenges and prospects of targeting SETDB1 for the treatment of different diseases, and we also suggest some 
future research directions in the field of SETDB1 research.
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Introduction
Protein methylation, a covalent modification on pro-
teins, is dynamically regulated by protein methyltrans-
ferases and demethylases, and S-adenosyl-l-methionine 
(AdoMet) is the main methyl group donor [1–3]. Protein 
methylation occurs mainly at lysine or arginine residues 
of histones and non-histones and has been demonstrated 
to be implicated in the regulation of many biological 
processes by affecting the activity, subcellular localiza-
tion, or stability of proteins [4–7]. In recent years, major 
advancements in our understanding of protein methyla-
tion have been made, including not only its regulatory 
mechanisms, but also its pathophysiological functions 
[8–11].

The SET domain bifurcated histone lysine methyl-
transferase 1 (SETDB1), also known as lysine N-methyl-
transferase 1E (KMT1E) or Erg-associated SET domain 
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(ESET), is a family member of the SET domain-contain-
ing histone methyltransferases. SETDB1 deposits di- and 
tri-methyl marks on H3K9 (H3K9me2 and H3K9me3) 
which are transcriptional repression marks [12–16]. 
Additionally, SETDB1 has been found to methylate non-
histones, such as tri-methylating AKT at K64 and K140 
 (AKTK64me3 and  AKTK140me3), and di-methylating P53 
at K370  (P53K370me2) [17–19]. SETDB1 has been shown 
to be involved in maintaining endogenous retroviruses 
(ERVs) silencing in embryonic stem cells (mESCs) [20–
23], as well as in cell fate determination and tumorigen-
esis [24–29]. In this review, we summarize the structure 
features of SETDB1, the upstream regulatory mecha-
nisms controlling SETDB1 expression and activity, and 
the partners of SETDB1, as well as the pivotal roles of 
SETDB1 in cancer progression, inflammatory bowel 
disease, ageing, and embryonic stem cells by regulating 
methylation of H3K9 and non-histone proteins.

Structure of SETDB1
SETDB1 was first identified by Harte et al. in 1999, and 
they revealed that Setdb1 gene localized to human chro-
mosome band 1q21 [30]. By using the N-terminal region 
of ERG as a bait to screen a yeast two-hybrid mouse 
cDNA library, Yang et  al. isolated a 4.6  kb full-length 
mouse cDNA encoding a protein of 1307 amino acids, 
referred to as ESET [31]. Mouse ESET has 92% similar-
ity to human protein SETDB1, and SETDB1 is a histone 
H3K9-specific methyltransferase contributing to het-
erochromatin protein 1a (HP1a)-mediated silencing of 
euchromatic genes [16, 32]. The evolutionarily conserved 

SET, pre-SET, and post-SET domains comprise the C-ter-
minal region of SETDB1, which is necessary for its meth-
yltransferase activity. The N-terminal region of SETDB1 
contains two consecutive tudor domains (TUDs) and a 
methyl-CpG binding domain (MBD) that interacts with 
chromatin modifying enzymes, such as DNA methyl-
transferases (DNMTs), to participate in DNA silencing 
[12, 33, 34] (Fig. 1). Three isoforms of Setdb1 gene have 
been identified, of which isoform 1 is encoded by the 
longest transcript containing all intact domains, and is 
widely expressed [32, 35]. Although isoform 2 is a shorter 
splice variant, it still has all the important domains simi-
lar to those of isoform 1. However, in contrast to isoform 
1, isoform 3 contains only 400 amino acids at the N-ter-
minus (Fig. 1) [12, 33].

The upstream regulatory mechanisms of SETDB1
The expression and activity of SETDB1 is regulated at 
multiple levels (Fig. 2). Compared with control, the pro-
tein levels of SETDB1 and its substrate H3K9me3 are 
obviously increased in the striatal neurons of Hunting-
ton’s disease patients and transgenic R6/2 (a Huntington’s 
disease mouse model) mice, and both specificity protein 
1 (Sp1) and Sp3 can bind to the Setdb1 promoter to acti-
vate the transcription of Setdb1 gene [36]. Mithramycin is 
an antibiotic agent that has been revealed to suppress the 
growth of cancers by preventing the binding of Sp-family 
transcription factors to the DNA of gene promoters [37]. 
Unsurprisingly, mithramycin inhibits the basal promoter 
activity of Setdb1 gene in a dose-dependent manner, and 
in addition, combined treatment with mithramycin and 

