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Abstract 

Background High-throughput sequencing (HTS) offers unprecedented opportunities for the discovery of causative 
gene variants in multiple human disorders including cancers, and has revolutionized clinical diagnostics. However, 
despite more than a decade of use of HTS-based assays, extracting relevant functional information from whole-exome 
sequencing (WES) data remains challenging, especially for non-specialists lacking in-depth bioinformatic skills.

Results To address this limitation, we developed Var∣Decrypt, a web-based tool designed to greatly facilitate WES 
data browsing and analysis. Var∣Decrypt offers a wide range of gene and variant filtering possibilities, clustering and 
enrichment tools, providing an efficient way to derive patient-specific functional information and to prioritize gene 
variants for functional analyses. We applied Var∣Decrypt on WES datasets of 10 acute erythroid leukemia patients, a 
rare and aggressive form of leukemia, and recovered known disease oncogenes in addition to novel putative drivers. 
We additionally validated the performance of Var∣Decrypt using an independent dataset of ~ 90 multiple myeloma 
WES, recapitulating the identified deregulated genes and pathways, showing the general applicability and versatility 
of Var∣Decrypt for WES analysis.

Conclusion Despite years of use of WES in human health for diagnosis and discovery of disease drivers, WES data 
analysis still remains a complex task requiring advanced bioinformatic skills. In that context, there is a need for user-
friendly all-in-one dedicated tools for data analysis, to allow biologists and clinicians to extract relevant biological 
information from patient datasets. Here, we provide Var∣Decrypt (trial version accessible here: https:// varde crypt. com/ 
app/ varde crypt), a simple and intuitive Rshiny application created to fill this gap. Source code and detailed user tuto-
rial are available at https:// gitlab. com/ moham madsa lma/ varde crypt.
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Background
Leukemia comprises a heterogeneous group of deadly 
blood cancers resulting from abnormal or impaired 
hematopoietic cell differentiation and stem cell func-
tion. Many cell intrinsic factors can contribute to leuke-
mia initiation, development and maintenance, including 
mutations affecting signaling pathways, metabolic genes, 
splicing components and epigenetic regulators, leading 
to acquisition of several cancer hallmarks [1]. Although 
a number of recurrently mutated genes have already been 
identified in leukemia of both myeloid and lymphoid 
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origins, a number of rare and/or aggressive leukemia 
subtypes, for which the driving oncogenes are poorly 
characterized, still require in-depth analyses. This also 
applies to solid tumors and rare cancers types, for which 
the mutational landscape remains to be thoroughly char-
acterized. In this context, high-throughput sequencing 
(HTS) of patient samples is instrumental to unravel the 
underlying genetic abnormalities.

The era of medicine of precision and customization—
i.e., the capacity to provide patient care guided by genetic 
diagnostic, is at reach since genome-scale sequencing 
approaches such as whole-exome sequencing (WES) 
are implemented in routine diagnostics [1, 2]. WES 
offers a flexible and efficient way to highlight the muta-
tional landscape of hundreds of patients at relatively 
low cost. Indeed, WES is mostly focused on the gene 
coding regions of the genome, representing ~ 2% of the 
total human genome sequence (approximately ~ 30 mil-
lion base-pairs) [3]. Although WES is unable to highlight 
complex genomic rearrangements such as chromosomal 
translocations or inversions, it still provides highly rel-
evant information regarding gene mutations, including 
splice site mutations. It is, therefore, extensively used 
in multiple clinical centers and studies over the world 
(Fig. 1). As a growing number of patient genomes became 
sequenced, increasing amounts of detected variants were 
published and added into public databases. The num-
ber of known disease genes has, therefore, dramatically 
increased over the past decade, which reinforces diagnos-
tic test performance [4]. Clinics in the USA [5], France 
[6] and the Netherlands [7] for instance report WES as 
a promising tool for systematic use in patients. However, 

despite its extensive use and significant advantages, 
extracting relevant information from WES data still rep-
resents a challenge (e.g., identifying recurrently mutated 
genes from cohorts of patients, or the biological path-
ways which are significantly affected). WES data analysis 
requires advanced bioinformatics tools and skills, which 
prevents non-specialists such as wet lab scientists or cli-
nicians from being able to navigate within the datasets 
and perform custom analyses. A great challenge for sci-
entists and clinicians with limited or no bioinformatics 
skills is, therefore, to be able to manipulate WES data in 
order to extract biological meaningful information, and 
relevant genes or pathways to guide functional testing 
and therapeutic approaches.

