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Abstract 

Background Bivalent chromatin is an exemplar of epigenetic plasticity. This co‑occurrence of active‑associated 
H3K4me3 and inactive‑associated H3K27me3 histone modifications on opposite tails of the same nucleosome 
occurs predominantly at promoters that are poised for future transcriptional upregulation or terminal silencing. 
We know little of the dynamics, resolution, and regulation of this chromatin state outside of embryonic stem cells 
where it was first described. This is partly due to the technical challenges distinguishing bone‑fide bivalent chro‑
matin, where both marks are on the same nucleosome, from allelic or sample heterogeneity where there is a mix 
of H3K4me3‑only and H3K27me3‑only mononucleosomes.

Results Here, we present a robust and sensitive method to accurately map  bivalent chromatin genome‑wide, along 
with controls, from as little as 2 million cells. We optimized and refined the sequential ChIP protocol which uses 
two sequential overnight immunoprecipitation reactions to robustly purify nucleosomes that are truly bivalent 
and contain both H3K4me3 and H3K27me3 modifications. Our method generates high quality genome‑wide maps 
with strong peak enrichment and low background, which can be analyzed using standard bioinformatic packages. 
Using this method, we detect 8,789 bivalent regions in mouse embryonic stem cells corresponding to 3,918 predomi‑
nantly CpG rich and developmentally regulated gene promoters. Furthermore, profiling Dppa2/4 knockout mouse 
embryonic stem cells, which lose both H3K4me3 and H3K27me3 at approximately 10% of bivalent promoters, dem‑
onstrated the ability of our method to capture bivalent chromatin dynamics.

Conclusions Our optimized sequential reChIP method enables high‑resolution genome‑wide assessment of bivalent 
chromatin together with all required controls in as little as 2 million cells. We share a detailed protocol and guidelines 
that will enable bivalent chromatin landscapes to be generated in a range of cellular contexts, greatly enhancing our 
understanding of bivalent chromatin and epigenetic plasticity beyond embryonic stem cells.
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Background
The chromatin landscape of cells not only shapes cel-
lular identity, but also enables how cells are able to 
respond and adapt to a changing environment. Amongst 
the multitude of different layers of organisation, his-
tone post-translational modifications are tightly associ-
ated with the activity and accessibility of the underlying 
DNA sequence. In particular, tri-methylation of lysine 4 
on histone 3 (H3K4me3) is tightly correlated with active 
promoters, whilst tri-methylation of lysine 27 of histone 
3 (H3K27me3) is associated with heterochromatin and 
gene repression [1–3]. Remarkably these two seemingly 
opposing histone modifications can be found on opposite 
tails of the same nucleosome where it is thought to reflect 
a poised state of the underlying DNA sequence that is 
amenable to future activation or repression (reviewed in 
[4, 5]). In mouse embryonic stem cells, removing bivalent 
chromatin results in the accumulation of tightly repres-
sive DNA methylation and the inability of the genes to be 
activated in a timely manner upon differentiation [6–10]. 
Therefore, bivalent chromatin is a classic exemplar of 
molecular plasticity, by priming genes for the future and 
facilitating cell adaptation. However, bivalent chromatin 
has been predominantly studied in the context of mouse 
embryonic stem cells (ESC) where it was first described 
[11, 12]. This is partly due to technical challenges associ-
ated with accurately detecting this important structure. 
Consequently, our current understanding of the distribu-
tion and dynamics in other cell types and species remains 
limited.

A major challenge in studying bivalent chromatin is 
that the co-occurrence of active H3K4me3 and inactive 
H3K27me3 histone modifications needs to be distin-
guished from instances where the histone modifications 
occur on different alleles in the cell or in different cells 
within a mixed population (Fig. 1A). Consequently, per-
forming independent chromatin immunoprecipitation 
(ChIP) or CUT&RUN-related methods separately for 
H3K4me3 and H3K27me3 and then overlapping peaks 
in silico is not sufficient to be absolutely certain the 
region is indeed bivalent and not a consequence of allelic 
or cellular heterogeneity. This becomes even more of a 
challenge when analysing complex systems such as devel-
oping tissues or patient cancer samples. Previous studies 
in human T cells and mouse ESCs have suggested that 
as many as 14% to 25%, respectively, of bivalent regions 
called using independent ChIPs are false-positives [13, 
14]. To address this, sequential ChIP or ChIP-reChIP 
approaches have been developed [13–18], whereby the 
chromatin purified from a first immunoprecipitation 
reaction (e.g., H3K4me3) is used as input into a second 
immunoprecipitation reaction for a different modifica-
tion (e.g., H3K27me3). Theoretically, only chromatin 

with both marks of interest are purified in this way. How-
ever, these protocols typically require tens of millions 
of cells as input and so are not always feasible and often 
lack appropriate controls, leading to many false-positives. 
Moreover, poor signal-to-noise makes data interpretation 
and downstream analysis complex. Recently, multi-tag-
mentation methods have been described to simultane-
ously map multiple histone modifications in single-cells 
[19–21], yet these methods required custom reagents 
such as different barcoded Tn5 complexes or nanobodies, 
and complex data-analysis pipelines. Therefore, there is a 
need for sensitive, robust and cost-effective methods to 
accurately detect bivalent chromatin in low cell numbers 
that can use existing standardised downstream data-anal-
ysis approaches.

Here, we present a highly-optimized sequential ChIP 
(reChIP) methodology for accurately detecting bivalent 
chromatin along with controls from just 2 million cells. 
From one sample, our refined method generates 5 data-
sets including the 2 reChIP datasets (H3K4me3 followed 
by H3K27me3 and vice versa) and 3 control datasets 
(IgG–IgG background reChIP, in-line total H3K4me3 
and in-line total H3K27me3). By applying our method 
in mouse ESCs we detected 8,789 bivalent chromatin 
regions which occurred predominantly at CpG-rich pro-
moters. Importantly, in addition to 77% of previously 
annotated bivalent genes [14], our method revealed an 
additional 1,511 bivalent gene promoters in mouse ESCs. 
Lastly, we validated the sensitivity of our method by pro-
filing ESCs lacking the epigenetic priming factors Dppa2 
and Dppa4 which are required for maintaining bivalent 
chromatin at a subset of promoters [6, 7]. This confirmed 
the ability of our method to detect dynamic changes in 
bivalent chromatin. In summary, our method provides a 
much-needed resource for researchers wishing to accu-
rately map bivalent chromatin landscapes from as little as 
2 million cells.

