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Abstract 

Background In a heterogeneous population of cells, individual cells can behave differently and respond vari‑
ably to the environment. This cellular diversity can be assessed by measuring DNA methylation patterns. The loci 
with variable methylation patterns are informative of cellular heterogeneity and may serve as biomarkers of diseases 
and developmental progression. Cell‑to‑cell methylation heterogeneity can be evaluated through single‑cell methy‑
lomes or computational techniques for pooled cells. However, the feasibility and performance of these approaches 
to precisely estimate methylation heterogeneity require further assessment.

Results Here, we proposed model‑based methods adopted from a mathematical framework originally from bio‑
diversity, to estimate genome‑wide DNA methylation heterogeneity. We evaluated the performance of our models 
and the existing methods with feature comparison, and tested on both synthetic datasets and real data. Overall, our 
methods have demonstrated advantages over others because of their better correlation with the actual heterogene‑
ity. We also demonstrated that methylation heterogeneity offers an additional layer of biological information distinct 
from the conventional methylation level. In the case studies, we showed that distinct profiles of methylation hetero‑
geneity in CG and non‑CG methylation can predict the regulatory roles between genomic elements in Arabidopsis. 
This opens up a new direction for plant epigenomics. Finally, we demonstrated that our score might be able to iden‑
tify loci in human cancer samples as putative biomarkers for early cancer detection.

Conclusions We adopted the mathematical framework from biodiversity into three model‑based methods for ana‑
lyzing genome‑wide DNA methylation heterogeneity to monitor cellular heterogeneity. Our methods, namely MeH, 
have been implemented, evaluated with existing methods, and are open to the research community.

Keywords DNA Methylation pattern, Methylation heterogeneity, DNA methylation, Mathematical modelling, Bisulfite 
sequencing, Enzymatic methyl sequencing, Next Generation Sequencing, Epigenetics

Background
Measuring cellular heterogeneity with DNA methylation 
heterogeneity
DNA methylation as a heritable epigenetic modifica-
tion that occurs at cytosines, plays critical roles in 
many biological processes, such as transcriptional reg-
ulation, developmental programming [1], and disease 
progression [2]. Genome-wide DNA methylation and 
its associations with gene expression have been exten-
sively studied with the most recent next-generation 
sequencing [3] approaches, such as bisulfite sequenc-
ing (BS-seq) [4, 5] and enzymatic methyl sequencing 
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(EM-seq) [6]. The methylation status (methylated or 
unmethylated) at a specific cytosine can be established 
when reads converted from methyl reads data (i.e., 
reads from BS-seq or EM-seq) are aligned to the refer-
ence genome. In bulk methylation sequencing such as 
BS-seq and EM-seq, millions of cells are pooled, repre-
senting mixtures of cells that are likely heterogeneous 
that can be linked to their variable DNA methylation 
profiles (Fig. 1A). Aligned methyl reads within a given 
genomic region yield methylation patterns formed by 
rows of multiple cytosines, representative of individual 
cells (Fig.  1B). The methylation patterns at genomic 
regions may range from completely methylated to com-
pletely unmethylated. The intermediate patterns could 
indicate variations in DNA methylation among the 
cells.

DNA methylation heterogeneity at a specific locus is 
defined as the variation amongst DNA methylation pat-
terns at this locus, within a pool of cells. Methylation 
heterogeneity may result from a variety of epigenetic 
regulations from genetic or epigenetic factors [7]. For 
example, the variable methylation at promoters is often 
associated with the transcriptional responses to environ-
mental stimuli or cellular development progression [8, 
9] (Fig.  1A). As the behaviour of individual cells within 
a population may not be identical, this may be due to 
genetic changes that are often accompanied by epig-
enomic changes or, in the case of cellular differentiation, 
epigenetic changes. By monitoring the variation methyla-
tion patterns, methylation heterogeneity might be able 
to capture the fingerprints of the genetic or epigenetic 

factors during the biological development or disease 
progression.

Experimental approaches and computational methods 
for assessing heterogeneity
Both experimental approaches and computational meth-
ods have been developed for assessing methylation heter-
ogeneity. Among the experimental strategies, single-cell 
BS-seq (scBS-seq) was developed to mainly study the 
methylation heterogeneity of rare cells (e.g., oocytes) of 
mice [7, 10]. scBS-seq enables direct measurement of 
methylation heterogeneity, through single-cell bisulfite 
sequencing followed by computational analysis using 
tools such as BPRMeth [11], Melissa [12], and scMET 
[13], to impute and cluster single-cells by their meth-
ylation profiles. Still, scBS-seq comes with its own costs 
and challenges, such as the requirement to isolate indi-
vidual cells in the preparation of libraries, low read map-
ping ratios, and high costs due to the number of cells that 
must be sequenced [7], and significant loss of DNA due 
to bisulfite treatment. Moreover, the original protocols 
for sequencing single mammalian cells are not directly 
applicable to sequencing single plant cells due to the 
larger cell size of plant cells and their cell wall, hamper-
ing plant research. Although DNA methylation profiling 
using third-generation sequencing techniques does not 
require bisulfite conversion [14, 15], the high sequenc-
ing error rate has been reported to be over 15% for base 
calling [15] and up to 40% for methylation calling [16]. 
Therefore, attempts have been made to quantify methyla-
tion heterogeneity computationally using the methylation 

Fig. 1 Illustrations of the DNA methylation patterns as a proxy for monitoring cellular development. A DNA methylation patterns are used 
to monitor cellular heterogeneity, possibly caused by cellular development, cell‑type mixtures, differentiation, genetic changes, diseases, stresses. 
The black (white) dots represent methylated (unmethylated) cytosines. The different colours correspond to different subtypes of cells (Created 
with BioRender.com). B DNA methylation patterns formed by aligned methyl reads (by BS‑seq or EM‑seq) with colour‑coded methylation statuses. 
A set of methylation haplotypes are circled to indicate the reads considered by certain scores covering a specific locus
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statuses of cytosines at genomic regions from pooled 
cells of methyl-seqs.