Fig. 1 Schematic representation of human SETDB1 and its isoforms. The domains are indicated as different colors, and the SET domain 
is the major catalytic domain. NES nuclear export sequence, NLS nuclear localization sequence, MBD methyl‑CpG binding domain, SET Su(var)3–9, 
Enhancer‑of‑zeste and Trithorax
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cystamine extends the lifespan of R6/2 mice by 40% and 
obviously improves the behavioral and neuropathological 
phenotype [36]. In addition, both mithramycin A and its 
analog (mithralog) EC-8042 effectively suppress SETDB1 
expression in melanoma cells and enhance the efficacy of 
mitogen-activated protein kinase-inhibitor-based thera-
pies for melanoma [38]. In gastric cancer, transcription 
factor 4 (TCF4) directly bind to the promoter of Setdb1 
gene (binding motif, CAAAG) to enhance the expres-
sion of SETDB1, and approximately 90% of patients 
with gastric cancer (GC) are caused by Helicobacter 
pylori infection, which promotes SETDB1 expression in 
a TCF4-dependent manner [39]. Furthermore, elevated 
SETDB1 interacts with ERG to promote gastric car-
cinogenesis and metastasis by binding to the promoter 
regions of matrix metalloproteinase 9 (MMP9) and cyc-
lin D1 (CCND1) to accelerate their transcription [39]. 
In breast cancer cells, SETDB1 increases the expression 
of c-MYC to promote cell cycle progression, enhanced 
growth, and colony formation, and increased c-MYC 
positive feedback regulates the expression of SETDB1 
by directly binding to Setdb1 promoter and enhances its 
transcription [40].

MicroRNAs are a class of small non-coding RNAs 
that negatively regulate gene expression by targeting the 
3′-UTRs of mRNAs and causing their mRNAs degra-
dation [41]. Under certain conditions, microRNAs can 
affect the expression of SETDB1 by targeting its mRNA. 

For example, miR-621 and miR-29 bind directly to the 
3′-UTR of Setdb1 and inhibit its expression. Moreo-
ver, the miR-621-SETDB1 strengthens radiosensitivity 
in hepatocellular carcinoma (HCC) through activation 
of the p53 signaling pathway [42]. miR-409-3p has been 
reported to negatively regulate the expression of SETDB1 
in non-small cell lung cancer (NSCLC) [43].

The methyltransferase activity, stability, and subcel-
lular localization of SETDB1 protein are essential for its 
function. For example, SETDB1 in the nucleus is neces-
sary for the expansion of adult muscle stem cells and the 
suppression of skeletal myoblast terminal differentiation, 
and Wnt3a-dependent cytoplasmic SETDB1 relocaliza-
tion and genomic release from certain target genes pro-
mote myogenesis [44]. Activating transcription factor 
7-interacting protein (ATF7IP) mediates nuclear reten-
tion of SETDB1 by binding to the N-terminal region of 
SETDB1 to inhibit its nuclear export, and increase the 
K885 ubiquitination of SETDB1 to enhance its methyl-
transferase activity in HEK293T cells [45]. The deficiency 
of ATF7IP facilitates proteasomal degradation of nuclear 
SETDB1 protein, implying that stability of SETDB1 regu-
lated by ATF7IP is essential for heterochromatin forma-
tion [46]. Furthermore, the disruption of either SETDB1 
or ATF7IP in tumor cells restores tumor antigen expres-
sion and augments tumor immunogenicity [47]. Similar 
to K885 ubiquitination of SETDB1 in humans, the K867 
in the SET-insertion domain of SETDB1 can also be 
monoubiquitinated by UBE2E family of E2 enzymes in 
an E3-independent manner in mESCs, which is indispen-
sable for methyltransferase activity of SETDB1 and its 
role in endogenous retrovirus silencing [48]. The mon-
oubiquitinated Egg/Eggless (the ortholog of SETDB1 in 
Drosophila) is required for piRNA-mediated transposon 
repression [49]. Windei/Wed (ATF7IP ortholog in Dros-
ophila) controls nuclear retention of Egg/Eggless and 
recruits mUb-Egg to transposon loci for silencing [49]. 
These studies demonstrate that the monoubiquitination 
of SETDB1 is critical for its methyltransferase activity, 
nuclear localization, and function. Therefore, further 
identification of the enzymes that regulate the mon-
oubiquitination of SETDB1 and the partners that control 
its nuclear localization is vital for exploring the biological 
function of SETDB1.

The partners of SETDB1
As is well known, H3K9 can be methylated by a variety 
of histone methyltransferases [50, 51], and how these 
methyltransferases work together to dynamically regu-
late the methylation of H3K9 is a topic worthy of further 
investigation. Recent studies have shown that certain 
H3K9 methyltransferases, such as SETDB1/KMT1E, 
G9a/KMT1C, Suv39h1/KMT1A, and GLP/KMT1D, 