Results
Development of an optimised ChIP‑reChIP protocol 
to robustly measure bivalent chromatin
A challenge in studying bivalent chromatin is that align-
ing independently generated single H3K4me3 and 
H3K27me3 datasets in silico is theoretically insufficient 
to distinguish true bivalency (where both marks are pre-
sent on the same chromatin fragment) from allelic or 
cellular heterogeneity (where marks are present on dif-
ferent alleles or in different cells within the population) 
(Fig. 1A). To address this, reChIP (also known as sequen-
tial ChIP or ChIP-reChIP) approaches have been used 
[13–18, 22, 23], however, many limitations exist with cur-
rent protocols which typically require large (> 10 million 
cells) amount of starting material per reaction (13–15, 22, 
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Fig. 1 Development of an optimised ChIP‑reChIP protocol to robustly measure bivalent chromatin. A Potential limitations in using independent 
total H3K4me3 (green, circles) and total H3K27me3 (red, triangles) datasets in distinguishing bone‑fide bivalent chromatin, where the two marks 
occur on the same nucleosome, from allelic and cellular heterogeneity. B overview of sequential ChIP‑reChIP protocol, see methods for detailed 
description. C Agarose gel showing chromatin digested with 1.2μl, 2.4μl or 4.8μl MNase for different amounts of time (7.5 min to 60 min). 2 million 
cells were used per condition. Negative control did not have any MNase added. Star denotes final condition used in protocol. D Single H3K4me3 
(green) and IgG control (grey) ChIP‑qPCR analysis comparing SDS‑based elution (light) from peptide elution (dark). Two active H3K4me3‑only 
(Dppa2, Dppa4), two inactive H3K27me3‑only (Gm6116, K27me_R1) and four bivalently marked loci (Csf1, Lmo1, Pou4f1, Sox6) were analyzed. 
Enrichment values normalised to input are shown
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23), and consequently are often performed in just one of 
the two directions [23]. This is a major issue as many false 
positives can confound the results due to “signal carry-
over” whereby enrichment from the first ChIP carries 
through into the second ChIP. Moreover, variable data 
quality with low signal to noise has traditionally made 
downstream bioinformatic analysis of bivalent regions 
challenging. To address these points, we optimised the 
reChIP protocol to give a high signal to noise ratio with 
both qPCR and high-throughput sequencing readouts 
from just 2 million cells (Fig. 1B). Critically, we advise the 
reChIP be carried out in both orientations (H3K4me3 
followed by H3K27me3 and vice versa). The method was 
optimised using serum/LIF cultured E14 mouse Embry-
onic Stem Cells (ESCs) given their well-defined distribu-
tion of bivalent chromatin [11, 12, 14, 18]. Importantly 
our method produces high quality data that can be ana-
lysed with commonly-used bioinformatic tools. A full 
detailed protocol accompanies this paper (Additional 
file 1).

The 3-day workflow is shown in Fig. 1B. Briefly, cells are 
treated with formaldehyde to cross-link chromatin, and 
2 million cell aliquots can then be stored at −  80 ℃ for 
up to 6 months. Cells are gently lysed and treated with 
MNAse to generate predominantly mononucleosomes 
(Fig.  1C, Additional file  2: Figure S1A) and chromatin 
pre-cleared by incubating with pre-washed dynabeads for 
3 h at 4 ℃ to reduce non-specific binding. Alternatively, 
sonication can be used to fragment chromatin with simi-
lar results (Additional file 2: Figure S1A, B). During the 
pre-clearing step, the antibody-dynabead complexes are 
formed for the IgG control, H3K4me3 and H3K27me3 
immunoprecipitations. 5% of the precleared chromatin 
is set aside as an input control and the remainder split 
across the three tubes of antibody-dynabead complexes 
for the first overnight immunoprecipitation at 4 ℃.

Following the first immunoprecipitation, the chroma-
tin-antibody-dynabead complexes are thoroughly washed 
to remove any non-specific binding prior to chroma-
tin elution. Traditionally, reChIP protocols typically use 
one of two approaches to elute chromatin from beads. 
DTT- or SDS-based elution buffers function by disso-
ciating the affinity interactions upon which the immu-
noprecipitation is based but require additional dilution 
and/or cleanup steps to ensure compatibility with a sec-
ond immunoprecipitation reaction (14–17, 22, 23). An 
alternative is to use high concentration of modified his-
tone tail peptides to compete with antibody binding sites 
[13]. We compared these two approaches to elute chro-
matin in single H3K4me3 ChIPs (Fig. 1D). The SDS elu-
tion performed well in terms of specificity and signal to 
noise ratio. The 3 hour peptide competition gave similar 
results to SDS elution, however, the amount of unspecific 

background signal increased when incubated overnight 
(Fig. 1D). After considering costs and availability of com-
mercial peptides, we decided to implement SDS elution 
in our final protocol. To facilitate subsequent antibody 
binding events, we diluted the chromatin and performed 
a buffer exchange using 3 kDa molecular weight filters. 
From the first immunoprecipitation reaction, 10% of 
the sample representing in-line total H3K4me3 or total 
H3K27me3 control can be set aside to aid downstream 
analysis and bivalent peak classification, although we rec-
ommend performing independent total H3K4me3 and 
H3K27me3 ChIPs when possible. The second immuno-
precipitation is then performed overnight using the alter-
nate antibody so that the reChIP is performed in both 
directions: H3K4me3 followed by H3K27me3 (K4-K27), 
and H3K27me3 followed by H3K4me3 (K27-K4). As a 
negative control, IgG followed by IgG (IgG–IgG) is also 
performed to control for non-specific enrichment during 
the reChIP assay. Chromatin is then eluted in SDS-elu-
tion buffer, formaldehyde crosslinks reversed, RNA and 
proteins degraded, and enriched DNA fragments puri-
fied ready to be processed for qPCR analysis and/or high 
throughput sequencing.

Generating high quality genome‑wide bivalent chromatin 
maps in mouse embryonic stem cells
To date bivalent chromatin is best understood in mouse 
ESCs. Therefore, we used this model to test our refined 
method. In total 9 datasets were generated from two bio-
logical replicates (Fig.  2A). These included two in-line 
H3K4me3 single ChIPs, two in-line H3K27me3 single 
ChIPs, two each of K4-K27 and K27-K4 reChIPs, and one 
IgG–IgG replicate. We note that the widely-used com-
mercial ChIP-grade H3K4me3 antibody used predomi-
nantly in our manuscript has also been reported to detect 
H3K4me2 at lower efficiency [24], and so we may also be 
detecting some H3K4me2-H3K27me3 bivalent nucle-
osomes. Replicate 2 was sequenced at a higher depth 
(45–55 million reads per sample) than replicate 1 (9.4–
19.6 million reads per sample), to enable us to determine 
optimal library sequencing depth through downsampling 
analysis (see below).