Up to date, only a few computational methods [3, 
17–23] and databases [24] have been developed for 
estimating methylation heterogeneity using genome-
wide methylation data from pooled cells (see Table  1 

for a list of methods and their features). Most of them 
were devised to compare the number of methylated and 
unmethylated cytosines or read pairs that were con-
cordantly or discordantly methylated within a genomic 
region (Methylation-concurrence; MC [22], Proportion 
of Discordant Reads; PDR [20], Fraction of Discordant 

Table 1 Computational methods for scoring genome wide DNA methylation heterogeneity

1 See method description above (by the formula, and the designing principle and the literature)

Method Formula Approach Applicable 
to non-CG 
sites

Consideration 
of pattern 
similarity

Linearity 
of the 
score

Independent 
of methylation 
 level1

Genome-
wide 
screening

Model‑based (MeH)

Abundance 
based

(

∑R
i=1 a

2
i

)−1

∈
{

1, . . . , 2w
} a : meth‑

ylation 
patterns

Counting 
distinct methyla‑
tion patterns

● ● ● ●

Pairwise‑simi‑
larity based

(
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i=1
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j=1 dijp

2
ij

)−1/2
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ylation 
patterns
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pairwise similar‑
ity between pat‑
terns

● ● ● ● ●
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tree based
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i=1 Lia

2
i

)−1

> 0
.5

a : meth‑
ylation 
patterns
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the total similar‑
ity among all 
patterns

● ● ● ● ●

Other methods

Methylation‑
concurrence 
[18, 22]

∑C
c=1 ωc

∑C
c=1 ωc+

∑M
m=1 ωm+

∑U
u=1 ωu

∈ [0, 1)
ω : reads 
covering 
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concurrence 
between pat‑
terns

●
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Reads (PDR) 
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w
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k a
2
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Read Pairs; FDRP [18]), with extensions to probability-
based setting (Epipolymorphism; EP [19]) or to incorpo-
rate pattern similarity (Quantitative FDRP; qFDRP [18], 
Methylation Haplotype Load [21]; MHL). MHL consid-
ers pattern similarity as it calculates the fraction of sub-
strings of all possible lengths that are fully methylated in 
each of the reads, which also makes it share similar char-
acteristics to DNA methylation level [18]. qFDRP com-
pares the similarity of read-pairs, and weighs higher for 
discordant pairs potentially from intermediately methyl-
ated regions. Hence the qFDRP score may not be com-
pletely independent of methylation levels. In addition, 
Shannon entropy-based approach was devised to esti-
mate the degree of chaos analogous to the heterogeneity 
(Methylation entropy; ME [23]).

While these methods share differences in their own 
ideas and strength, the evaluation of methods is associ-
ated with the nature of DNA methylation and the data 
format of next-generation sequencing. Therefore, here 
is a list of suggested features to be considered in their 
implementations. Firstly, the capability of analysing 
methylation at non-CG sites, i.e., cytosines of CHG and 
CHH contexts (H = A, C, or T). In fact, non-CG sites 
outnumber CG sites on the genomes of both plants and 
animals. In plants and even fungi, non-CG methylation 
has been known to play critical roles in many important 
biological processes [1]. Secondly, the scoring linearity, 
which represents a linear correlation between the score 
and the underlying methylation heterogeneity. Linear 
scoring enables a fair assessment of heterogeneity across 
all genomic regions, and loci of different heterogene-
ity between samples. As shown in Additional file 1: Fig. 
S1, non-linear scoring is less likely to faithfully reflect 
the underlying heterogeneity of loci between low and 
high heterogeneity (i.e., skewed). Thirdly, the considera-
tion of similarity between different methylation patterns. 
The cells sharing the same methylation patterns are likely 
from the same cell subpopulation. Two highly simi-
lar patterns may result from a gradual change of meth-
ylation initiated from a few cytosines of cells within the 
same population. Disregarding the pattern similarity by 
treating all patterns distinct may lose the subtle informa-
tion on cellular development [25]. Fourthly, confounding 
methylation heterogeneity with the methylation level in 
the scoring; such scoring can be easily confused with the 
estimates of methylation level in which some patterns are 
given more weight than others (e.g., fully methylated vs. 
unmethylated). The scoring that confounded methyla-
tion level can be diverted away from the original idea of 
estimating methylation heterogeneity in which all pat-
terns are equally considered. Lastly, the capability of 
genome-wide screening is particularly important for the 
user community. The implementation of the methods 

should allow genome-wide screening and the comparison 
between multiple samples, so to enable the detection of 
loci with variable heterogeneity. Following these feature 
considerations for methylation heterogeneity estima-
tors, we have summarized a feature table covering several 
popular implementations (see Table 1).

Estimation of methylation heterogeneity based 
on a biodiversity framework
In this study, we introduce a family of diversity indices 
based on a mathematical model by Chao et al. [26] that 
has proven to be successful in quantifying biodiversity. 
Biodiversity can be interpreted as the effective number of 
species or types. We adopted this framework and its spe-
cific variant models to quantify methylation heterogene-
ity. In Chao et al.’s [27] model (see Eq. 1), Hill numbers 
[28], or the effective number of types, are a parametric 
family of diversity indices of order q, which refer to the 
number of equally abundant types. The Hill number is 
needed for the average proportional abundance of the 
types to be equal to that observed in the dataset of inter-
est. In Chao et al.’s framework, set C was considered as a 
collection of entities. For each entity u in C , its attribute 
value was given by vu , and its abundance was given by au . 
The total abundance of entities in C was given by the sum 
of attributes weighted by their corresponding abun-
dances, V =

∑

u∈Cvuau . Therefore, the relative abun-
dance of entity u is au

V
 , and the sum of the products of 

attributes and their corresponding abundance of all enti-
ties in C , equals to 1, 

∑

u∈Cvu

(

au
V

)

= 1 . The attribute 
diversity of set C (with order q ) based on a specific attrib-
ute was given by a unified framework as follows:

where q  = 1 is the parameter that determines the sensi-
tivity of the model to relative abundances. Whenq = 0 , 
the abundances of the attributes do not contribute to 
the formula, and q = 1 gives the exponential of Shannon 
entropy [29] when vu = 1 for all entitiesu , which weighs 
attributes according to their abundances. Whenq = 2 , it 
is the reciprocal form of the Simpson index [30], which is 
found to provide a robust estimate of diversity in different 
situations. By varying set C and attribute valuevu , Chao 
et  al. presented a unifying framework to cover major 
variants of Hill numbers, based on different attributes for 
the quantification of diversity, including species diversity 
[31], phylogenetic diversity [28] and the distance-based 
functional diversity [27].