Fig. 2 The upstream regulatory mechanisms of SETDB1. The 
expression of SETDB1 is regulated by transcription factors TCF4, 
C‑MYC, and SP1/SP3. miR‑409‑3p, miR‑621, and miR‑29 directly target 
the 3′‑UTR of Setdb1 and inhibits its expression. ATF7IP and UBE2Es 
directly interact with and monoubiquitinate SETDB1 to enhance 
the methyltransferase activity of SETDB1. Mithramycin is an inhibitor 
of SP1/SP3
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cooperate to form a megacomplex and function in gene 
silencing [52]. Methylation of H3K9 is usually linked 
to heterochromatin formation and gene silencing, and 
H3K9me3 is highly enriched in heterochromatic regions, 
while H3K9me1/2 is enriched in silent euchromatin 
regions [52]. HP1a is a common partner of SETDB1 and 
is essential for the formation and maintenance of het-
erochromatin in both Drosophila and mammals [53–
56]. In Drosophila, mutants with hypomorphic or null 
expression of dSETDB1 result in the loss of most H3K9 
methylation marks and HP1-binding on chromosome 
4, a condensed heterochromatin region [57]. SETDB1, 
HP1a, and Su(var)3–9 inhibit the same genes on chro-
mosome 4, and genes that non-ubiquitously expressed 
are preferentially targeted, and then stimulate genes in 
pericentromeric regions [53]. Furthermore, Maksimov 
et  al. revealed that in Drosophila, Su(var)3–9 binds to 
the majority of single-copy genes in euchromatin only 
in the presence of dSETDB1, but is largely dSETDB1-
independent at repeated sequences in heterochroma-
tin [58, 59]. Similar to Drosophila, SETDB1 physically 
associates with HP1 and KAP1 around the euchromatic 
promoter, establishing a silenced state that is epigeneti-
cally heritable in mammalian cells [54]. Moreover, HP1 
interaction-defective Setdb1 protein is subject to protein 
degradation by the proteasome pathway in mESCs, and 
HP1 mutants unable to recognize H3K9me2/3 or dimer-
ize fail to stabilize Setdb1 [56]. HP1 deficiency results in 
the loss of pluripotency of mESCs and a reciprocal gain 
of lineage-specific features, which can be restored by 
overexpression of Setdb1, Nanog and Oct4 [55]. In addi-
tion, the heterochromatic chromatin assembly factor 1 
(CAF1)-HP1a-SETDB1 complex monomethylates K9 on 
non-nucleosomal histone H3, which may subsequently 
trimethylated by SUV39h1/h2 in pericentric regions in 
HeLa cell line [60], and KRAB-ZFP-associated protein 1 
(KAP-1) is a molecular scaffold that coordinates histone 
methylation and deposition of HP1 protein to repress 
gene expression [16]. Heterochromatin-inducible activ-
ity is inhibited by mTOR-mediated phosphorylation on 
KAP1, and KAP1 knockdown or drug-induced phos-
phorylation of KAP1 can force human cytomegalovirus 
out of latency in human hematopoietic stem cell [61]. 
In addition, Müller et al. reported that SETDB1 recruits 
the chromodomain protein M-phase phosphoprotein 
8 (MPP8) to its genomic target loci and maintains tran-
scriptional repression of LINE1 elements without pre-
serving H3K9me3 levels, which is critical for maintaining 
self-renewal of ground-state pluripotent stem cells [62].

H3K9 methylation is associated with DNA methyla-
tion, which is inherited after mitosis in a manner cou-
pled to DNA methylation, suggesting that SETDB1 may 
function in conjunction with DNMTs [52]. Deletion of 

Setdb1 reduces the levels of H3K9me3 and loci-specific 
DNA methylation, while increasing 5-hydroxymethyla-
tion (5hmC) and binding of ten-eleven translocation 1 in 
mESCs [63]. The silencing of hypermethylated germline 
“genome-defence” genes is dependent upon SETDB1, 
PRC1.6/RING1B and DNA methylation in epiblast-
like cells [64]. In contrast, in pre-implantation embryos 
and naïve ESCs, H3K9me3 and RING1B-dependent 
 H2AK119ub1 are enriched at the hypomethylated pro-
moters of germline genes that bind by the PRC1.6 
DNA-binding subunits MGA/MAX/E2F6 [64]. These 
studies demonstrated that SETDB1 usually functions 
in the euchromatic region with multiple partners, and 
represses gene expression. Interestingly, recent studies 
suggest that DNA methylation does not appear to con-
tribute to the maintenance of H3K9me3, as Dnmt1 KO 
cells that have greatly reduced levels of DNA methylation 
on endogenous retroviruses can still maintain H3K9me3 
[65]. Long terminal repeat (LTR) expression correlated 
with loss of H3K9me3, but loss of H3K9me3 did not 
always lead to transcriptional activation, probably due 
to DNA methylation [66, 67]. Therefore, the relationship 
between SETDB1 (H3K9me3) and DNA methylation is 
still controversial and more studies are needed for in-
depth investigation.

The functions of SETDB1 in biological processes 
and diseases
Current studies have shown that H3K9 is the main sub-
strate of SETDB1, and SETDB1 regulates multiple biolog-
ical processes (e.g., embryonic stem cell and aging) and 
various diseases (e.g., tumors and inflammatory bowel 
disease) by tri-methylating H3K9.

SETDB1 in cell fate determination and stem cell
Cell fate determination
Meiosis is a biological process in which diploid germ cells 
undergo one round of DNA replication followed by two 
rounds of division to produce haploid gametes [68]. Chen 
et al. demonstrated that SETDB1-catalyzed H3K9me3 is 
indispensable for the formation of bivalent in early meio-
sis [68]. Spermatocytes with Setdb1 deficiency displayed 
aberrant centromere clustering and bouquet formation, 
failure of homologous chromosome pairing and synapsis, 
and impaired meiotic silencing of unsynapsed chroma-
tin, leading to meiotic arrest before pachytene and sper-
matocytes apoptosis [68, 69]. In addition, SETDB1 was 
also identified as a maternal transcriptional co-regulator 
of genes contributed to mitosis during early embryos in 
mice [70].