WES data analysis consists in two main features: first, 
the detection of variants or mutations, and second, the 
post-variant calling analysis for prioritization of genes 
or variants within patient cohorts. The detection of ger-
minal or somatic variants from matched tumor-control 
samples is still a complex task [8], despite the availabil-
ity of dedicated tools. Bertier et al. [3] reported a total of 
23 different challenges related mainly to the production, 
analysis and sharing of WES data [3]. They mentioned 
that the interpretation of variants of unknown signifi-
cance was one of the most reported challenges across all 
articles. Often, the interpretation of these data requires 
specially trained staff [3]. In order to understand the 
biological meaning of these variants and/or differences 
between tumoral and control samples, researchers tend 
to focus on variant annotation and filtering to eliminate 
those with low relevance (variant-centered approach). 
Several tools have been developed in this aspect such as 
SNPsift [9], GEMINI [10] and VCF tools [11],  Ingenuity® 
Variant Analysis™ Software [12], Golden Helix SNP and 
Variation Suite [13], BiERapp [14], EVA [15], Exomiser 
[16], Variant Ranker [17], BrowseVCF [18], TGex [19], 
and VCF-Miner [20]. Another strategy for prioritizing 
variants in WES data is attempting to connect the discov-
ered variants with known diseases, biological processes, 
pathways, etc. using a variety of open-source databases 
(gene-centered approach). Some available tools such 
as GeMSTONE [21] and BiERapp [14] perform some 
enrichment analyses, but either are available online only, 
or do not support variant and enrichment results visu-
alization. Other web-based tools such as Enrichr [22], 
GOrilla [23], wKGGSeq [24], geneontology [25] and g: 
profiler [26] which are often used to analyze transcrip-
tome datasets, can perform some enrichment analyses 
using gene lists. However, these tools require users who 
wish to analyze WES data to extract and prepare the 
input data according to the tool recommendations. In 
that respect, a flexible and user-friendly all-in-one solu-
tion, with built-in functionalities designed to facilitate 

Fig. 1 Widespread use of whole-exome sequencing data. Graph 
plotting the number of PubMed articles containing the term ‘exome 
sequencing’, showing a continuous increase over the 2009–2021 
period



Page 3 of 13Salma et al. Epigenetics & Chromatin           (2023) 16:23  

extraction of relevant meaningful biological data from 
WES is clearly lacking. Here, we introduce Var∣Decrypt, 
a user-friendly and easy-to-use Rshiny application 
designed to close this gap.

Results
Exome‑seq analysis pipeline
To provide an all-in-one solution, we first implemented 
an Exome-seq variant analysis pipeline (available as sup-
plementary material, see Additional file 1 and Additional 
file 8: Fig. S2 for details). This pipeline can be used with 
raw sequencing data (e.g., FASTQ files) to generate vari-
ant calling files (vcf ) and input files for downstream pro-
cessing by Var∣Decrypt. For users wishing to use their 
own vcf files, or vcf files from publicly available reposi-
tories as input, we built-in a pre-processing tool called 
Pre-Var∣Decrypt (see https:// gitlab. com/ moham madsa 
lma/ varde crypt) allowing to process vcf files to generate 
Var∣Decrypt input files (see below). This step only needs 
to be performed once for each batch of samples (i.e., 
patient cohorts), the resulting files can then be stored or 
directly used in Var∣Decrypt for downstream analyses.

WES data processing using Var∣Decrypt
In order to facilitate WES data analysis and functional 
interpretation, we developed Var∣Decrypt, an easy-to-
use and user-friendly RShiny tool, which can be deployed 
via Docker on several operating systems (Linux, macOS), 
downloaded and installed from open-source to run via 
Rstudio. In addition, we provide a link to an online trial 
version of Var∣Decrypt (https:// varde crypt. com/ app/ 
varde crypt) with access to a test dataset, allowing users 
to quickly be able to assess the tool and evaluate its 
capacities. Var∣Decrypt includes several R packages to 
perform different post-VCF downstream analyses, which 
usually require users with scripting skills to perform 
tasks such as installing packages, preparing the input 
data and calling the appropriate function. A detailed 
tutorial on how to use Var∣Decrypt in a simple and 
intuitive way is available at (https:// gitlab. com/ moham 
madsa lma/ varde crypt/-/ wikis/ Var% 7CDec rypt) and as 
a video tutorial on the front page of Var∣Decrypt online 
version. Var∣Decrypt imports the output results from 
the Exome-seq pipeline or vcf files processed through 
Pre-Var∣Decrypt (Additional file  1) and provides many 
built-in enrichment analyses options, helping research-
ers to develop or confirm hypotheses, to easily explore 
the differences between normal and tumor samples, and 
to prioritize variants, genes and pathways for functional 
analyses. Var∣Decrypt is a fast-operating tool which pro-
vides multiple outputs within short time frames (i.e., 
seconds to minutes for loading and processing a full data-
set, Additional file  6: Table  S5). The output results and 

variables are saved in an Rdata file which lets users to 
explore Var∣Decrypt results subsequently, instead of re-
running the analysis. Var∣Decrypt allows to explore, filter, 
sort genes containing variants, or to search for a specific 
gene through dynamic interfaces (see below).