When this base model (Eq. 1) is used in measuring bio-
diversity, set C is considered as a collection of different 

(1)qAD
(

V
)

=

[

∑

u∈C

vu

(

au

V

)q
]

1
1−q

.
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species u , and the attribute value of this species  vu is a 
function of the species u to describe for example the 
population size of the species, or the relative similarity 
to another species, or to all species in the collection. The 
abundance of the species au would be just the population 
size of the species. The other variables as described above 
are either normalising factors, or the model parameters 
not directly associating with the species.

Likewise, when considering methylation patterns 
observed at a specific locus, such as a genomic region, 
we hypothesized that estimating methylation heteroge-
neity at this locus is analogous to measuring biodiversity 
within a specific field. In a simple setting without con-
sidering the similarity between methylation patterns, the 
variables in the base model (Eq. 1) in methylation hetero-
geneity can then be translated as:

1. Set C is considered as a collection of different meth-
ylation pattern u observed from the alignment at a 
specific locus; and

2. vu is the attribute value of patternu . It can be the 
abundance of the pattern u , or in the extended set-
ting, the pairwise similarity between patterns, or 
amongst all observed patterns in the alignment (see 
Methods; Eqs. 3–6);

3. au is the abundance of the pattern u, and could be 
estimated as the number of reads having this pat-
ternu.

Such setting can be modified to accommodate the pat-
tern similarity, using pattern pair instead of pattern as the 
entity u as well as the corresponding attribute value.

Chao et al.’s mathematical base model (Additional file 1: 
Note S1) possessed several mathematical properties, such 
as scale invariant, weak monotonicity and doubling prop-
erty. Among them, the weak monotonicity refers to that 
the diversity should increase when adding a new species 
largely diversified from the current ones [32]. The dou-
bling property refers to the characteristic that mixing two 
mutually exclusive groups of the same diversity in equal 
weights results in the doubling of diversity or the quadru-
pling of distance-based diversity [27]. The doubling prop-
erty is considered a fundamental characteristic required 
for diversity estimation. Please note that while all variants 
based on the Hill number exhibit the doubling property, 
neither Shannon entropy [29] nor the Simpson index [30] 
shows this property.

We found that the mathematical properties in Chao 
et al.’s framework of Hill numbers (Additional file 1: Note 
S1) are ideal for quantifying methylation heterogene-
ity using methylation patterns for several reasons. First, 
measuring epigenetic diversity with methylation patterns 
is analogous to measuring the biodiversity of species, 

and the mathematical models are conceptually novel in 
analysing methylation heterogeneity. Second, the math-
ematical properties and their meanings make the het-
erogeneity scoring more interpretable and comparable 
among samples; therefore, we adopted these properties 
to estimate DNA methylation heterogeneity. As a result, 
we demonstrated that our three model-based methods 
of methylation heterogeneity-abundance based (AB), 
pairwise-similarity based (PWS), and phylogenetic-tree 
based (PHY) can help overcome the shortcomings of 
existing methods by analysing synthetic data, and bench-
marked by scBS-seq data. Lastly, we provided examples 
showing the strength of this approach for profiling non-
CG methylation heterogeneity in Arabidopsis, and moni-
toring disease progression in cancer samples. Moreover, 
the computational programs of our models are written to 
implement the genome-screening estimation of methyla-
tion heterogeneity (referred to as MeH [33] and compare 
samples obtained under different conditions. Our imple-
mentation of MeH and the tutorial are publicly available 
at https:// github. com/ Paoya ngLab/ MeH.

Results
We first demonstrate the behaviour of both the existing 
methods and our proposed methods with toy examples 
of synthetic alignments. Subsequently, to demonstrate 
a major characteristic of scoring, i.e., the linearity, we 
merge multiple single-cell methylomes to test if the esti-
mates of heterogeneity increase with the number of cells. 
In addition, we showed that comparing methylation het-
erogeneity can reveal differences between samples that 
might not be detectable by looking just at methylation 
levels. Finally, to test our methods on real data, we ana-
lyzed Arabidopsis methylome to profile non-CG methyla-
tion heterogeneity and human colorectal cancer data.

The behaviour of different scores in evaluating 
heterogeneity
We compiled a table of evaluation for several popu-
lar existing methods and our model-based methods 
(Table 1). The table includes specific features to be con-
sidered in methylation heterogeneity estimation and 
implementation. Overall, the main advantages of our 
model-based methods over existing methods lie in the 
possible extension to non-CG methylation sites, scor-
ing linearity and the consideration of similarity between 
methylation patterns for unbiased and meaningful 
evaluation.

To assess the ability of our proposed method and other 
existing methods to precisely detect changes in methyla-
tion heterogeneity, we created toy examples with vari-
able methylation patterns. To ensure a fair comparison 
between the methods, fully aligned reads are constructed 

https://github.com/PaoyangLab/MeH
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Fig. 2 Evaluation of methylation heterogeneity methods. A–C Estimating methylation heterogeneity with synthetic datasets. Top panel lists 
combinations of methylation patterns at different loci. Circles are model‑based methods, and triangles are existing methods. Dashed lines represent 
the methods with increasing trends. Four types of scores are used in the comparisons, model‑based methods: AB, PWS and PHY; accordance‑based 
methods: MC, PDR, FDRP; Entropy‑based: ME, and probability‑based: EP; Existing methods considering pattern similarity: qFDRP and MHL. D The 
methylation heterogeneity of merged mouse ESC and muscle single‑cell methylome estimating by PWS and ME. E Genome‑wide methylation 
heterogeneity ratios are plotted against different numbers of ESC single‑cell methylomes. The black line represents the expected values 
given merged cells are all heterogeneous while the red represents linearity
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to represent complete methylation patterns, and combi-
nations of methylation patterns resembling alignments 
at a genomic region are simulated (see Fig.  2A–C, top 
panels). Firstly, we tested the hypothesis that the meth-
ylation heterogeneity would increase as new patterns 
occur. As a result, our three proposed models, as well as 
FDRP, qFDRP, MHL, ME, and EP showed such mono-
tonic increasing trends (see dashed lines in Fig.  2A), 
while other methods showed differently. Next, we exam-
ined the importance of pattern similarity in the models, 
given that methylation patterns likely result from gradual 
changes associated with methylation maintenance. As 
shown in Fig. 2B and C, we would expect the ideal scores 
to increase when the patterns became more diverse (from 
left hand to right hand). We found that only PWS, MHL, 
and qFDRP were able to detect such changes in methyla-
tion patterns (see Fig.  2B and C). As a result, only two 
methods, PWS and qFDRP, aligned with both hypoth-
eses. One specific concern for qFDRP is that the design 
of its score makes it easily influenced by the methylation 
level as described earlier (see Table 1). Our model-based 
method, specifically the PWS approach, demonstrated 
the ability to balance all these features effectively. There-
fore, PWS was used for the following analyses.