The bioinformatic workflow for calling bivalent peaks is 
outlined in Fig. 2B. Initial data inspection of our reChIP 
datasets revealed strong peak distribution of reads for 
the K4-K27 and K27-K4 reChIP samples at known biva-
lent regions with low intervening background signal 
(Fig.  2C). Furthermore, peaks were observed in the in-
line total H3K4me3 and total H3K27me3 samples, albeit 
these signals were noisier. This is likely due to the lower 
starting material for library preparation of these samples 
which only correspond to approximately 60,000 cells. 
This is near the lower limit for achieving clear signal over 
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background for single ChIPs in our laboratory (Addi-
tional file 2: Figure S1C).

We sequenced the two biological replicates at different 
depths ranging from approximately 10 million through 

to 55 million aligned reads (Fig.  2A). From the higher 
coverage replicate 2, we performed in silico downsam-
pling analysis from which we concluded that 15–20 mil-
lion reads was a good compromise between number of 

Fig. 2 A Summary table of samples sequenced in E14 mouse embryonic stem cells indicating replicate (Rep), ChIP, total aligned reads, percentage 
duplication and number of peaks. B Analysis pipeline for calling bivalent peaks. C Genome browser view of reChIP datasets including IgG–IgG 
reChIP control (grey), in‑line total H3K4me3 (green, rows 2 and 3), in‑line total H3K27me3 (red, rows 4 and 5) and bivalent reChIP for H3K4me3 
followed by H3K27me3 (K4‑K27, purple, rows 6 and 7) or vice‑versa (K27‑K4, blue, row 8 and 9). Two biological duplicates (R1 and R2) are shown 
for all but IgG–IgG libraries. CpG islands are denoted by orange bars. Bivalent regions are highlighted in yellow. D FRiP scores showing proportion 
of reads within peaks for each individual sample. IgG–IgG (grey) is shown for each set of peaks to get background levels. E Comparison of peaks 
called using our reChIP method compared to in silico overlap of independently derived total ChIP‑seq datasets F Single ChIP‑qPCR for H3K4me3 
(green) or H3K27me3 (red) at a H3K4me3 region (Gapdh1) or three bivalent regions (Tlx1, Pou4f1, Dlx3). Bottom panel shows corresponding reChIP 
controls: IgG–IgG (black), H3K4me3‑IgG (light green), H3K27me3‑IgG (light red). G Schematic of enrichment of first IP into the second IP when IgG 
antibody is used as the second IP in reChIP experiments. H reChIP‑qPCR analysis of a H3K4me3‑only region (Gapdh1) and three bivalent regions 
(Tlx1, Pou4f1 and Dlx3) in control (dark bars) versus cells treated with Tazemetostat (Taz) to reduce global H3K27me3 levels (light bars)
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high-confidence bivalent peaks and promoters detected 
(see below) versus sequencing cost (Additional file 2: Fig-
ure S1D, E). Supporting this, even with approximately 
10 million mapped reads in replicate 1 there were clear 
peaks in the reChIP samples (Fig. 2C). Moreover, down-
sampling independently derived total H3K4me3 and 
H3K27me3 datasets generated from approximately 10 
million cells had no negligible effect on the number of 
peaks called (Additional file 2: Figure S1F, G), suggesting 
it is the starting cell number, not the sequencing depth, 
that dictates data quality.

To get a measure of the specificity of our assay, we cal-
culated the fraction of reads in called peak regions (FRiP 
score) which is commonly used in ATAC-seq analysis to 
determine library quality. Notably, all reChIP samples 
had very high FRiP scores, while the corresponding IgG–
IgG scores for each of the peak sets were all less than 0.1 
(Fig. 2D). This indicates a very high and specific enrich-
ment and low background of these reChIP libraries.

Overlapping total H3K4me3 and total H3K27me3 
peaks in silico is often used as a proxy to define bivalent 
chromatin (Fig. 1A). Using this approach with the inde-
pendent 10 million cell datasets gives 7,188 putative biva-
lent regions, of which 5,299 (73.7%) overlapped a peak in 
both reChIP datasets (Fig.  2E). Crucially, 1,889 in silico 
called peaks are not validated in both reChIP directions 
indicating a high false-positive rate of 26.3% (Fig.  2E). 
This may be explained by allelic or cellular heterogeneity 
in mouse embryonic stem cells and highlights the impor-
tance of performing reChIP experiments to accurately 
measure bivalent chromatin.

A frequently used control in sequential ChIP experi-
ments is to use IgG as a second antibody [14, 22]. The 
rational for this is that the IgG should not enrich for any 
chromatin regions and thus the H3K4me3-IgG and/or 

H3K27me3-IgG reChIPs can be used to estimate non-
specific enrichment levels and control for signal carry-
through from the first ChIP into the second. To test the 
utility of these controls we performed H3K4me3-IgG 
and H3K27me3-IgG reChIP-qPCRs in mESCs (Fig.  2F). 
However, these reChIPs still showed substantial enrich-
ment at bivalent regions, while the IgG–IgG reChIPs 
did not enrich at any region (Fig. 2F). The enrichment at 
H3K4me3-IgG and H3K27me3-IgG reChIPs had a near 
identical enrichment pattern to the corresponding total 
H3K4me3 or H3K27me3 single ChIPs. Consistently, rea-
nalysis of published reChIP data in mESCs [14] showed 
near identical enrichment between total H3K4me3 and 
H3K4me3-IgG reChIP datasets (Additional file 2: Figure 
S1H). This suggests that the use of IgG as a secondary 
ChIP is subsampling the first enrichment (Fig. 2G), and 
so not a useful negative control.

As an alternative control for signal carry-over from 
the first ChIP into the second, we treated mESCs with 
the Ezh2 inhibitor Tazemetostat to deplete global lev-
els of H3K27me3 [25, 26]. As expected, single ChIP-
qPCR revealed total H3K27me3 at these regions was 
completely lost in the Tazemetostat-treated cells, while 
total H3K4me3 was unaffected (Fig.  2H). Importantly, 
in Tazemetostat-treated cells, the reChIP signal in both 
orientations was also depleted. This indicates that our 
reChIP protocol is specific for detecting bone fide biva-
lent chromatin and not affected by signal from the first 
ChIP carrying through into the second.