Overall presentation of Var∣Decrypt
The Var∣Decrypt interface is composed of several tabs 
allowing users to get a general overview of the Exome-
seq data and to browse the mutated gene lists or focus 
on single genes, single variant types (e.g., stop gain and 
frameshift deletions).

The ‘Somatic variants explorer’ tab provides a gene 
list and summary table containing all detected mutated 
genes (we define the somatic variants as being the ones 
specifically acquired in the tumor sample as compared 
to the control cells; variants or mutations present in the 
control cells are considered as germline variants as they 
are not somatically acquired) (Additional file 8: Fig. S2). 
For each gene in the table, the total number of variants 
detected is indicated, together with the different types of 
variants identified, and the percentage of patients bearing 
a mutation in a particular gene. The right part of the table 
shows for each gene which patient sample contains the 
indicated variants (Additional file 2: Table S1). Instead of 
focusing on the variants themselves, this dynamic table 
is gene-centered, and it also provides information on the 
number of variants detected in the cohort for each gene, 
the types of variants (e.g., stop gain, frameshift deletions, 
etc.) and the percentage of patients bearing mutations on 
a particular gene. When using the ‘mutation rate’ column, 
users can sort the entire mutated gene list by mutation 
frequency (i.e., number of patients showing a mutation or 
variant within a given gene), which provides an overview 
of the top mutated genes. All types of variants are shown 
by default, but users may choose to highlight only a sub-
category of variants such as stop gain, frameshift vari-
ants (deletions, insertions), etc. Whereas the germline 
variants from a patient are usually used to filter-out 
nonspecific variants in cancer samples, Var∣Decrypt also 
allows working on the germline variants (‘Germline vari-
ant explorer’) which is useful for the study of Mendelian 
genetic disorders or family case studies (not shown here).

The ‘General statistics’ tab provides information on the 
frequency of variant types within the cohort using a color 
code for the different types (e.g., frameshifts, non-sense, 
missense, etc.), the class of SNV (e.g., C > T, T > G, etc.) 
which may be useful to check if a particular bias is pre-
sent in the samples or in the disease under study (Fig. 2). 
This tab also provides information on the total number of 
variants per sample, a feature that helps to quickly spot 
any outlier within the datasets. As exemplified in Fig. 2, 
sample m_13_D from our cohort contains ~ 30-fold more 
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variants than the average of the other samples, likely aris-
ing from technical issues during the sequencing or sam-
ple handling procedure. Such problematic samples can, 
therefore, be quickly spotted and excluded from further 
analyses. Finally, the top 20 mutated genes are shown 
with the same color code as for the variant types, to get 
an overview of the recurrently mutated genes (Fig. 2).

Identifying the recurrently mutated gene fraction 
within a patient cohort
Var∣Decrypt offers the opportunity to quickly and easily 
browse WES data in order to identify recurrently mutated 
genes. By navigating in the somatic menus, users can in 
one click access the gene mutations frequencies (i.e., gene 
mutation percentage within the cohort), an important 
feature allowing to point at key genes likely involved in 
the disease phenotype. One key step in the discovery of 
cancer drivers is to be able to pinpoint the recurrently 
mutated genes within patient cohorts, as recurrently 

mutated genes likely represent true oncogenic drivers or 
genes important to sustain the cells’ transformed state. 
However, despite all the filtering steps applied in various 
Exome-Seq analysis pipelines, a very large number of var-
iants usually remains, especially in cancer samples. This 
represents one of the main challenges to prioritize gene 
mutations when dealing with Exome-seq datasets.

Filtering of putative false‑positive gene mutations
A common issue of Exome-Seq data from short reads-
associated sequencing platforms (such as Illumina 
sequencing) is the large fraction of variants called at 
genes harboring repetitive sequences, such as variable 
number of tandem repeats (VNTRs). The MUC gene 
family [27] is a good example of such problematic align-
ment and variant calling situation, as they contain long 
polymorphic stretches of ~ 60 bp repeats VNTRs, which 
is problematic with the current aligners and variant call-
ers. Although some true causative variants may indeed be 