In Drosophila, H3K9me3 chromatin has been found 
to be critical for the maintenance of female germ cell 
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fate [71]. SETDB1, its binding partner Windei/Wed and 
HP1a were found to be necessary for silencing testis 
gene transcription (e.g., phf7) by enhancing H3K9me3 at 
these genes in female germ cells [71]. In mice, SETDB1 
has been reported to act as a bridge between the meiotic 
DNA damage response and sex chromosome silencing, 
and meiotic Setdb1 deletion induces midpachytene apop-
tosis by perturbing meiotic sex chromosome remodeling 
and silencing during male meiosis [69]. Additionally, 
SETDB1 has been found to associate with the topological 
regulator Cohesin to regulate embryonic stem cell pluri-
potency and lineage development by affecting the topo-
logical structures of related genes [25, 72].

Embryonic stem cell
Retrotransposons constitute nearly forty percent of 
the mouse genome [73], and are mostly transcription-
ally silenced during early embryogenesis [74]. In mESCs 
and in early embryos, deletion of KAP1 (also known as 
TRIM28), a partner of SETDB1, led to a marked upreg-
ulation of a range of ERVs, particularly intracisternal 
A-type particles (IAP) elements, by downregulating 
H3K9me3 levels in these regions [23, 74]. Germline-
specific conditional knockout of Setdb1 produced a 
reduction in methylated long terminal repeats (LTRs) 
and LINE1 elements, as well as DNA methylation at 
H3K9me3-enriched retrotransposon families, which 
results in concomitant derepression of marked IAP, ETn, 

and ERVK10C elements, as well as ERV-proximal genes 
in Setdb1 deficiency E13.5 primordial germ cells (PGCs) 
of mice [73]. Interestingly, Setdb1 knockout mice showed 
a reduced number of male E13.5 PGCs, while postnatal 
hypogonadism in both sexes [73]. Furthermore, SETDB1 
has been found to inhibit the expression of Dppa2 (devel-
opmental pluripotency associated 2), Otx2 (orthodenticle 
homeobox  2) and Utf1 (undifferentiated embryonic cell 
transcription factor 1), while activating the BMP/SMAD 
pathway genes Acvrl1 and Smad in developing PGCs, 
which indicates that SETDB1 is crucial for PGC fate 
determination of epiblast cells (Fig. 3) [75].

Although histone methylation and DNA methylation 
are essential for the repression of ERVs transcription, the 
genes upregulated after Setdb1 deletion differ from those 
derepressed genes in mESCs with Dnmt1, Dnmt3a, and 
Dnmt3b deficient, with the exception of a small num-
ber of primarily germline-specific genes [22]. This para-
doxical phenotype may be due to an ectopic interaction 
between SETDB1 and NP95/UHRF1. Under normal 
conditions, SETDB1 maintains silencing of ERVs, while 
in the absence of DNMT1, prolonged binding of NP95/
UHRF1 to hemimethylated DNA transiently disrupts 
SETDB1-dependent deposition of H3K9me3 in these 
regions [76]. In naïve ESCs with SETDB1 deficiency, Tet 
methylcytosine dioxygenase 2 (TET2) activates IAP ele-
ments in a catalytic-dependent manner. Surprisingly, 
TET2 has no effect on DNA methylation levels at IAPs, 

Fig. 3 The mechanisms underlying the role of SETDB1 in cell fate determination and stem cell. SETDB1 trimethylates H3K9 (H3K9me3) to suppress 
the expression of DPPA2, OTX2, and UTF1 to regulate primordial germ cells (PGC) formation, and to inhibit CEBPβ and CDKN1α, FBP1 and FBP2 
expression to affect the hematopoietic stem and progenitor cells (HSPCs), and to repress LINE1 transcript expression to facilitate stem cell 
self‑renewal
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but regulates these retrotransposons in a TET2-depend-
ent loss of H4R3me2s manner [77]. In addition, the 
physically interaction between SETDB1 and methyltrans-
ferase-like 3 (METTL3), an RNA N6-methyladenosine 
 (m6A) methyltransferase, is important for the integrity of 
IAP heterochromatin in mESCs [78–81].

Hematopoietic stem and progenitor cell
Additionally, Setdb1 has been found to be critical for the 
maintenance of hematopoietic stem and progenitor cells 
(HSPCs) in mice, as demonstrated by the rapid depletion 
of hematopoietic stem, HSPCs, and leukemic stem cells 
after Setdb1 deletion, which is caused by ectopic acti-
vation of nonhematopoietic genes (e.g., gluconeogenic 
enzyme genes fructose-1,6-bisphosphatase 1 (Fbp1) 
and Fbp2) (Fig.  3) [82]. Conditional ablation of Setdb1 
in pro-B cells (Mb1-Cre) has a significant impact on the 
pro-B cell compartment, and the B cell populations in the 
spleen and bone marrow that correspond to later devel-
opmental stages are virtually eliminated in mice [83]. 
Further evidence suggests that these effects of Setdb1 
deficiency on B cells may be associated with derepression 
of endogenous murine leukemia virus (MLV) copies and 
subsequent activation of the unfolded protein response 
pathway and apoptosis [84]. In addition, SETDB1 limits 
the priming of T helper 1 (Th1) cells and maintains the 
integrity of Th2 cells by repressing a repertoire of ERVs in 
a H3K9me3-dependent manner [85].