Identification of 8,789 bivalent peaks in mESCs
In our mESC datasets, we revealed 9,202 K4-K27 and 
16,400 K27-K4 reChIP peaks of which 8,789 were shared 
(Fig.  3A). We first investigated whether these peaks 
were similarly shared in total H3K4me3 and/or total 

Fig. 3 Identification of 8,789 bivalent regions in mouse embryonic stem cells. A Overlap between K27‑K4 (blue) and K4‑K27 (purple) reChIP 
datasets. The 8,789 overlapping peaks were classified as high confidence (overlap peak in both total H3K4me3 and total H3K27me3, blue), 
K4‑biased (overlap peak in only total H3K4me3, green), K27‑biased (overlap peak in only H3K27me3, orange) or low confidence (does not overlap 
peak in either H3K4me3 or H3K27me3, brown) using independent total H3K4me3 and H3K27me3 single ChIPs from approximately 10 million 
cells from GSE135841 [7]. B Box‑whisker plots (line shows median and box denotes 25th and 75th percentile, whiskers shown interquartile range 
multiplied by 2) showing  log2CPM/bp values for high confidence (top left), K4‑biased (top right), K27‑biased (bottom left) and low confidence 
(bottom right) peaks in independent total H3K4me3 and total H3K27me3 datasets from GSE135841 [7] (denoted by * and shaded grey background) 
or the in‑line total and reChIP datasets generated in this study. C Scatter plot showing  log2CPM/bp values for bivalent K4‑K27 (x‑axis) and bivalent 
K27‑K4 (y‑axis) datasets for all bivalent peaks highlighting high confidence (blue), K4‑biased (green), K27‑biased (orange) and low confidence 
(brown) peaks. D Relative distribution plot (each probe is weighted equally in final profile) of reads across peaks showing broader peak width 
for H3K27me3 peaks compared to H3K4me3 and reChIP peaks E 5‑state chromHMM models using pooled replicates for in‑line total H3K4me3, 
in‑line total H3K27me3 and K4‑K27 and K27‑K4 reChIP datasets showing emission (left) and transmission (second from left) parameters, enrichment 
across TSS ± 2kb and overlap with high confidence (blue), K4‑biased (green), K27‑biased (orange) and low‑confidence (brown) bivalent regions 
(right). F Genomic features associated with the bivalent regions. G, H Violin plots showing GC fraction G and GC‑CG dinucleotide frequency H 
within regions compared to random subset (width and GC‑content matched) of 8,789 genomic regions. All comparisons are statistically significant 
after multiple testing (Benjamini–Hochberg correction). I Motif enrichment for the four classes of bivalent peaks compared to the same background 
set used in G, H. Those with  log2enrichment over random sequences > 1 are shown, along with their enrichment scores and ‑log10Adjusted p‑value

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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H3K27me3 datasets. We initially stratified bivalent peaks 
using our in-line total H3K4me3 and H3K27me3 single 
ChIPs. We were unable to call many peaks using these 
in-line controls (Additional file 2: Figure S2A), although 
enrichment for total H3K4me3 and total H3K27me3 at 
bivalent regions was still observed (Fig. 3B). This is likely 
due to the low signal- to-noise seen in these datasets 
that correspond to approximately 60,000 cells (Fig.  2D). 
Therefore, as an alternative we stratified the reChIP peaks 
using independent total ChIPs from approximately 10 
million cells we previously generated using the same cell 
line [7]. When using these independently derived total 
ChIP-seq datasets, 5,299 of the 8,789 peaks (60%) over-
lapped peaks in both the total H3K4me3 and H3K27me3 
datasets (Fig. 3A). We termed these high-confidence pro-
moters to distinguish them from K4-biased (peak shared 
only in total H3K4me3, n = 855), K27-biased (peaks 
shared only in total H3K27me3, n = 2,240) or low con-
fidence (did not share a peak in either total H3K4me3 
or H3K27me3, n = 395) bivalent regions. As expected, 
high confidence bivalent regions had the highest enrich-
ment in reChIP datasets (Fig.  3B, C). Representative 
H3K4me3-only, high-confidence, K4-biased, K27-biased 
and low-confidence bivalent regions are shown in Addi-
tional file 2: Figure S2B-F.

The bivalent reChIP peaks were sharp and narrow 
(Fig. 3D), demonstrating the specificity of our approach 
in enriching for chromatin fragments containing both 
modifications of interest, and the absence of carry-over 
of the broader H3K27me3 signal, particularly in the K27-
K4 reChIP dataset. Orthogonal unbiased Hidden Markov 
Model approaches [27] using in-line totals and reChIPs 
identified chromatin states that matched our peak-cen-
tric classifications (Fig. 3E). From the 5-state chromatin 
model we observed that state 3 and state 5 were charac-
terised by high signal in both K4-K27 and K27-K4 data-
sets, as well as in-line controls. Both these states were 

enriched for our bivalent promoters, confirming the 
validity of these bivalent peak subclasses.

Consistent with previous studies [4, 5, 11], bivalent 
peaks were predominantly located at promoters or tran-
scription start sites (TSS) (80%) (Fig. 3F) which contained 
CpG islands (Additional file  2: Figure S2G). Sequence 
analysis revealed that bivalent regions had a higher 
GC content (Fig.  3G) and CpG dinucleotide frequency 
(Fig.  3H) than size and GC-content matched random 
set of genomic regions. Motif analysis revealed a strong 
enrichment for motifs associated with developmen-
tal regulation including ZSCAN4, HOX(A1,A6,A9,B7), 
PROX1, TGIF1, PAX4/9 and ZIC1/4/5 (Fig.  3I) in the 
high confidence bivalent regions. Approximately half 
(51.8%) of non-promoter bivalent peaks predominantly 
overlapped candidate enhancer elements (Additional 
file 2: Figure S2H), suggesting a potential regulatory role 
for this chromatin state at enhancer elements.