Fig. 2 General overview of the WES datasets. The general features of ten erythroleukemic samples are displayed, showing the variant classification 
(color-coded as a function of the type of mutation, top left), variant type (single nucleotide polymorphisms (SNP), insertions (INS) and deletions 
(DEL), top middle), and single nucleotide variant (SNV) class (top right). The bottom panel displays the number of variants per sample (each column 
represents a unique patient), using the same color code as in the variant classification panel. Note that patient m_13_D is spotted as being an 
outlier with ~ 30-fold more variants than in the other patients. The dashed red line represents the median number of variants in the cohort. The 
middle panel shows the variant classification summary in the cohort, using the same mutation-specific color code. Finally, the bottom right panel 
shows the top 20 mutated genes in the patient cohort (the number of variants/mutations is shown on the horizontal axis), with the percentage of 
patients bearing a mutation in a given gene indicated
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present within the VNTRs of the MUC gene family [28], 
we created an empirical filtering option allowing users 
to define a threshold for the maximum number of vari-
ant allowed per gene, in order to ‘clean-up’ the mutated 
gene list and get rid of the error-prone VNTR-containing 
gene sequences in the patient cohort. As a result, by set-
ting a threshold of a maximum of 4 variants per gene in 
a maximum of 20% of the patients, we could get rid of 
the apparently highly variable and likely false-positive 
mutated genes in the final list (Fig. 3).

Another commonly used strategy to enrich for puta-
tive causative variants is to filter the mutated gene lists 
against cancer gene databases such as COSMIC, OncoKB 
or NCG [29–31]. We also implemented a filtering option 
allowing to focus on the mutated genes that are tagged 
as cancer-associated from such databases. The result-
ing outputs, therefore, are highly enriched in putative 
oncogenic drivers, allowing to explore the mutational 
landscape of human cancers. As confirmation, applying 
such filtering strategy on our AEL WES data produced a 
mutated gene list enriched for previously reported AEL-
associated gene mutations [30, 31] such as the epigenetic 
modifiers TET2, NCOR1, NCOR2, BCOR, BCORL1, the 

CBP(CREBBP)/p300(EP300) co-activators, the polycomb 
repressive complex proteins EZH2, ASXL1, ASXL2, and 
the cohesin complex component RAD21 (Additional 
file 2: Table S1).

Integration of enrichment tools
An important aspect of Var∣Decrypt is the access to vari-
ous types of enrichment analyses thanks to the imple-
mentation of dynamic customizable graphical outputs. 
Var∣Decrypt contains different disease ontology, gene 
ontology (e.g., biological process, molecular function, 
and cellular component), and Reactome/Kegg path-
way enrichment tab offering the opportunity to identify 
particular pathway of functional alterations in the sam-
ples. The ‘enrichment’ tab offers users to quickly iden-
tify enrichments of disease ontology terms, biological 
pathways (Reactome, KEGG and WIKIpathways), or 
Gene-Ontology (GO)-terms such as ‘Biological Pro-
cess’, Molecular Function’, or ‘Cellular Component’ 
linked to the mutated gene lists. In addition, searches 
for gene–disease associations or gene–cancer associa-
tions are also available to highlight many known associa-
tions with established human disorders and cancers. For 

Fig. 3 Custom filtering of putative false-positive mutations. The top 20 mutated genes are show before (A) and after (B) applying the custom 
filters. This shows that without this filtering step, a number of genes score positive in 100% of the patients, including gene families containing 
variable number of tandem repeats (e.g., the MUC gene family). After applying a threshold (maximum of 4 variants per gene in a single patient, in a 
maximum of 20% of the patients) and selecting the option to retain genes present in the COSMIC database, the resulting mutated gene list is highly 
enriched in known oncogenic drivers and previously reported AEL-mutated genes
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each category, users can choose between three different 
graphical outputs including bar graphs, association or 
enrichment factor along with color-coded p-value repre-
sentations (Fig.  4A–C). These outputs are dynamic and 
customizable as users can switch from one representa-
tion to another or increase/decrease the number of cat-
egories to display in one click. Var∣Decrypt also provides 
a somatic interaction view in order to identify which gene 
mutations tend to co-occur or are mutually exclusive. In 
the example shown in Fig. 4D, BCOR and XPC mutations 
seem to be mutually exclusive, suggesting that inhibiting 
BCOR activity in XPC-mutated AEL cells (and vice versa) 
may be therapeutically beneficial.

Another useful built-in feature is the enrichment of 
mutations in genes belonging to known oncogenic sign-
aling pathways. This feature provides a graph represen-
tation of the enriched mutated pathways together with 
the number of patients bearing mutations in the related 
pathways (Fig.  5A). By simply clicking on a given path-
way (right part), users can display a detailed list of the 
genes contained in the chosen pathway and check which 
gene and which patient sample harbor the mutation(s). 
This representation is useful to identify the recurrently 
mutated genes within a single oncogenic pathway and to 

check which signaling component is frequently altered 
in the disease. The example depicted in Fig.  5B shows 
that the Receptor tyrosine kinase/RAS pathway, and the 
Notch and TGF-β pathways are frequently altered in AEL 
patients, and that the ABL Proto-Oncogene 1 (ABL1), 
NOTCH2, and TGF-β receptor 2 (TGFBR2) receptor 
genes are among the top mutated genes.