Similarly, in zebrafishes with Setdb1 or Atf7ip defi-
ciency, excessive myeloid differentiation with impaired 
HSPC expansion is observed, leading to a decrease in T 
cell and erythroid lineage [86]. Mechanistically, Setdb1 
and Atf7ip interaction facilitates H3K9me3 deposition in 
cebpβ and cdkn1a to inhibit their expression (Fig. 3) [86]. 
Concomitantly, deletion of Atf7ip or Setdb1 derepresses 
retrotransposons, thereby inhibiting human leukemia cell 
growth and inducing myeloid differentiation and inflam-
mation by activating the viral sensor Mda5/Rig-I like 
receptor signaling [86].

Other stem cell
Fei et al. demonstrated that SETDB1 works in coordina-
tion with Polycomb repressive complex 2 (PRC2) to sup-
press neural differentiation independently of H3K9me3 
[87]. Moreover, ERVs are heavily DNA methylated in 
both ESCs and differentiated somatic cells, but distinc-
tive sets of ERVs are reactivated in different types of 
Setdb1-deficient somatic cells in an H3K9me3-dependent 
or -independent manner [21].

In conclusion, SETDB1 plays an important role in cell 
fate determination, stem cell differentiation and func-
tion, but the regulatory mechanisms are heterogeneous 
and cell-specific. For example, transcriptomic results 

showed that Setdb1 deletion significantly induced the 
expression of ERV families such as the murine leukemia 
virus (MLV), mouse mammary tumor virus (MMTV) 
and VL30 in pro-B cells, whereas these ERVs remained 
silent or expressed at low levels in SETDB1-deficient 
ESCs and PGCs, which expressed ERV families such as 
IAPE-z, GLn and ETn/MusD [83]. Thus, further studies 
are needed to further elucidate the specific mechanisms 
by which SETDB1 regulates cell fate determination and 
stem cell differentiation, and how this cell-specific mech-
anism is achieved, e.g., is it dependent on H3K9me3? and 
which regulators are involved in determining this cell-
specific mechanism.

SETDB1 in tumors
According to Global Cancer Statistics, there were an esti-
mated 19.3 million new cancer cases and 10 million can-
cer-related deaths worldwide in 2020, with lung cancer 
being the most commonly diagnosed cancer in both sexes 
[88]. SETDB1 has been found to be amplified in lung can-
cer cell lines and primary tumors, resulting in increased 
mRNA and protein levels, which contributes to tumor 
growth and invasion [89]. SETDB1 promotes the expres-
sion of IGFBP4 (insulin like growth factor binding pro-
tein 4), LRP8 (LDL receptor related protein 8), and FZD1 
(frizzled class receptor 1), but inhibits APOE (Apolipo-
protein E) expression, thereby activating WNT-β-catenin 
pathway and suppressing P53 expression to enhance 
NSCLC growth in  vitro and in  vivo [90]. Recently, 
Zakharova et  al. demonstrated that SETDB1 plays an 
essential role in epigenome, 3D genome organization, 
and chromatin architecture in the determination of lung 
adenocarcinoma programs [91]. Due to its high expres-
sion in lung cancer, SETDB1 can be used as a diagnostic 
biomarker for NSCLC with an area under the curve of 
0.7741 [92]. SETDB1 also reinforces invadopodia forma-
tion and extracellular matrix degradation by suppressing 
forkhead box A2 (FOXA2) expression, which facilitates 
migration and invasion capabilities of NSCLC cells [93]. 
However, Wu et  al. demonstrated that in highly meta-
static lung cancer cells, SETDB1 is downregulated and 
interacts with SMAD2/3 to repress metastasis of lung 
cancer through ANXA2 (Annexin A2) [94]. Similarly, 
during breast cancer, TGF-β activates SMAD3, which 
recruits SETDB1 to methylate H3K9, while repressing 
H3K9 acetylation to inhibit the transcription of Snai1 
(snail family transcriptional repressor 1) gene [95]. 
SNAIL1 is the “master” transcription factor that regulates 
epithelial–mesenchymal transition (EMT), cancer stem 
cell properties, cancer dissemination, and patient sur-
vival [96]. Thus, SETDB1 impairs TGF-β-induced EMT 
by interacting with SMAD3 and then downregulating 
SNAIL1 (Fig.  4). In squamous cell carcinoma, enhancer 
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of zeste homolog 2 (EZH2) inhibits RUNX3 (RUNX Fam-
ily Transcription Factor 3) expression to activate both 
SETDB1 and ΔNp63α, which drives an aggressive cancer 
stem cell phenotype [97]. In contrast, Xiao et al. demon-
strated that SETDB1 facilitates the translation of c-MYC 
and Cyclin D1 mRNAs to promote cell cycle progression 
of breast cancer cells. Moreover, c-MYC directly binds 
to the promoter regions of Bmi1 and Setdb1 to enhance 
their expression, suggesting a positive feedback loop 
between SETDB1 and c-MYC [40]. Overall, these stud-
ies indicate that SETDB1 may act as an oncogenic driver, 
but is a tumor metastasis suppressor in lung and breast 
cancers (Fig. 4).