Catalogue of 3,918 high‑confidence bivalent gene 
promoters in mouse embryonic stem cells
Given the strong overlap between high confidence 
bivalent regions and gene promoters, we next analysed 
gene promoters specifically and found a total of 5,104 
bivalent gene promoters in mESCs (Fig.  4A). As some 
promoters contained more than one bivalent peak, to 
classify the promoters, we used a hierarchical classifi-
cation approach whereby promoters were first classed 
as high confidence if there were any high confidence 
peaks, then K4-biased followed by K27-biased and 
lastly low confidence (Fig. 4A). The majority of bivalent 
promoters were high confidence using the independent 
10 million cell totals for classification. To directly com-
pare our list of bivalent promoters with previous studies 
[14], we re-processed and classified the previous data-
sets using our pipeline (Additional file  2: Figure S3A), 
identifying 4,661 bivalent promoters. Importantly, our 

(See figure on next page.)
Fig. 4 Catalogue of 5,104 bivalent gene promoters in mouse embryonic stem cells. A Schematic outlining classification strategy for bivalent 
promoters. Full list of bivalent promoter classifications is available in Additional file 3: Table S3. B Overlap of all bivalent promoters (top) 
and high‑confidence bivalent promoters (bottom) between those identified in this study compared to previously published reChIP data (reanalyzed 
from  [14]). C Enrichment heatmaps showing CPM/bp normalised read densities for high confidence (top row), K4‑biased (second row), K27‑biased 
(third row) and low confidence (bottom row) bivalent promoters after scaling for all datasets analysed. Peaks were extended to 5kb upstream 
and downstream of the peak centre. Values surpassing the 99th percentile have been masked for visualisation.  107 samples refers to independent 
total H3K4me3 and total H3K27me3 datasets from GSE135841 [7] D, E Scatterplot showing  log2enrichment (CPM/bp) of D in‑line total H3K4me3 
(x‑axis) and in‑line total H3K27me3 (y‑axis) or E bivalent K4‑K27 (x‑axis) and K27‑K4 (y‑axis) reChIP datasets for all promoters highlighting those 
that overlap different classes of bivalent peaks defined using independent 10 million cell total H3K4me3 and total H3K27me3. F Box plot showing 
 log2 RPKM gene expression levels in mouse embryonic stem cells for four different classes of bivalent genes and those redefined from previous 
data (14). Expression of the bottom 20% and top 20% is shown as a comparison. Gene expression data reanalyzed from GSE135841. G Gene 
Ontology analysis showing overlap of representative enriched terms in the four classes of bivalent genes (top) and gene ratios and adjusted P‑value 
of selected terms (bottom). The full list of enriched terms is available in Additional file 3: Table S4. H  log2 fold change in gene expression levels 
for different classes of bivalent genes across 9 days of embryoid body differentiation. Each gene has been normalised separately across the time 
series, genes are grouped using correlation based clustering. Gene expression data reanalyzed from (GSE135841)
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Fig. 4 (See legend on previous page.)
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method detected 3,593 (77%) of these previously anno-
tated bivalent genes (Fig. 4B). Closer examination of the 
novel bivalent promoters captured with our improved 
method saw an enrichment of signal in previous reChIP 
datasets at these loci (Additional file  2: Figure S3B), 
suggesting that these bivalent regions are real and that 
the increased signal to noise with our method enables 
these novel bivalent promoters to be captured. Of note, 
however, is our improved sensitivity in detecting high-
confidence bivalent gene promoters. With the previous 
dataset, only 397 bivalent promoters were classified as 
high confidence in contrast to the 3,918 in our study, 
highlighting the increased sensitivity of our method.

The high confidence bivalent gene promoters had the 
highest levels of total H3K4me3 and total H3K27me3 
(Fig.  4C, D) and bivalent K4-K27 and K27-K4 reChIP 
enrichment (Fig.  4C, E). As expected, the high confi-
dence bivalent genes were expressed at low yet detect-
able levels in pluripotent mouse embryonic stem cells 
(Fig. 4F). In contrast the K4-biased bivalent genes had 
higher expression values, consistent with their enrich-
ment for total H3K4me3 but not total H3K27me3. The 
high confidence bivalent genes were enriched in devel-
opmental biological processes (Fig. 4G) of which many 
were shared with the K4-biased or K27-biased classes. 
In line with current models [4, 5, 28], high confidence 
bivalent genes were dynamically expressed upon differ-
entiation resolving to either an active or repressed state 
(Fig. 4H, Additional file 2: Figure S3C). Therefore, our 
data support the current model of bivalent chromatin 
marking developmental genes in embryonic stem cells, 
that are poised for future activation or repression.

Profiling bivalent chromatin dynamics in DPPA2/4 
knockout mouse embryonic stem cells
Lastly, we confirmed the sensitivity of our method 
to detect changes in bivalent chromatin by profiling 
mouse embryonic stem cells deficient for the epige-
netic priming factors DPPA2 and DPPA4 [7]. We and 
others recently reported that DPPA2/4 are required 
to maintain bivalent chromatin at a subset of bivalent 
genes which were termed Dppa2/4-dependent [6, 7] 
(Fig. 5A). To test the dynamic sensitivity of our method, 
we profiled two wild-type (WT) and two DPPA2/4 dou-
ble knockout (DKO) clones using our refined method. 
Our reChIP datasets recapitulated previous observa-
tions where total H3K4me3 and total H3K27me3 sig-
nals were lost at Dppa2/4-dependent bivalent genes yet 
retained at Dppa2/4-independent (stable) genes in the 
DPPA2/4 knockout cells (Fig. 5B). Importantly, this was 
also observed in the both bivalent K4-K27 and K27-
K4 reChIP directions, highlighting the ability of our 
improved method to detect dynamics of bivalent chro-
matin between different conditions.

Given the improved sensitivity of our method we next 
sought to determine whether there may be more wide-
spread changes in chromatin bivalency in DPPA2/4 
knockout ESCs compared to what had been previously 
reported [6, 7]. Firstly, we called peaks for the reChIP 
samples. This revealed 9,225 peaks that were bivalently 
marked in either wild-type and/or DPPA2/4 DKO cells 
in both reChIP directions (Additional file 2: Figure S4A) 
of which 5,713 were high-confidence in either WT and/
or Dppa2/4 DKO cells. To determine if any peaks were 
gained or lost specifically in Dppa2/4 DKO cells, we 
performed differential enrichment test using EdgeR 