Evaluating the scoring linearity using single-cell 
methylomes
When examining the real data, we expected the level of 
methylation heterogeneity to increase as new patterns 
are introduced. We processed a number of single-cell 
methylomes of mouse [10] from two different cell types, 
muscle cells and embryonic stem cells (ESC). We used 
the PWS method for the analysis as it is the only method 
that passed the previous evaluations in Figs.  2A–C. We 
also included ME and EP in the single-cell analysis as 
they share a similar data input format for such genome-
wide analysis.

We would expect the methylation heterogeneity scores 
to increase from a pooled single-cell methylomes of one 
cell type to those of mixed two cell types. To this end, 
six single-cell methylomes of two cell types were pooled 
before the heterogeneity was estimated (i.e., the raw 
reads from multiple single-cell methylomes were pooled 
to form one merged methylome before they were aligned 
to the reference genome). We found that as expected 
methylation heterogeneity from PWS is increased in the 
mixed cell types (see Fig.  2D). In contrast, running the 
ME method on the same dataset, the mixed cell types 
showed a lower methylation heterogeneity score.

Next, we evaluated the methylation heterogeneity 
between different numbers of merged ESC single-cell 
methylomes for which we knew the compositions (see 
Fig.  2E). In a perfect setting, adding more cells of the 

same type would not increase heterogeneity. However, in 
this case of real data from ESC, each single cell methyl-
ome may not cover all expected patterns of ESC; based 
on the largely damaged DNA due to bisulfite treatments, 
the observed patterns may be very different between 
these single cell methylomes. Therefore, the methylation 
heterogeneity scores are likely to increase as the new pat-
terns (from newly added single cells even from the same 
cell type) are added, we also expect to observe a gradual 
saturation of the methylation patterns, with the hetero-
geneity plateauing. First, different numbers of single-cell 
methylomes, i.e., 6, 8, 10, 12, 14, 16, and 18, were com-
bined as merged methylomes to mimic bulk sequencing 
data. On those methylomes merged from many cells we 
would expect overall a higher methylation heterogene-
ity (indicative of cellular heterogeneity) than those from 
fewer cells.

We computed the genome-wide methylation heteroge-
neity ratio for each of the selected methods (for details 
of the procedure and calculations Additional file 1: Note 
S3). Overall, we observed a monotonic increase in the 
ratios as the number of single-cell methylomes increased 
with all methods. The extrapolated line (red) from 6 to 
8 methylomes was drawn for PWS to demonstrate the 
expected linear increases per every 2 methylomes added. 
This line also revealed that ME and EP are likely to reach 
their plateaus quickly that are clearly deviated from being 
linear, suggesting that the two scores were less sensitive in 
detecting new patterns. The lower sensitivity revealed by 
such nonlinearity in real data application is less favoured 
(see Additional file 1: Fig. S1 for demonstration), particu-
larly when different samples or regions were compared. 
Additionally, we found that none of these methods per-
fectly displayed the doubling property (see Fig. 2E black 
solid line). This could have occurred because in real data 
these single cells of ESC are typically not mutually exclu-
sive groups. Still, we found the PWS heterogeneity is rel-
atively linear compared to other methods. It also showed 
less deviation when the number of single-cell methyl-
omes increased, making it a plausible scoring.

Comparing between methylation heterogeneity 
and methylation level
To determine the differences between methylation het-
erogeneity and the commonly used metric of methylation 
levels, we plotted the methylation heterogeneity esti-
mated by the PWS method against the methylation levels 
of 3 replicates of samples from the human colorectal can-
cer (CRC) (Fig. 3A) and of Arabidopsis wild type methy-
lome (Additional file 1: Fig. S2). As illustrated in Fig. 3A, 
the scatter plot indicated that the relationships between 
methylation heterogeneity and methylation varied across 
different cytosine contexts (i.e., CG, CHG and CHH, 
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H = A, C or T). We observed a curve-shaped relation-
ship between methylation heterogeneity and methyla-
tion level at regions of CpG methylation, that the regions 
with higher methylation heterogeneity have intermedi-
ate methylation levels that are found in both in human 
and in Arabidopsis. These regions are likely to reflect a 
dynamic process of epigenomic changes that are com-
monly observed in genic regions (Fig. 3C). In Arabidopsis 
we also profiled the methylation heterogeneity at non-
CG sites. We found that the non-CH sites (i.e., CHG and 
CHH) showed very different relationship with methyla-
tion levels comparing to the CG sites (Additional file  1: 
Fig S2). While non-CG sites are low methylation, a frac-
tion of them are highly methylated alone with a higher 
methylation heterogeneity. It is important to note that 
moderately methylated regions across all contexts retain 
a diverse range of heterogeneity, which could be easily 
overlooked when performing the evaluation using the 
methylation level alone. Furthermore, our PWS scores 
were able to detect the changes in methylation het-
erogeneity when the changes in methylation levels were 

not apparent. In brief, methylation heterogeneity could 
potentially complement the use of methylation levels for 
identifying minor changes that cannot be detected using 
methylation levels, and provides a different layer of bio-
logical information from the conventional methylation 
level.

Methylation heterogeneity in plant at CG and non-CG sites
To reveal the genome-wide methylation heterogeneity 
in plants, we employed PWS to analyze an Arabidopsis 
wild-type methylome with a coverage of 58X [34]. We 
found that the regions of high methylation heterogene-
ity preferentially targeted transposable elements (TEs) 
in both CG and non-CG sites, which is different from 
regions with low methylation heterogeneity (Fig. 3B). In 
addition, the high methylation heterogeneity at CG sites 
are largely enriched at genebody comparing to non-CG 
sites; suggesting a differential preference between CG and 
non-CG. Subsequently we compare the methylation het-
erogeneity at genes and TEs of high and low expression 
(top and bottom 25%), see Fig.  3C and D. We observed 

Fig. 3 Genome‑wide methylation heterogeneity profiles. A Mean methylation heterogeneity plotted with mean methylation levels in 3 replicates 
of adjacent normal samples of CRC. B Proportion of high (top 10%) and low (bottom 10%) methylation heterogeneity regions across different 
genomic features in Arabidopsis thaliana genome. C Metagene plot of A. thaliana CG methylation heterogeneity profile between highly and lowly 
expressed genes (top and bottom 25%). D Meta plots of A. thaliana CHG methylation heterogeneity between highly and lowly expressed TEs 
and their neighbouring regions
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a negative association between CG methylation hetero-
geneity and gene expression near transcription start sites 
(TSS), followed by a positive association toward the tran-
scription end sites (TES); which indicates the dynamic 
epigenetic regulation of DNA methylation at promoter 
and genebody. We also found that lowly expressed TEs 
exhibited higher CHG methylation heterogeneity com-
pared to highly expressed TEs (see Fig.  3D), suggesting 
that the methylation patterns at active TEs are highly var-
iable in plant cells.