In hepatitis B-associated human HCC, SETDB1 is 
upregulated and has been linked to HCC disease progres-
sion and poorer prognosis [98]. Sp1, a positive regulator 
of SETDB1, is hyperactivated, while miR-29, a negative 
regulator of SETDB1 was downregulated in HCC, and 
they jointly contribute to the high expression of STEDB1 
[98]. In addition to miR-29, miR-621 has been shown to 
reduce the expression of SETDB1 by directly targeting its 
3′ UTR and enhancing the radiosensitivity of HCC cells, 
which is mediated by the P53 signaling pathway [42]. Fur-
thermore, Setdb1 deficiency has been found to increase 
apoptosis to prevent formation of pancreatic ductal 
adenocarcinomas (PDACs) by binding to p53 promoter 

regions and directly regulating its expression in the con-
text of heterozygous p53 deletion (Fig. 4) [99].

SETDB1 has been found to be highly amplified in 
tumors of melanoma patients and melanoma cell lines, 
with overexpression contributing to a more aggressive 
phenotype in  vivo and in  vitro studies by upregulating 
thrombospondin 1 (THBS1) expression in a H3K4me1-
dependent manner [100]. Ceol et  al. demonstrated 
that SETDB1 accelerates formation of melanoma in a 
zebrafish model by trimethylating H3K9, which binds to 
the HOXA genes to enhance its expression [101]. Aber-
rant overexpression of SETDB1 is also detected in colo-
rectal cancer (CRC), promoting CRC cell proliferation, 
migration, and invasion [102]. However, SETDB1 defi-
ciency arrests CRC cells in G1 phase to inhibit cell prolif-
eration and CRC tumorigenesis by decreasing H3K9me3 
enrichment at the promoter of p21 and then suppress-
ing p21 expression (Fig.  4) [102]. Similarly, Helicobacter 
pylori (H. pylori) infection induces SETDB1 expression in 
a TCF4-dependent manner, which contributes to gastric 
cancer formation [39]. Increased SETDB1 directly inter-
acts with ERG (ETS transcription factor) to facilitate the 
expression of CCND1 and MMP9 to promote cell pro-
liferation and metastasis (Fig. 4) [39]. Co-administration 
of CDK4/6 inhibitor palbociclib obviously enhanced 
the therapeutic efficacy of SETDB1 depletion on tumor 
growth by protecting TRIM28-mediated p-RB from 

Fig. 4 The mechanisms mediating the function of SETDB1 in tumors. SETDB1 directly inhibits or cooperates with other modulators (e.g., Smad3 
and ERG) to regulate the genes‑related to tumorigenesis and tumor progression. CRC  colorectal cancer, EMT epithelial–mesenchymal transition, 
NSCLC non‑small cell lung cancer, PDAC pancreatic ductal adenocarcinomas
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proteasomal degradation both in vitro and in vivo [103]. 
On the contrary, SETDB1 inhibits the expression of genes 
associated with acute myeloid leukemia (AML), such as 
Dock1, Hoxa9, and Six1, to delay MLL-AF9-mediated 
disease progression by promoting the differentiation of 
leukemia cells [104].

It is reported that the protein levels of H3K9me3 and 
SETDB1 were increased in patients with pediatric high-
grade gliomas [105]. SETDB1 silent attenuated cell viabil-
ity, proliferation and migration, while increased apoptosis 
in two patient-derived high-grade gliomas cell lines [105]. 
The same conclusion was reached in another study using 
glioma cell lines (GOS-3, 1321N1, T98G, and U87MG) 
[106]. In this study, the authors also showed that another 
H3K9me3 methyltransferase, SUV39H1, also has the 
ability to regulate glial cell proliferation, migration, and 
colony-forming capacity [106]. Similarly, inhibition of 
SUV39H1 by Chaetocin significantly inhibited prolifera-
tion, clonogenic potential, and migration ability of T98G 
cells [107]. Furthermore, increased nuclear SUV39H1 
expression was correlated with adverse prognosis of glio-
blastomas patients [107]. Thus, these studies indicated 
that H3K9me3, as well as its methyltransferases SETDB1 
and SUV39H1, play important regulatory roles in glioma 
development and progression and may represent novel 
targets for targeted therapy of glioma.

Immunotherapies have shown considerable efficacy in 
treating several types of cancer. Amplification of SETDB1 
in human tumors has been reported to contribute to 
immune exclusion and resistance to immune check-
point blockade [108]. Screening chromatin regulators by 
CRISPR-Cas9, Griffin et  al. identified that SETDB1 and 
other members of the HUSH and KAP1 complexes act 
as mediators of immune escape in a mouse tumor model 
treated with immune checkpoint blockade [109]. They 
further found that SETDB1 represses broad domains 
that are enriched in immune clusters and transposable 
elements associated with segmental duplication events, 
thereby suppressing transposable element-encoded ret-
roviral antigens, latent transposable element-derived 
regulatory elements, immunostimulatory genes, and 
triggering transposable element-specific cytotoxic T cell 
responses in  vivo [109]. Monoclonal antibodies (mAbs) 
targeting the programmed cell death protein 1/pro-
grammed cell death ligand 1 (PD-1/PD-L1) axis have 
shown striking clinical benefit in several types of can-
cer [110]. SETDB1-TRIM28 inhibition combined with 
elevated PD-L1 facilitated the formation of micronuclei 
in the cytoplasm, thereby activating the cGAS (cyclic 
GMP-AMP synthase)-STING (stimulator of interferon 
genes) innate immune response pathway and increas-
ing infiltration of  CD8+ T cells [108]. Furthermore, 
SETDB1 deficiency has been found to improve the 