Fig. 5 Profiling bivalent chromatin dynamics in DPPA2/4 knockout mouse embryonic stem cells. A Schematic depicting how DPPA2/4 
maintain both H3K4me3 and H3K27me3 at a subset of bivalent genes, priming them for future activation. Loss of DPPA2/4 leads results in loss 
of both H3K4me3 and H3K27me3 and gain of repressive DNA methylation (black circles). B Genome browser view of wild type (WT, dark) 
and DPPA2/4 double knockout (DKO, light) embryonic stem cell clones. Two clones of each genotype are shown. In‑line total H3K4me3 (green), 
in‑line total H3K27me3 (red) and bivalent K4‑K27 (purple) and K27‑K4 (blue) reChIP data tracks are shown. Dppa2/4‑dependent promoters (lose 
bivalency when DPPA2/4 absent) are denoted by orange bars. Stable promoters are denoted by blue bars. C Scatterplots showing enrichment  (log2 
CPM/bp) for K4‑K27 (top) and K27‑K4 (bottom) reChIPs between wild type (x‑axis) and Dppa2/4 double knockout (DKO) (y‑axis) across all bivalent 
peaks (grey). Highlighted are those differentially enriched in the K4‑K27 (purple), K27‑K4 (blue) or both (orange) reChIP datasets. D box plot showing 
normalised enrichment (CPM/bp) of previously annotated Dppa2/4‑dependent gene promoters (light orange) and novel Dppa2/4‑dependent 
gene promoters (dark orange) across the different datasets and clones. As a comparison a subset of stable Dppa2/4‑independent gene promoters 
(bivalent promoters that do not change) are shown (blue). E Enrichment heatmaps showing normalised enrichment of previously annotated 
Dppa2/4‑dependent genes (top, light orange) and novel DPPA2/4‑dependent genes (middle, dark orange) across the different datasets averaging 
across clones. As a comparison a subset of Dppa2/4‑independent genes (bivalent promoters that do not change) are shown (bottom, blue). F 
 Log2 RPKM expression levels of original (light orange), novel (dark orange) Dppa2/4‑dependent genes and high confidence but not differentially 
enriched (blue) genes across the different datasets between wild type (WT) and DPPA2/4 double knockout (DKO) cells. As a comparison the bottom 
20% (light grey) and top 20% (dark grey) expressed genes are shown. G  log2 normalised expression levels of previously annotated (light orange, 
top), novel (dark orange, middle) Dppa2/4‑dependent genes compared to stable bivalent genes (blue, bottom) during 9 days of mouse embryoid 
body differentiation in wild type cells (left) and DPPA2/4 double knockout cells (right). Each gene has been normalized separately across the time 
series to aid visualisation of expression patterns, genes are grouped using correlation based clustering

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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(Additional file  3: Table  S5, see methods). There were 
566 differentially enriched bivalent regions in both the 
K27-K4 and K4-K27 reChIP datasets (Fig.  5C). Con-
sistent with previous results [6, 7], all the differentially 
enriched peaks were downregulated or absent in the 
DPPA2/4 DKO cells and there were no upregulated peaks 
(Fig.  5C). This included promoters previously described 
as Dppa2/4-dependent [7], but also novel Dppa2/4-
dependent bivalent regions detected using the increased 
sensitivity of our method.

Promoter-centric analysis revealed differential enrich-
ment of both bivalent K4-K27 and K27-K4 at 266 gene 
promoters of which 238 were high confidence (Additional 
file 2: Figure S4A). When compared to those previously 
reported [7], we confirmed 141 Dppa2/4 dependent pro-
moters and identified an additional 125 novel Dppa2/4-
dependent bivalent promoters. The newly identified 
(novel) Dppa2/4-dependent promoters had similar lev-
els of enrichment of total H3K4me3, total H3K27me3 
and K4-K27 and K27-K4 reChIPs compared to previ-
ously known (original) Dppa2/4-dependent promoters 
(Fig. 5D, E). Both original and novel Dppa2/4-dependent 
bivalent promoters were similarly expressed in undiffer-
entiated ESCs (Fig. 5F), at lower levels than stable biva-
lent promoters which did not lose bivalency. Moreover, 
similar to original Dppa2/4-dependent promoters [7], 
the novel Dppa2/4-dependent promoters also failed to 
be upregulated upon embryonic stem cell differentiation 
while stable bivalent promoters remained dynamically 
expressed (Fig. 5G). In summary, this proof-of-principle 
experiment supports the ability of our method to detect 
dynamic changes in bivalent chromatin landscapes with 
high sensitivity and resolution.

Discussion
Here, we present a refined low-input sequential ChIP-
reChIP method to robustly and accurately map bivalent 
chromatin genome-wide. Compared to previously pub-
lished methods and datasets our approach has several 
advantages. Firstly, the method requires a substantially 
reduced input number of cells with just 2 million cells 
sufficient to generate high quality H3K4me3-H3K27me3 
and H3K27me3-H3K4me3 reChIP datasets along with 
in-line total H3K4me3, total H3K27me3 and IgG–IgG 
controls. This is a dramatic improvement from the typi-
cally 10 million cells or more needed per dataset in other 
methods [13, 14, 22], and will facilitate the investiga-
tion of these domains in samples where cell numbers are 
limiting. Next, the data generated has very clear peak 
enrichments with low background enabling standard 
peak-calling and bioinformatic pipelines to be used to 
call and classify bivalent regions. While we optimized 

this method in mouse embryonic stem cells, we envisage 
its widespread applicability in many different cell lines 
and tissues.

In this study, we reveal 8,789 bivalent regions corre-
sponding to 5,104 promoters in mouse embryonic stem 
cells. Consistent with our current understanding of 
bivalent chromatin, most bivalent promoters contained 
CpG islands and were associated with genes involved 
in developmental processes. Of the non-promoter biva-
lent peaks, we observed many were enriched at candi-
date enhancer regions, suggesting a potential regulatory 
role for bivalent chromatin at these elements. However, 
due to the reported cross-reactivity of the H3K4me3 
antibody used in this study with H3K4me2 [24], the 
enhancer-associated bivalent chromatin regions may 
reflect H3K4me2-H3K27me3 co-occurrence as opposed 
to the classic promoter-associated H3K4me3-H3K27me3 
combination.