Our study produced the first map of methylation het-
erogeneity in the plant. High methylation heterogeneity 
regions were identified to be located at specific genomic 
features, which differed between CG and non-CG meth-
ylation heterogeneity. Methylation heterogeneity was 
demonstrated to be linked with transcriptional regula-
tion. Our results illuminated the unique functions of CG 
and non-CG methylation heterogeneity in the Arabidop-
sis genome.

Strong association between genes with differential 
methylation heterogeneity and colorectal cancer-related 
diseases
Next, we wanted to demonstrate that the genomic 
regions with differential methylation heterogeneity may 
also be considered as biomarkers for phenotypes of inter-
est. We downloaded and processed the human Reduced 
Representation Bisulfite Sequencing (RRBS) methylome 
data from CRC [35], which consisted of different stages, 
including stage III-IV CRC frozen tumours (tumour), 
normal-appearing mucosa as indicated by pathogens 
from the same patients (normal), and histologically 
confirmed matched normal samples collected from the 
margins on either side of the resected tumour (adjacent 
normal). The original study analyzed 10 samples per 
stage and found that the promoter methylation at specific 
cancer genes raised 40% to trigger the transcriptional 
changes at tumours, whereas at the adjacent normal the 
promoter methylation was only increased by 20% with 
no changes in expression, likely due to the lower changes 
in promoter methylation insufficient for triggering tran-
scriptional changes.

As a demonstration of our method, we used 3 repli-
cates from each normal, adjacent normal and tumour 
samples for methylation heterogeneity analyses using 
PWS method. The goal was to see if our PWS method 
is able to identifying putative biomarkers, as an alterna-
tive approach to the current approaches such as EWAS. 
A number of DNA methylation level studies have 
already shown that there existed methylation differ-
ences between say normal and normal-adjacent tissue 
[36] or between normal tissue and normal-tissue at risk 

of cancer development [37]. Therefore, we analyzed DNA 
methylation level in parallel, to assess the predictability 
between methylation heterogeneity and methylation level 
(Additional file  1: Fig. S4 for Venn diagram of differen-
tially methylated regions, DMRs and differentially het-
erogeneous regions, DHRs).

In total 2,319 DHRs are identified between adjacent 
normal and normal (n = 911), and between tumour and 
normal samples (n = 1,558). These DHR are mostly found 
at genebody (Fig.  4A, left-panel). After normalising 
against RRBS genome we found the DHR are enriched at 
promoters, exons, 5’- and 3’ UTR but not from introns; 
suggesting a possible association with transcription.

After we associated the DHRs with the genes that are 
co-localized with, 953 differentially heterogeneous genes 
(DHGs) are identified (Fig.  4B), whereas only 14 differ-
entially methylated genes (DMGs) can be detected (15% 
methylation change and p-value < 0.05), including 2 genes 
C9orf69 and RAPGEFL reported in the original study 
(see Methods for identification of DHGs and DMGs). 
There is only one DMG, namely FK506-binding protein 
10 (FKBP10), found to be also a DHG. This may suggest 
that the methylation level- and heterogeneity-based anal-
yses actually targeted different sets of genes.

To track the changes of heterogeneity between stages, 
we plotted a heatmap of methylation heterogeneity using 
both tumour DHGs and adjacent normal DHGs (Fig. 4C). 
The heatmap shows there are clear changes of meth-
ylation heterogeneity from normal, adjacent normal to 
tumours, where most of the genes increased their hetero-
geneity towards tumours. A similar heatmap on DMGs 
was not able to reveal the differences accurately between 
the sample groups, as one normal sample is classified 
within the cancer group (Additional file  1: Fig. S5). We 
analyzed the enriched functions of the non-overlapping 
DHGs specific to either adjacent normal (Additional 
file  1: Fig. S6) or tumour (Additional file  1: Fig. S7) via 
ingenuity pathway analysis [38]. The enriched diseases 
and functions clearly indicated that DHGs identified 
by comparing adjacent normal samples against normal 
samples were involved in colorectal cancer-associated 
diseases; suggesting the changes of methylation het-
erogeneity at these genes are highly associated with 
the cancer progression, and the adjacent normal DHGs 
are predictive of CRC tumours. In summary, the DHG 
analysis complements conventional DMG approaches in 
the selection of regions associated with phenotypes of 
interest.

Identifying specific methylation patterns associating 
with increased heterogeneity
In total we identified 162 genes overlapping signifi-
cantly between the tumour DHGs and adjacent normal 
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DHGs (test for overlapping; p < 0.00001) (Fig. 4B; Addi-
tional file  1: Fig. S8). These genes showed strong and 
persistent changes of heterogeneity in DNA meth-
ylation towards tumour formation. The change of 

methylation heterogeneity at these genes may be sug-
gesting specific methylation patterns emerging with the 
changes of cell types due to cancer formation or cell 
differentiation for example.