antitumor effects of anti-PD-L1 [108]. Lysine Demethyl-
ase 5B (KDM5B) recruits SETDB1 to inhibit endogenous 
retroelements in a demethylase-independent manner, 
thereby inhibiting the cGAS-STING pathway and type-I 
interferon response, which contributes to tumor growth 
and immune memory inhibition [97]. Similarly, in acute 
myeloid leukemia, SETDB1 has been found to function 
as a novel negative innate immune regulator by sup-
pressing type I interferon response, thereby contributing 
to immune evasion and oncogenic cellular state [111]. 
In NSCLC and melanoma patients, SETDB1 expression 
level is shown to be negatively correlated with radio-
therapy efficacy. Moreover, SETDB1 inhibition markedly 
improves radiotherapy efficacy by facilitating the expres-
sion of basal and radiation-induced ERVs, enhancing 
MDA5/MAVS signaling, and upregulating type I interfer-
ons expression [112]. These studies suggest that SETDB1 
is a negative regulator of tumor-intrinsic immunogenicity 
and thus a potential target for immunotherapy.

SETDB1 in other biological processes and diseases
It has been reported that approximately 10–15% of tumor 
cells lengthen telomeres by the alternative lengthening 
of telomeres (ALT) mechanism, in which TRIM28 pro-
tects the telomeric histone methyltransferase SETDB1 
from degradation, thereby maintaining the H3K9me3 
heterochromatin state of the telomeric DNA, which pre-
vents telomere shortening and reduces telomeric sister 
chromatid exchange in cells [113]. Consistently, SETDB1 
deficiency disrupts telomeric heterochromatin and abro-
gates ALT [114]. Telomere length is strongly associated 
with aging, which is the greatest risk factor for cancer. 
Hallmarks of aging include genomic instability, telomere 
attrition, mitochondrial dysfunction, cellular senescence, 
epigenetic alterations, loss of proteostasis, deregulated 
nutrient sensing, stem cell exhaustion, and altered inter-
cellular communication [115]. The expression of SETDB1 
is decreased significantly with age, and SETDB1 affects 
aging by regulating mitochondrial function [116]. Aging 
also causes a reduction in the function of spermatogo-
nial stem cell and an increase in the risk of paternal age-
related genetic diseases. SETDB1 deficiency impairs cell 
proliferation and cell–cell adhesion in spermatogonial 
stem cells by depositing H3K9me3 to inhibit MMP3/10 
expression [117].

Chronic inflammation in the gastrointestinal tract is 
a key feature of inflammatory bowel disease (IBD), and 
patients with IBD are at increased risk of developing CRC 
[118, 119]. The expression level of SETDB1 is decreased 
and rare missense variants of SETDB1 are over-repre-
sented in patients with IBD [120, 121]. Moreover, Setdb1 
deficiency in mouse intestinal epithelial cells is associated 
with barrier disruption, defective intestinal epithelial 
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differentiation, inflammation and mortality, indicating 
that SETDB1 is essential for intestinal epithelial homeo-
stasis [120]. Furthermore, mice with downregulated 
SETDB1 expression in intestinal stem cells develop spon-
taneous terminal ileitis and colitis by triggering Z-DNA-
binding protein 1 (ZBP1)-dependent necroptosis via 
de-silencing endogenous retroviruses [121]. Thus, target-
ing SETDB1 or necroptosis of intestinal stem cells may be 
potential novel strategies for the treatment of severe IBD 
in humans. Interestingly, conditional knockout of Setdb1 
(Setdb1-NS-cKO) in mouse neural progenitor cells 
showed that SETDB1 represses 5-hydroxytryptamine 
receptor 3A (Htr3a) transcription through endogenous 
retroviral sequence RMER21B-mediated distal chroma-
tin interactions in the embryonic ganglionic eminence, 
thereby modulating mood behaviors and cortical Htr3a-
positive interneurons development [122]. Moreover, 
SETDB1 was also reported to be involved in neural pro-
genitor cells switch differentiation, and forebrain-spe-
cific Setdb1 knockout mice showed early neurogenesis 
impairment, severe brain defects and early lethality [123]. 
Additionally, SETDB1 and ATF7IP were found to coop-
eratively promote osteoblast proliferation by catalyz-
ing H3K9me3 in Macrod2 (mono-ADP ribosylhydrolase 
2) promoter region to suppress its expression under 

mechanical unloading [124]. Therefore, these studies 
indicated that SETDB1 is a versatile epigenetic regulator.