A key step in all chromatin immunoprecipitation 
experiments is generating high quality mononucle-
osomes. The method presented here uses MNase diges-
tion, however, we have successfully performed bivalent 
reChIP experiments from similar number of cells using 
sonication to shear chromatin with very similar results 
(Additional file  2: Figure S1A, B). Importantly MNase/
sonication conditions must be optimized for each cell 
type to ensure predominantly mononucleosome distri-
bution. Over-digested chromatin may not perform well 
in immunoprecipitation reactions, while under-digested 
chromatin will confound downstream analysis as it 
decreases the genomic resolution that can be analysed. 
In our protocol, we implemented a pre-clearing step 
and found that this drastically improved the signal-to-
noise in our experiments. By pre-incubating chromatin 
with dynabeads, non-specific binding of chromatin frag-
ments to the beads is reduced, removing background 
and facilitating lower input amounts. Our protocol uses 
many wash rounds following the immunoprecipitation 
reactions. We found these to be critical to achieve low 
background levels. Lastly, we also tested different elu-
tion conditions and found that while both SDS-based and 
peptide-elution approaches behaved similarly, peptide 
competition elution had higher background levels at long 
incubation times. Either method could be used in reChIP 
protocols, however, due to cost and availability we opted 
for SDS-based elution followed by buffer exchange and 
chromatin concentration prior to the second immuno-
precipitation reaction.

Controls are an important part of any experimental 
design. The IgG–IgG reChIP control provides an esti-
mation of the level of background non-specific binding. 
When possible, we recommend running a diagnostic 
qPCR for known bivalent regions and controls prior to 
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library preparation and sequencing. If the IgG–IgG 
reChIP pulldown amounts are high by qPCR analysis 
this often indicates the reChIP experiment has not per-
formed well. The IgG–IgG can also be used as normali-
sation for peak calling in addition to or instead of input 
samples. Perhaps the most critical control is to perform 
the reChIP experiment in both orientations (H3K4me3 
followed by H3K27me3 and vice versa). Our analysis 
revealed several thousand peaks that are detected in 
one but not the other reChIP dataset, likely due to the 
first immunoprecipitation signal carrying through non-
specifically from the first immunoprecipitation into the 
second. This is a common caveat in sequential ChIP 
experiments and extremely hard to completely eliminate. 
Therefore, to control for this, any reChIP experiment 
should always be performed in both orientations to be 
sure that the detected peaks are indeed due to the pres-
ence of both marks on the chromatin.

We also explored other controls that have been used 
by other studies. One commonly used control is to per-
form the first immunoprecipitation using H3K4me3 or 
H3K27me3 and then follow this with a second immuno-
precipitation using IgG [22]. The rationale behind this is 
that IgG is non-specific and so there should be no final 
overall enrichment. However, in our experience, we 
found that H3K4me3-IgG or H3K27me3-IgG reChIPs 
mirrored the first immunoprecipitation (Fig.  2F, Addi-
tional file  2: Figure S1H). IgG immunoprecipitation will 
randomly sample from the pool of chromatin and so if 
performed as the second immunoprecipitation, this will 
subsample the already enriched H3K4me3 or H3K27me3 
pool of chromatin (Fig. 2G). Consequently, we have not 
found this to be a useful control in our experiments or 
analyses. Instead, to control for signal carry-over from 
the first IP into the second, we treated cells with the 
Ezh2 inhibitor Tazemetostat which results in global 
loss of H3K27me3 levels, and found that this depleted 
the reChIP signal in both directions at bivalent regions 
(Fig. 2H), indicating we are indeed enriching for bone fide 
bivalent chromatin in our assay.

When assessing bivalent chromatin, many stud-
ies have performed in silico merges of independently 
derived H3K4me3 and H3K27me3 datasets. Theoreti-
cally this is unable to distinguish between bone-fide 
bivalent chromatin from allelic or sample heteroge-
neity. In our data, 26.3% of bivalent regions identified 
this way are false-positives and were not captured by 
sequential reChIP in both directions. This is simi-
lar to false-positive rates described of 25% in mouse 
ESCs [14] and 14% in human T-cells [13]. Not only 
does the in silico overlap approach have a high false-
positive rate, it also misses bivalent regions. We also 
reveal thousands of additional bivalent regions that 

have a peak in both reChIP orientations but not in in 
silico estimations. These false-negative bivalent regions 
may be bivalent in only a subset of cells or alleles and 
thus only detectable through the sequential enrichment 
possible through reChIP protocols. Thus, our results 
demonstrate the importance of performing reChIP to 
profile heterogeneous or complex samples containing 
multiple cell types and states. Whether this is the case 
in other cell types remains unknown.

Conclusions
Our refined sequential reChIP method provides a use-
ful resource for the wider epigenomics and chromatin 
biology fields. The optimized protocol accurately and 
robustly detects bivalent regions in mouse embryonic 
stem cells from as little as 2 million cells. Consistent with 
current models, the bivalent regions occur predominately 
at CpG-rich promoters that are dynamically regulated 
during differentiation. Lastly, our analysis of DPPA2/4 
knockout cells confirms the ability of our method to 
detect changes in the bivalent chromatin landscape. Our 
protocol uses readily available reagents and equipment 
found in most molecular biology laboratories and can be 
adapted to profile this unique form of epigenetic plastic-
ity in any cellular context with the confidence that any 
conclusions are free from potential confounding effects 
of cellular heterogeneity. This method will facilitate accu-
rate profiling of the dynamics of bivalent chromatin in 
other contexts, greatly improving our understanding of 
this unique form of epigenetic plasticity.

Methods
Cell culture
Mouse embryonic stem cells were cultured on feeder-free 
gelatinised plates at 37 ℃, 5%  CO2 using standard serum/
LIF conditions (high-glucose DMEM supplemented 
with 15% fetal bovine serum, 1 × GlutaMax, 1 × penicil-
lin, 1 × streptomycin, 0.1mM nonessential amino acids, 
50mM beta-mercaptoethanol and LIF (made in house 
in HEK293 cells and titrated for optimal ESC growth)). 
Cells were regularly tested for mycoplasma contamina-
tion using the Mycoplasma PCR Detection Kit (abcam 
ab289834). E14 mouse embryonic stem cells were a gift 
from W. Reik’s laboratory. Wild type and DPPA2/4 dou-
ble knockout clones were generated in [7, 29] and cul-
tured as above. To deplete global H3K27me3 levels, cells 
were treated with 10μM Ezh2 inhibitor Tazemetostat 
(GSK126) for 7 days, which has been previously shown 
to deplete H3K27me3 in mESCs [26]. Cells were not 
authenticated. Cells were cultured at least 2 passages 
from thawing prior to chromatin collection. Biological 
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replicates were collected from different passages on sepa-
rate days.