Visualization of mutational hotspots and amino acid 
changes
Finally, Var∣Decrypt provides a visualization tool depict-
ing the localization of mutations on a given gene prod-
uct (protein). The known protein domains are displayed 
along with the position of the various mutations or vari-
ants detected, with a color code indicating the variant 
types (STOP gain, frameshifts, non-synonymous SNPs). 
This feature allows to detect mutational hotspots and 
preferential localization of mutations in functional pro-
tein domains, as shown in Fig. 6A in the succinate dehy-
drogenase complex flavoprotein subunit A (SDHA) gene. 
In addition, a table provides the identity of amino acid 
changes along with several variant metrics (Additional 
file 3: Table S2).

Fig. 4 Disease and pathway enrichment features. Var∣Decrypt allows to depict various enrichment plots using enrichment factor (A), qValue bar 
plot (B) or cluster tree (C) visualization for disease ontology, biological pathways (Reactome, Wiki, KEGG), various gene ontology (GO) categories 
(biological process, molecular function, cellular component), gene–disease and gene–cancer associations. D Matrix showing the mutually exclusive 
(brown) or cooperating mutations (green) in the AEL patient cohort. Dashed red lines highlight the mutually exclusive BCOR and XPC mutations
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Discovery of putative novel oncogenic mutations in AEL
We applied Var∣Decrypt to decipher the mutational land-
scape of AEL. Besides the known and recently described 
mutations in TET2 (40% of patients in our cohort), TP53 
(30% patients), EZH2 (10%), NCOR1/2 (50%/20%) or 
GATA1 (in 10% of the patients), our tool highlighted 

mutational hotspots in several additional genes, likely 
representing important components of the AEL muta-
tional landscape. We identified several mutations within 
the SDHA gene (Fig.  6A), a critical member of the suc-
cinate dehydrogenase complex, which were not primar-
ily identified in the previous AEL studies [30–34]. The 

Fig. 5 Overview of oncogenic pathway alterations in the patient cohort. The oncogenic pathways affected in the AEL patients are shown (A) with 
the number of affected genes in relation to the total number of genes linked to each pathway. The second plot displays the fraction of patients 
bearing mutations in a given pathway. B For each pathway, Var∣Decrypt allows visualizing the mutated genes for each patient to easily spot the 
recurrently mutated genes. Oncogenes and tumor suppressor genes are indicated in blue and red, respectively

Fig. 6 Visualizing mutational hotspots. A The ‘amino-acid changes’ page displays the protein domains with the localization and type of mutations 
in the entire cohort. The example of the SDHA gene is shown. B Structure (accession #6VAX) of the SDHA active site from [44]. Only amino acids 446 
to 472 are shown. The key active site residue R451 is indicated in black, the positions of the mutated residues in AEL are shown in red (left). Right, 
similar representation using the ‘schematic view, with amino acid side chains shown as sticks and balls using MMDB viewer [55]
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succinate dehydrogenase (SDH) complex is a mitochon-
dria-localized multiprotein complex involved in cellular 
respiration through the electron transfer chain (com-
plex II) [35, 36]. The SDH is nuclearly encoded and com-
posed of 4 subunits (SDHA-D). Loss of function of any 
of SDH subunits may associate with neuroendocrine 
tumors or neurodegenerative disorders such as Leigh’s 
disease [36]. We identified a mutational hotspot within 
the SDHA gene in 70% of patients (Fig.  6A). Interest-
ingly, all detected missense mutations (V446A, A449V, 
A454T, S456L, R465Q, A466T, C467S) cluster around 
the key SDHA active site residue  SDHAR451 [35] (Fig. 6B). 
Although the precise functional impact of such muta-
tions is currently unknown, some or all may significantly 
alter SDHA active site spatial conformation and lead to 
(partial) insufficiency. Measuring complex II activity in 
AEL cells and its requirement for leukemia development 
is out of the scope of this study but represents an inter-
esting lead to follow, as complex II alterations may be of 
importance for the development or maintenance of AEL.

Finally, on a more global scale, Var∣Decrypt allowed us 
to identify enrichment of mutations in oncogenic signal-
ing pathways, in particular, the receptor tyrosine kinase 
(RTK)/RAS pathway, with a high prevalence of IRS1 
mutations (40% of patients, including in-frame deletions, 
non-synonymous SNVs and a STOP gain), and mutations 
in FGFR1, RET, JAK2 (30, 20, 10% of patients, respec-
tively), or BRAF (10%). Importantly, our tool highlighted 
the Notch pathway as frequently mutated in AEL with 
Notch1 and Notch 2 receptor variants found in 40% and 
60% of the patients, respectively.