The functions of SETDB1 by methylating 
non‑histone proteins
In addition to histone methylation, accumulating evi-
dence has demonstrated that non-histone proteins can 
also be methylated by histone methyltransferases, for 
example, histone methyltransferase SMYD2 mono-
methylates K370 site of P53 in tumor cells [3, 125, 126]. 
SETDB1 is known to be not only a methyltransferase that 
tri-methylates H3K9 but also methylates non-histone 
proteins (e.g., P53 and AKT) to participate in tumorigen-
esis (Fig. 5) [17–19, 127]. Moderate copy number gain of 
SETDB1 leads to its overexpression in HCC, which cata-
lyzes the K370 site of P53 di-methylation by interacting 
with P53 to increase recognition and degradation of P53 
by MDM2 [19]. In addition, SETDB1 binds to Trp53 pro-
moter to inhibit its expression, decreasing apoptosis and 
increasing growth of human PDACs [99]. These studies 
indicate that SETDB1 kills two birds with one stone, that 
is, SETDB1 not only suppresses P53 expression at the 
transcriptional level, but also methylates P53 to promote 
its degradation, and then facilitating tumor development.

In addition to P53, AKT is also a substrate that is meth-
ylated by SETDB1 and involved in tumorigenesis (Fig. 5) 

Fig. 5 The role of SETDB1 in tumors by methylating nonhistones. SETDB1 trimethylates AKT at K64, K140 or K142 to increase the phosphorylation 
and activity of AKT, which accelerates non‑small cell lung cancer and colorectal cancer or skin tumorigenesis, respectively. In liver cancer, SETDB1 
dimethylates gain‑of‑function (GOF) mutant P53 at K370 to prevent its degradation by ubiquitination, and then promotes liver cancer cell growth
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[17, 18, 127]. SETDB1 tri-methylates the K140 and K142 
sites of AKT to promote its phosphorylation on T308 and 
S473 sites and activation, which is antagonized by lysine 
demethylase 4B (KDM4B). Moreover, non-methylated 
mutant Akt1 knock-in mice not only have reduced body 
size and weight, but also less susceptible to carcinogen-
induced skin tumorigenesis [18]. In NSCLC, SETDB1 
triggers di- and tri-methylation of the AKT K64 site fol-
lowed by initiation of K63-linked AKT ubiquitination 
by recruiting Jumonji Domain-Containing Protein 2A 
(JMJD2A) and E3 ligases (e.g., TRAF6 and Skp2-SCF) to 
the AKT complex, which in turn leads to cell membrane 
recruitment, T308 phosphorylation and subsequently 
activation of AKT. AKT hyperactivation promotes 
NSCLC progression and predicts poor outcome in 
NSCLC patients [17]. Similarly, in colorectal cancer, 
SETDB1 overexpression facilitates cell proliferation by 
activating AKT, and inhibition of SETDB1 augments the 
sensitivity of cetuximab in colorectal cancer [127]. There-
fore, targeting SETDB1-mediated AKT methylation is a 
promising strategy for the treatment of cancers (such as 
skin tumor, NSCLC, and colorectal cancer).

Conclusions and perspectives
The recent surge of studies on SETDB1 has highlighted 
its vital role in regulating multiple diseases, embryonic 
development, and stem cells by methylating H3K9 or 
non-histone proteins. SETDB1 plays an indispensable 
role in cell fate determination by regulating ERVs silenc-
ing in H3K9 methylation-dependent or -independent 
manner. However, further research is needed to under-
stand how SETDB1 works with different partners to 
regulate cell fate under different pathophysiological 
conditions. Interestingly, SETDB1 has been found to be 
upregulated in most cancers, and its overexpression has 
been significantly associated with cancer aggressive-
ness and poorer prognosis. However, in some cancers, 
SETDB1 functions as an oncogenic driver, while in others 
it is a tumor metastasis suppressor. The relevant molecu-
lar mechanisms deserve further exploration. Although 
some studies have revealed the role of SETDB1 in dis-
eases such as IBD, the effects and regulatory mechanisms 
of SETDB1 on diseases need to be further elucidated. In 
addition to methylating H3K9, some recent studies have 
found that SETDB1 can methylate non-histone proteins 
(e.g., P53 and AKT), which further expands the down-
stream mechanisms of SETDB1 and deepens our under-
standing of SETDB1. There is an urgent need to clarify 
the function of SETDB1 under distinct physiological or 
pathological conditions and to ascertain how the speci-
ficity of SETDB1 binding to a specific substrate (histones 
or non-histone proteins) is determined. Most impor-
tantly, SETDB1 inhibition has been found to significantly 

enhance the efficacy of radiotherapy and immuno-
therapy in cancers, suggesting that the development of 
SETDB1 inhibitors/drugs with high specificity, low tox-
icity, and high efficiency could provide new options for 
tumor treatment by targeting SETDB1. Additionally, 
since SETDB1 is an important regulator that controls the 
development of many diseases, therapeutic RNAs target-
ing SETDB1, including small interfering RNAs (siRNAs), 
antisense oligonucleotides (ASOs), or large RNAs such as 
mRNAs, long non-coding RNAs (lncRNAs), and cyclic 
RNAs, represent an alternative strategy for developing 
treatments for diseases.
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