Fig. 4 Comparison between methylation heterogeneity and methylation levels and the evaluation of PWS heterogeneity. A The proportion (left) 
and the enrichment plot (right) of DHRs at different genomic features. B Venn diagram of DHGs and DMGs. C Methylation heterogeneity heatmap 
of DHGs in the 3 stages of CRC samples. D IGV illustration of methylation heterogeneity estimated using PWS around CPXM2, with the DHR shaded 
in orange. Each blue bar indicates the mean methylation heterogeneity in bins of 400 bp, and the exact values of the bars at the DHR are labelled. E 
Composition of methylation patterns in all samples within a specific CG window 4 within the DHR from D for identifying a potential disease pattern
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As an example, we found CPXM2 from the 162 over-
lapping DHGs. CPXM2 is a protein-coding gene that has 
been reported to be associated with several human dis-
orders such as developmental diseases [39], Alzheimer’s 
disease and schizophrenia [40], and to promote tumour 
aggressiveness when active [41]. As shown in the screen-
shot of methylation heterogeneity at CPXM2 (Fig. 4D), an 
overlapping DHRs was constantly found at the promoter 
for comparisons between adjacent normal, and normal 
samples and between tumour and normal samples. The 
compositions of the methylation patterns at this particu-
lar DHR (Fig.  4E) revealed a specific methylation pat-
tern labelled ‘1111’ in orange colour (fully methylated 
cytosines in a row) that seemed to be a “disease” pattern. 
It was not present in normal samples, but it started to 
appear in adjacent normal samples and became stabilized 
in tumour samples. Moreover, the proportions of reads 
showing this pattern increased in the presence of either 
an increased fully methylated ‘1111’ pattern or other 
partially methylated patterns that closely resembled 
‘1111’ such as ‘0111’ or ‘1011’…etc.; instead of patterns 
resembling unmethylated ‘0000’, which was observed 
for most patterns in normal samples, the reads began to 
become similar to pattern ‘1111’. This verifies the ability 
of our model to detect changes in methylation patterns, 
which may serve as biomarkers for the early detection of 
disease.

Discussion
In this study, we proposed an approach adopted from 
Chao et  al.’s mathematical framework [26] for biodiver-
sity to estimate methylation heterogeneity. Our model-
based methods were subsequently implemented as MeH 
program to estimate genome-wide methylation hetero-
geneity from methyl-seq data. Our results demonstrated 
the ability of MeH to highlight different methylation pat-
terns across multiple subpopulations of methylomes. 
Unlike the existing approaches that only detect dis-
tinct patterns, our methods based on Hill numbers are 
equipped with mathematical properties for achieving 
unbiased estimation and are enabled for analyzing pat-
tern similarity between reads. Furthermore, MeH can be 
used as a tool for evaluating CG as well as non-CG meth-
ylation heterogeneity, and interrogating the changes in 
methylation patterns among prespecified cell populations 
during cancer development.

Improvement from the existing estimators
Our analyses revealed that some of the existing meth-
ylation heterogeneity methods give scores of nonlinear-
ity, and some do not accommodate similarities between 
methylation patterns; both lead to a less favourable out-
come. In other words, when evaluating methylation 

heterogeneity using methods such as those based on 
ME or EP, changes tend to be overestimated when the 
number of distinct patterns is small and underestimated 
when the number of distinct patterns is large in compari-
sons between samples or genomic locations. There will 
be variations among the differences in scale, which may 
result in false findings (of significant changes) if we treat 
them equally. The ignorance of pattern similarity in other 
scores, such as the concordance-based methods, could in 
principle be modified to take it into account in the future 
development. In addition, as sequencing errors have 
been shown to introduce biases in heterogeneity scores 
[18], the behaviour of the scores including PWS, ME and 
MP were evaluated using simulated bisulfite sequencing 
data (see Additional file  1: Note S4). While all methods 
are affected by the sequencing errors, PWS show minor 
changes (3.7%) when introducing sequencing errors of 
5%, with a lower variation among replicates. Considering 
the general sequencing error nowadays is less than 1–2%, 
PWS remains a good choice of the methods.

On the other hand, one caveat of the methods that 
implement window-based screening (such as model-
based, ME and EP) is that only complete methylation 
patterns (i.e., fully aligned reads) are considered. This 
may lead to significant data loss. However, with the cur-
rent NGS technology, the commonly used read length of 
150–200 base pairs is sufficient to cover four CpG dinu-
cleotides, and the cost of sequencing has significantly 
decreased in the past years. There are also imputation 
tools that can overcome the problem of low coverage 
by adding simulated reads mimicking the neighbouring 
methylation patterns, such as BSImp [42, 43], to maxim-
ise the use of data with limited sequencing depth.

We developed three variants based on a framework that 
considers different attributes for quantifying methylation 
heterogeneity using methylation patterns and demon-
strated each variant’s strengths and weaknesses together 
with the evaluation of existing methods using both toy 
examples and single-cell methylomes. Whilst every 
method has its own weaknesses and some are highly cor-
related, none are replaceable. A thorough comparison 
was conducted by [18] and indicated the scenarios when 
each score should be used. In particular, we showed that 
our models ameliorated the nonlinearity problem and 
were thus advantageous for systematic genome-wide 
comparisons across samples and for identifying DHRs for 
further analyses.

Validation against pooled single-cell methylomes
Following our analysis using single-cell methylomes, we 
also demonstrated the potential of the method for esti-
mating cell-type compositions based on bulk versus 
merged methylomes, as the effect seems to be addictive. 



Page 12 of 16Lin et al. Epigenetics & Chromatin           (2023) 16:44 

We expected that adding additional single-cell methyl-
omes would result in increased methylation heterogene-
ity, which could be approximated by taking the difference 
between genome-wide methylation heterogeneity esti-
mated using 8 and 6 single-cell methylomes (Fig.  2E). 
Then, given the genome-wide methylation heterogeneity 
of a specific methylome, we could potentially estimate 
cellular compositions. Such analysis for one type of cell 
here but could eventually elaborate the strategy to incor-
porate different types of cells (Fig.  2D), which might be 
beneficial for studies such as those distinguishing the 
compositions of cellular populations to improve cellu-
lar differentiation accuracy in the context of disease or 
development.

Importance of the consideration of similarities 
between methylation patterns
The compositions of methylation patterns presented in 
Fig. 4E demonstrate the potential of using DHR for iden-
tifying the possible presence of a specific methylation 
pattern. Such methylation patterns at specific DHR loca-
tions could be considered biomarkers for particular phe-
notypes. The ‘1111’ pattern of fully methylated cytosines 
appeared in a very low proportion of adjacent normal 
and tumour samples and only appeared after a large pro-
portion of the methylation patterns were changed from 
those commonly seen in the normal. This has two impli-
cations. First, either the change in methylation patterns is 
a gradual process, or the appearance of methylation pat-
terns relies on the presence of an intermediate pattern. 
In either case, the methylation heterogeneity is likely to 
be more sensitive than the methylation levels. This fur-
ther indicates the importance of considering similarities 
between methylation patterns in quantifying methylation 
heterogeneity, as not all patterns are equally distinctive.