Taken altogether these data highlight putative novel 
oncogenic processes and pathways in AEL, and under-
score the usefulness of Var∣Decrypt to provide leads for 
functional explorations.

Validation of Var∣Decrypt using an independent dataset 
of 90 multiple myeloma samples
We sought to validate Var∣Decrypt using an independ-
ent dataset. To this aim, we analyzed published WES data 
from 30 human multiple myeloma cell lines (HMCLs) 
and primary multiple myeloma (MM) from 59 patients 
[29]. Previous analysis of these data revealed a prevalent 
TP53 mutational landscape and altered MAPK pathways. 
Reanalysing this dataset with Var∣Decrypt after filtering 
out the putative false-positive hits (i.e., highly mutated 
gene families such as MUC genes, see above) using the 
filtering options (frequency less than 4 mutations by gene 
within 20% of the cohort), and after crossing the mutated 
gene list with cancer gene databases (COSMIC, as in 
[29]) led to very similar identification of MM mutated 
hits, with frequent TP53 (47%), KRAS (40%), NRAS 
(30%), ATM (33%) alterations, and many epigenetic 

modifiers (BRD3, BRD4, SETD1B) and DNA repair pro-
teins (FANCD2, RECQL4) (Additional file 4: Table S3). In 
particular, we identify the MAPK/RAS pathway as recur-
rently altered (Additional file  9: Fig.  S3 and Additional 
file  10: Fig.  S4) [37, 38], validating the functionality of 
Var∣Decrypt.

Performance
Var∣Decrypt inputs are generated by one of the two pro-
vided pipelines (Additional file  7: Fig.  S1). These pipe-
lines can be used locally or on a cluster. As trimming and 
alignment steps are resource consuming, the pipeline 
handling data from fastq format are highly recommended 
to be used on a cluster. To test the compatibly of our 
annotation pipeline with large range of aligners and vari-
ant calling tool, we have tested it using publicly available 
VCF files with different file sizes from different variant 
calling tools [2] using two different methods of deploy-
ment (Additional file 5: Table S4). As Var∣Decrypt is an 
RShiny application, it should run without issues on the 
majority of web browsers. We have measured the per-
formance of Var∣Decrypt using public data of primary 
multiple myeloma (MM) from 59 patients [29]. The time 
of the processing and the memory resource usage were 
evaluated during: (1) the processing of new data; (2) 
the reload of already processed data (Additional file  6: 
Table S5, Additional file 11: Fig. S5). These measurements 
indicate that Var∣Decrypt is a fast-operating tool, with 
loading and processing times ranging from seconds to 
minutes (< 3 min 5 s for the larger datasets on a regular 
laptop with 8 GB of RAM, < 1 min and 30 s with 16 GB of 
RAM).

Comparison with other available tools
Other available tools provide some of Var∣Decrypt func-
tionalities, but either are (i) only available online, (ii) 
require bioinformatics expertise to prepare data and 
export the results in a human readable format, (iii) han-
dle only one type of variants (i.e., somatic/germline), or 
(iv) do not support variant and enrichment results visu-
alization (Table 1).

Discussion
Although WES is widely used to diagnose human dis-
eases or to discover pathological mutations in Mende-
lian disorders and cancers, there is a surprising paucity 
of accessible and easy to use tools for WES analysis. A 
major hurdle is the presence of hundreds to thousands 
of variants routinely detected in WES datasets, compli-
cating the identification of causative mutations and pri-
oritization of variants in complex samples such as tumor 
biopsies. We present here Var∣Decrypt, a fully automated 
dynamic interface for Exome-Seq data analysis. From a 
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computational point of view, Var∣Decrypt represents a 
fast, easy to use and flexible tool, which can be installed 
via Docker on several operating systems (Linux, macOS), 
downloaded (open-source scripts) to run via Rstudio, or 
directly used online (https:// varde crypt. com/ app/ varde 
crypt). In addition, Var∣Decrypt can be deployed on a 
Linux sever via the open-source Shiny Server software to 
be available to a large number of users. It is worth not-
ing that the shiny server solution is suitable for institu-
tions which need to centralize computing resources 
(Var∣Decrypt docker image is configurated already to be 
deployed on a shiny sever). An appropriate detailed user 
tutorial is available at https:// gitlab. com/ moham madsa 
lma/ varde crypt. Thanks to its user-friendly interface and 
the variety of incorporated analysis options, Var∣Decrypt 
can easily be used by both bioinformaticians and non-
programming experts/wet lab scientists. It, therefore, 
fills a gap by providing a complete solution for WES data 
analyses.