Direct association between phenotypes and methylation 
heterogeneity
It is often difficult to identify the association between 
methylation and gene expression, let alone the asso-
ciation between methylation and phenotypes based on 
gene expression; however, methylation heterogeneity 
is thought to be directly associated with phenotypes, so 
the assumption was made, and the data were analyzed. 
Again, this method is independent of methylation levels 
and was verified to be so. Although we were not inves-
tigating the mechanism of epigenetic regulation here, 
the methylation profiles in Arabidopsis illustrated the 
negative correlation between methylation heterogene-
ity and the expression of gene and TE that may actually 
open up a new direction for methylation analysis jointly 

with the transcriptome. Lastly, the tracking of patterns in 
the colorectal cancer example does show that methyla-
tion heterogeneity can be a more effective indicator than 
methylation levels when studying disease progression.

Conclusions
Ultimately, MeH (workflow illustrated in Fig.  5) can 
be employed to profile genome-wide methylation het-
erogeneity using proposed model-based methods. This 
method provides users with the freedom to specify win-
dow size in terms of the number of cytosine sites and 
methylation contexts, including all CG, CHG, and CHH 
contexts, for the evaluation of methylation heterogeneity, 
and is the first of its kind. We also embedded a methy-
lome imputation method that was developed recently 
[42] to maximize coverage for the evaluation of methyla-
tion heterogeneity with limited bias, as demonstrated in 
Additional file  1: Fig. S9. It can impute the methylation 
statuses with over 85% accuracy and result in only ~ 3% 
of bias when estimating methylation level. Although 
many studies on cellular heterogeneity have focused on 
mammalian data, important studies of topics such as 
methylation regulation, which involves different DNA 
methyltransferases, can only be performed on plants, in 

Fig. 5 Overview of MeH workflow. The functions by MeH are shown 
in the yellow area. Each box represents a component corresponding 
to a series of tasks. Data processing steps are indicated in red, 
the tools employed in the step are indicated in italics, and the dotted 
box means that the step is optional. The file types are indicated 
in brackets for input data (blue boxes) and output data (orange 
boxes)
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which methylation is common in other contexts, such 
as CHG and CHH [44]. Finally, we provided an exam-
ple of the application of a mathematical model devel-
oped for biodiversity in the estimation of methylation 
heterogeneity.

Methods
Model-based methods for measuring methylation 
heterogeneity
The estimation of DNA methylation heterogeneity is 
mostly based on the observation of methylation pat-
terns in terms of read patterns (Fig. 1B). The similarities 
between patterns, such as the distances between meth-
ylation patterns and branch lengths within phylogenetic 
trees constructed using distances between read patterns, 
may also be instrumental for assessing the process of epi-
genomic changes. We adopted three models from Chao’s 
unified framework [26]: the abundance-based heteroge-
neity model (AB), pairwise-similarity-based heterogeneity 
model (PWS) and phylogenetic-tree-based heterogene-
ity model (PHY), for estimating DNA methylation het-
erogeneity based on Chao et  al.’s three variant diversity 
models, species diversity, phylogenetic diversity and the 
distance-based functional diversity.

The AB method uses the relative abundances of read 
patterns to provide a measure of heterogeneity. While 
considering the changes in methylation status within a 
certain genomic location in a cell is a gradual process, 
the similarity between two methylation patterns can be 
assessed based on two different subtypes of cells with a 
certain degree of similarity or similar stages of differen-
tiation. We incorporate pattern similarity for assessing 
methylation heterogeneity in both the PWS and PHY 
methods, where the former considers pairwise distances 
independently, and the latter considers the relationships 
between all patterns at once via the construction of a 
phylogenetic tree (Additional file  1: Fig. S10. Following 
Chao et al.’s base model in Eq. (1) with q = 2 for giving a 
robust estimate in different situations, we introduce our 
AB, PWS and PHY methods as follows.

Abundance-based heterogeneity
If we consider C as a set (collection) of distinct DNA 
methylation patterns; u as any pattern in set C ; au as the 
absolute abundance of u (i.e., the number of reads with 
the same pattern, u ), providing values for distinct pat-
terns; and V  as a normalising factor, we define DNA 
methylation heterogeneity as follows under the AB 
model:

where R is the number of distinct methylation patterns, 
pi is the relative abundance for pattern i (i.e., the num-
ber of reads equal to pattern i over the total number of 
reads). AB heterogeneity considers individual methyla-
tion patterns as attribute, which uses weights of distinct 
methylation patterns and here we used 1 for all methyla-
tion patterns. AB provided the effective number of pat-
terns as a weighted average of the abundances of each 
pattern.

Pairwise-similarity-based heterogeneity
To consider pattern similarity, PWS uses pairs of methyl-
ation patterns as attribute, instead of individual methyla-
tion patterns used in AB. In PWS, the pairwise distances 
between any two methylation patterns are calculated 
using the Hamming index and the weighted degree 
kernel [45] as introduced in Additional file  1: Note S2. 
These distances are incorporated into the general model 
as attribute values. Let S be the total number of pairs 
of methylation patterns, pij be the attribute abundance 
of pattern pairs between pattern i and pattern j , pi is 
the relative abundance for pattern i, and dij be the dis-
tance between patterns i and j . PWS may be measured as 
follows:

where

This estimate can be interpreted as the effective sum 
of pairwise distances between methylation patterns. The 
method differs from the unifying framework in that we 
took the square root when estimating diversity. This is 
because the doubling property (Additional file 1: Note S1) 
of this variant results in quadrupled diversity after the com-
bination of two groups with the same diversity and Q (a 
multiple of the expected pairwise distances between meth-
ylation patterns, as shown in Eq. (4). The reason for this is 
that the sum of pairwise distances between two groups of 
methylation patterns equals the sum of (1) the sum of pair-
wise distances within the groups and (2) the sum of pair-
wise distances between the groups, which is quadrupled 
(assuming the sums are all the same and have the same Q).