The primary goal of our tool is to provide non-spe-
cialists with a ready-to-use solution for easy browsing 
and exploration of Exome-Seq datasets. The rational is 
that driver mutations or gene mutations that are impor-
tant for the development or maintenance of a disease 
state should be overrepresented or enriched in a patient 
cohort. It is still currently a major challenge to accu-
rately and consistently classify variant pathogenicity 
[39–41]. Although, unlike previous tools such as VCF-
miner, BrowseVCF, BiERapp and GeMSTONE, we do not 
directly address the pathogenicity of detected variants, 
we reasoned that focusing on the recurrently mutated 
genes may provide an increased likelihood of identifying 
important disease targets. Indeed, finding multiple dif-
ferent variants (possibly being of unknown pathogenic-
ity) affecting the same gene product in the patient cohort 
would increase the chance to highlight disease drivers. In 
that respect, rather than focusing on the variants them-
selves, Var∣Decrypt provides a gene-centered analysis, 
allowing distinct variants affecting the same gene to score 
similarly. The key benefit of Var∣Decrypt over maftools is 
that the latter requires specialized bioinformatics knowl-
edge to prepare input data and output findings in a man-
ner that can be read by scientists lacking bioinformatic 
skills. In addition, maftools only handle somatic variants. 
Hence, Var∣Decrypt resulting tables and analyses provide 
users with a quick overview of the recurrently mutated 
genes and associated functions (pathways), represent-
ing putative disease drivers. The numerous built-in fea-
tures allow extraction of such meaningful information, 
e.g., recurrently mutated genes, or recurrently mutated 
pathway components and highlighting the mechanis-
tic features of human disorders. We provide example 
of the analysis of AEL, a rare, poorly characterized and 

particularly aggressive subtype of leukemia. While recent 
work have started to shed light on the mutational land-
scape of AEL [30–34, 42], we show here that frequent 
NOTCH pathway alteration is associated with AEL in 
our cohort. We also identified mutational hotspots in 
the mitochondrial complex II component SDHA. This 
underscores the utility of dedicated analysis tools such as 
Var∣Decrypt to highlight oncogenic signaling pathways 
and mutated genes that have been overlooked in other 
studies. Whether NOTCH pathway alteration represents 
a common feature of AEL and can be exploited as thera-
peutic vulnerability remains to be tested and is beyond 
the scope of this article. However, this represents an 
example of how biological information can be extracted 
from complex Exome-seq datasets without knowledge 
in bioinformatics. We further showed that Var∣Decrypt 
could detect known recurrently mutated genes in human 
multiple myeloma and could highlight signaling pathways 
known to be important for this disease.

Conclusions
Taken altogether, these data indicate that Var∣Decrypt 
represents a functional and attractive tool allowing effi-
cient analysis of WES data, with the overarching goal to 
facilitate functional studies and guide therapeutic deci-
sions. We expect that thanks to its ease of use and simple 
user-friendly interface, Var∣Decrypt will help the clinical 
and biological scientist communities to get critical insight 
into the molecular mechanisms of human disorders.

Availability and requirements
Project name: Var∣Decrypt. Project home page: https:// 
gitlab. com/ moham madsa lma/ varde crypt. Operating 
system(s): Linux, MacOS and Windows. Programming 
language: R and Python3. Other requirements: R 4.1 or 
higher, Snakemake 6 or higher and pandas 1.3.5 or higher. 
License: CeCill-C (http:// www. cecill. info/ licen ces/ Licen 
ce_ CeCILL- C_ V1- en. html) and GPLv3. Any restrictions 
to use by non-academics: license needed.

Methods
Data
We used WES data from primary erythroleukemia sam-
ples [31]. The data are separated into two types, namely 
‘Tumoral’ samples, being the patient leukemic blasts 
samples, and ‘Normal’ representing the non-leukemic 
matched controls, considered healthy (non-leukemic 
marrow cells), and used for variant filtering purposes. 
Therefore, for each patient, matched leukemic sample 
(tumoral) and a control sample (normal) are used.