(2)AB =

(

R
∑
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p2i

)−1
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Phylogenetic-tree-based heterogeneity
A phylogenetic tree was constructed in which each node 
represented one methylation pattern, allowing us to esti-
mate overall heterogeneity in terms of branch length and 
the corresponding branch abundances. Here, the phy-
logenetic tree is constructed using dij , representing the 
pairwise distances between distinct patterns calculated 
as shown in the PWS method. If there are B branch seg-
ments in the tree, Li is the length of branch i and pi is the 
branch abundance associated with branch i , the PHY can 
be calculated as follows:

where

The attribute values of PHY heterogeneity are the 
branch lengths within a phylogenetic tree that is con-
structed using pairwise distances between patterns. To 
illustrate our method, we considered five DNA methyla-
tion patterns as 5 nodes in the phylogenetic tree (Addi-
tional file 1: Fig. S10). The tree could be constructed given 
C5
2
 = 10 pairwise distances between the methylation pat-

terns. Five branches are connected to the five nodes. 
With PHY, the attribute abundances were associated with 
these branches that were equal to the abundances of the 
nodes to which they were connected. For other branches, 
the attribute abundance was calculated as the sum of 
the abundances of the subbranches. For example, for the 
branch with length L6 , the subbranches were node 2 and 
node 3, which were associated with abundances of p2  
(raw abundance of pattern 2 at the loci) and p3 . Then, the 
abundance associated with  L6 was p6 = p2+ p3 . There-
fore, the set of branch abundances was expanded from 
{p1, p2, . . . , pR} to {p1, . . . , pR, pR+ 1, . . . , pB} , where R 
is the number of distinct patterns (nodes). In Additional 
file 1: Fig. S10, R is 5 and B is 8.

Alignment and processing of methylome data
High-quality cleaned Illumina paired-end reads were 
aligned to the reference genomes (TAIR10, hg19 and 
mm10 for Arabidopsis, cancer and single-cell data, 
respectively) using BS-Seeker2 [46] and BSBolt [47]. Only 
uniquely mapped reads were included in the analyses. 
DNA methylation levels were calculated as 

(

#C
#C+#T

)

 , 
with coverage by at least four reads in all cases for accu-
rate estimation.

Our criteria for calling regions of differential methyla-
tion (DMRs) were as follows: (1) the difference between 

(5)PHY =

(

B
∑

i=1

Lia
2
i

)−1

(6)ai =
pi

∑B
j=1 Ljpj

.

the mean DNA methylation levels of the samples was 
greater than 15% and (2) the Student’s t-test p-value was 
less than 5%. For the identification of DMRs throughout 
the genome, regions containing at least five cytosines 
within 400-bp tiles were first identified and were further 
defined according to the two aforementioned criteria. 
Genes with DMR located in the genebody were identified 
as differentially methylated genes (DMGs). Methylation 
heterogeneity was profiled using our own program, MeH, 
and was evaluated using PWS heterogeneity. Removing 
duplicated reads is recommended to avoid potential bias 
caused by PCR amplification.

Methylation heterogeneity was evaluated using slid-
ing windows of 4 cytosines given that enough reads were 
included within the window (depth ≥ 4 reads), and the 
results were then merged into 400-bp tiles. Differen-
tially heterogeneous regions (DHRs) were called based 
on the following criteria: (1) the difference between the 
mean methylation heterogeneity of samples was greater 
than 1.41 which corresponds to the expected increase 
in estimated heterogeneity when adding a new meth-
ylation pattern; and (2) Student’s t-test p-value < 5%. See 
Additional file 1: Fig. S4 for the Venn of DHRs identified 
from the CRC samples. Genes with DHRs located in the 
genebody were identified as differentially heterogeneous 
genes (DHGs).

Ingenuity pathway analysis
DHGs and DMGs between adjacent normal and normal 
samples and between tumour and adjacent normal sam-
ples were screened using common regions of 400 bp with 
data on both methylation levels and methylation hetero-
geneity. There were 8074 regions located within genebod-
ies. A total of 660 and 455 DHGs and 10 and 4 DMGs 
were identified at adjacent normal and at tumour, respec-
tively (see Fig. 4B). Disease and functional analyses were 
performed using the threshold of an FDR < 0.05.
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Additional file 1: Figure. S1. Schematic illustration of linear and non‑
linear scores in estimating methylation heterogeneity. When the score 
increases by the same value K, the corresponding changes of heterogene‑
ity are not equal (h1≠ h2), indicating nonlinearity of the score. Figure. 
S2. Genome‑wide methylation heterogeneity and methylation level of A. 
thaliana at CG, CHG and CHH. Figure. S3. The methylation heterogeneity 
profile of A. thaliana at CG and non‑CG sites. A Enrichment plots of high 
(top 10%) and low (bottom 10%) heterogeneity regions across different 
genomic features. B Metagene plot of methylation heterogeneity profile 
for highly and lowly expressed genes (top and bottom 25%), as well as 
their 4 kb upstream TSS and 4kb downstream of TES. C Meta plots of 
methylation heterogeneity for highly and lowly (top and bottom 25%) 
expressed TEs and their neighbouring regions. Figure. S4. The Venn 
diagram of the regions found as DMRs and DHRs. Figure. S5. The results 
of CRC DMGs analyses. The heatmap of methylation level of DMGs in 
normal, adjacent normal and tumour samples. Figure. S6. Disease and 
functional analysis for adjacent normal DHGs. The red line represents 
the adjusted p‑value < 0.05 and the red‑shaded texts are those diseases 
related to colon cancer. Figure. S7. Disease and functional analysis for 
tumour DHGs. The red line represents the adjusted p‑value < 0.05 and the 
red‑shaded texts are those diseases related to colon cancer. Figure. S8. 
The results of CRC DHGs analyses using ME. A The Venn diagram of DHGs 
found by ME. B The results comparisons of overlapping DHGs identified 
by ME and PWS. C The heatmap of ME methylation heterogeneity of DHGs 
in normal, adjacent normal and tumour samples. Figure. S9. Effect of the 
imputation of methylation heterogeneity using PWS heterogeneity. Each 
dot represents the mean methylation heterogeneity of 2 replicates. The 
black lines represent the median values of the data. Figure. S10. Example 
of methylation patterns and the parameters within the PHY heterogeneity. 
Phylogenetic tree was constructed using 5 distinct patterns as an illustra‑
tion of how the parameters are obtained in the formula when estimating 
PHY heterogeneity; ‘p’ represents the abundance used in the formula, and 
‘L’ represents the branch length in the tree; these values are also used in 
the formula. Table S1. The runtime of different methylation heterogeneity 
methods. Note S1. Mathematical properties of the mathematical frame‑
work. Note S2. Distance between methylation patterns. Note S3. Testing 
the linearity of MeH with single‑cell methylomes. Note S4. Evaluation of 
scores using simulated methylomes with sequencing errors.
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