https://vardecrypt.com/app/vardecrypt
https://vardecrypt.com/app/vardecrypt
https://gitlab.com/mohammadsalma/vardecrypt
https://gitlab.com/mohammadsalma/vardecrypt
https://gitlab.com/mohammadsalma/vardecrypt.
https://gitlab.com/mohammadsalma/vardecrypt.
http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html
http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html
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Whole‑exome sequencing analysis pipeline
The human reference genome hg19 (https:// hgdow nload. 
cse. ucsc. edu/ golde nPath/ hg19/ bigZi ps/) was indexed 
by BWA. Reads were trimmed with Trimmomatic (ver-
sion0.36) to eliminate sequencing adapters and low-
quality reads. Mapping was performed using BWA-MEM 
(version 0.7.17) [43] with default parameters. SAM files 
were converted, sorted and indexed by Samtools (ver-
sion 1.9) [44]. To improve alignment quality, MarkDu-
plicates tool from PICARD (version 2.17.11) [45] was 
used to locate and tag duplicate reads within the BAM. 
Before preforming base recalibration for BAM files by 
BaseRecalibrator from GATK (version v3.8-1-0), reads 
were processed by AddOrReplaceReadGroups from PIC-
ARD (version 2.17.11) to define a group for all reads gen-
erated from the same run. For the variant calling step, 
the HaplotypeCaller was used for germline variants and 
Mutect2 for somatic ones from GATK4 (version 4.0.3.0) 
[46]. Variant filtering and annotation were performed by 
ANNOVAR (version Sun, 7  Jun 2020) [47]. First, results 
from the previous step are filtered by extracting all the 
known SNV involved in one or more human diseases 
(regardless of disease using the option: -filter -dbtype 
clinvar_20200316). Then, all known human variants were 
ignored (-filter -dbtype 1000g2015aug_all) [47]. Finally, 
all unknown variants were grouped with the pathogenic 
variants for each patient/sample data. After the annota-
tion step by ANNOVAR, only exonic polymorphisms 
were considered and kept in the output file. Using cus-
tom Python scripts, synonymous variants were removed 
from the final output files. The resulting files were used as 
input files for Var∣Decrypt.

Exome sequencing analyses using Var∣Decrypt
Downstream analyses and variants prioritization were 
performed using Var∣Decrypt, which mainly uses the fol-
lowing R libraries:

(1) Shiny, which allows to develop a user-friendly 
graphical interface to visualize the various types of data. 
This application can be launched in Rstudio or in any 
modern web browser such as firefox, chrome or safari 
[48]; (2) DOSE which allows to perform enrichment 
analyses of a set of genes to discover gene–disease asso-
ciations. It implements several methods to measure the 
semantic similarities between the DO (Disease ontology) 
terms and the different gene products [49]; (3) cluster-
Profiler, which implements methods for analyzing and 
visualizing functional profiles from gene clusters [50]; (4) 
org.Hs.eg.db, which contains annotation of the human 
genome [51]; (5) ReactomePA, which provides signaling 
pathway analysis functions based on the REACTOME 
database with several visualization functions [52]; (6) 
networkD3, which was used to generate reactive 3D 

networks [53]. Finally, Var∣Decrypt also uses maftools R 
package to process somatic variants [54].

Abbreviations
AEL  Acute erythroid leukemia
GO  Gene-ontology
HMCL  Human multiple myeloma cell line
MM  Multiple myeloma
SNP  Single-nucleotide polymorphism
SNV  Single-nucleotide variant
VCF  Variant calling file
WES  Whole-exome sequencing
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Additional file 7: Figure S1. Bioinformatic pipelines used to process 
whole exome sequencing data. The WES and Var|Decrypt pipelines 
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Additional file 9: Figure S3. Analysis of WES from 30 human multiple 
myeloma cell lines. (A) Altered pathways over represented in the HMCL 
mutated genes. (B) mutations in oncogenic signaling pathways show-
ingthat the RTK-RAS and NOTCH pathways are among the top mutated 
pathways.

Additional file 10: Figure S4. Detailed view and frequencies of the 
RTK‑RAS pathway mutated genes. Affected genes belonging to the 
RTK-RAS pathway are shown and highlighted when mutated for each 
sample. (A)The figure shows prevalent FGFR4 (17 out of 29 samples, 58%), 
and KRAS (12 out of 29 samples, 41%) mutationsin HMCL, and (B) similar 
frequencies (FGFR4 38/59, 64%; KRAS 17/59, 28%) were observed in 
primary humanmultiple myeloma samples.

Additional file 11: Figure S5. Comparison of memory resource usage 
of Var|Decrypt in different operatingsystems with two different 
methods of deployment. A) Comparison of memory resource usage dur-
ing a newdata analysis. B) Comparison of memory resource usage during 
the reload of already analyzed data. Blue line:Var|Decrypt is installed locally 
on MacBook pro M1 2020 with 16GB of RAM. Green line: Var|Decrypt is 
deployed using docker container on a MacBook Pro M1 2020 with 16 
GB of RAM. Red line: Var|Decrypt is deployed using docker container on 
Ubuntu (virtual machines in cloud) with 4 CPU (2GHz AMD) and 8 GB of 
RAM. Memory usage had been estimated using the command "ps -caxm 
-o rss, comm" on macOS and "ps -eo rss, comm" on ubuntu.
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