Cell collection and fixation
Cells were seeded on multiple plates and grown to near-
confluency. At time of harvest one plate was used to 
determine cell concentration. Cells on remaining plates 
were washed with PBS and fixed with 1% methanol-free 
formaldehyde (Thermo Scientific 28908) in DMEM at 
room temperature for 8 min, quenched with 0.125M gly-
cine and scraped off cell culture dishes. Cell slurry was 
washed with ice-cold PBS, resuspended in PBS/EDTA, 
aliquoted to 2 ×  106 cells per vial, spun down and snap 
frozen on dry ice for storage at –80°C. Cell pellets were 
used within 6 months of collection.

Sequential chromatin immunoprecipitation
A detailed protocol accompanies this paper (Additional 
file  1). Pellets of 2 ×  106 cells were lysed with 100μl NP 
buffer (10mM TrisHCl pH7.4, 1M sorbitol, 50mM NaCl, 
5mM  MgCl2, 0.075% IGEPAL) freshly supplemented with 
0.385mM beta-mercaptoethanol (Gibco 21985–023) and 
1.8mM spermidine (Sigma 05292) on ice. Chromatin was 
digested using 2.4μl per sample of MNase (NEB) for 37 ℃ 
for 15 min with gentle shaking at 600rpm. Reactions 
were stopped with 26.4μl STOP buffer (50mM EDTA, 
0.5% TritonX-100, 0.5% sodium deoxycholate), incubated 
on ice for > 5 min, vortexed and sample diluted to 580μl 
in ChIP buffer (20mM TrisHCl pH8.0, 2mM EDTA, 
150mM NaCl, 0.5% Triton X-100) containing protease 
inhibitor cocktail (cOmplete EDTA-free Protease Inhibi-
tor Cocktail, Roche). For sonication comparisons, pellets 
of of 2 ×  106 cells were lysed with 100μl NP buffer, diluted 
to 580μl in ChIP buffer and sonicated using the Covaris 
ME220 (water temperature 4°C, Peak power 75W, Duty 
factor 75%, cycles per burst 1000, Run time 20 min). 
Chromatin digests/sonications were regularly confirmed 
through gel electrophoresis to ensure predominantly 
mononucleosomal fragments.

Chromatin was precleared by adding 20μl prewashed 
Protein A dynabeads (Invitrogen 10002D) and incubat-
ing at 4°C on rotator for > 2 h. 5% of the sample was set 
aside as input, the remaining chromatin was divided 
amongst separate tubes containing protein A dynabeads 
pre-incubated with either 2μl anti-H3K4me3 (Millipore 
07–473), 10μl anti-H3K27me3 (CST 9733) or 1μg IgG 
(Invitrogen) antibodies. Cell dilution experiments in 
Additional file  2: Fig. S1C were performed using anti-
H3K27me3 antibody from Active Motif (91167). We note 
that the Millipore H3K4me3 antibody used in this study 
has been reported to also detect H3K4me2 [24], and so 
it is possible we are also deteting H3K4me2-H3K27me3 

bivalent nucleosomes. The first immunoprecipitation 
was performed overnight at 4 ℃ with rotation. Antibody-
chromatin complexes were washed 3 × in low salt buffer 
(20mM TrisHCl pH8.0, 2mM EDTA, 150mM NaCl, 1% 
Triton X-100, 0.1% SDS), 3 × in high-salt buffer (20mM 
TrisHCl pH8.0, 2mM EDTA, 500mM NaCl, 1% Triton 
X-100, 0.1% SDS), 2 × in LiCl buffer (0.35M LiCl, 1% 
IGEPAL, 1% sodium deoxycholate, 1mM EDTA, 10mM 
Tris–HCl pH7.5) and 2 × in TE on ice. For single-ChIPs 
complexes were eluted in 20-50μl elution buffer (10mM 
TrisHCl pH8.0, 1mM EDTA, 1% SDS) for 65 ℃ for 2.5 
hours to overnight to reverse cross-links, treated with 
RNAseA (NEB) for 30 min at 37 ℃, proteinase K (NEB) 
for 1 hour at 37 ℃, and purified using NEB DNA puri-
fication columns. For sequential ChIPs, complexes were 
eluted in 100μl elution buffer containing fresh protease 
inhibitor cocktails for 30 min at 37 ℃ with shaking. 10% 
sample was set aside as total in-line control ChIPs. To 
dilute SDS volume was increased to 300μl with ChIP 
buffer containing protease inhibitor cocktails and puri-
fied using Amicon Ultra-0.5ml 3KDa filter columns 
(Millipore) according to manufacturers’ instructions, 
recovering approximately 50μl chromatin per IP reac-
tion. The second immunoprecipitation was performed 
using the alternate antibody or IgG control overnight at 
4 ℃ with rotation and chromatin washed and eluted as 
previously. In-line control, input and ChIP samples were 
heated at 65 ℃ for 2.5 h to reverse cross-links, treated 
with RNAseA (NEB) for 30 min at 37 ℃, proteinase K 
(NEB) for 1 h at 37 ℃, and purified using Ampure beads 
(Beckman Coulter) at a 1:1.8 ratio.

Peptide elution experiments
Peptide elution experiments were performed by resus-
pending washed dynabead-antibody-chromatin com-
plexes in 200μl peptide elution buffer (50mM Tris–HCl 
pH8.0, 5mM EDTA, 100mM NaCl, 0.5% sodium deoxy-
cholate, 0.1% SDS) supplemented with protease inhibi-
tors containing 10μg/ml H3K4me3 (abcam ab1342) or 
H3K27me3 peptides (abcam ab1782) on rotator at 4 ℃ 
for 3 h or overnight. For the IgG control sample 10μg/ml 
of a 1:1 mix of H3K4me3 and H3K27me3 peptides was 
used.

qPCR analysis
qPCR analysis of purified ChIP DNA was performed in 
technical duplicate for each primer pair using 2 × SYBR 
mastermix (Applied Biosystems Cat#4385612) according 
to manufacturer’s instructions in a 6-10μl reaction using 
the primer sequences as below.

H3K4me3-only controls.
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Klf4_forward GAA AGT CCT GCC ACG GGA A.
Klf4_reverse CTG GAT GAG TCA CGC GGA TAA.
Dppa2_forward GCC AAA CAC AGA CTA CGC TA.
Dppa2_reverse AAC CTA CAC TAT TTT CGC CAG GAT .
Dppa4_forward TTC TCA AGA TGG AGA CTG CTGG.
Dppa4_reverse TGG CTA TAC TCA AAA ATG AGG GGC .
Gapdh1_forward AGT GTG CAC CAA GGA CAT CCAG.
Gapdh1_reverse CCC ATT TTA CTC GGG AAG CAG.

H3K27me3 only controls.
Gm6116_forward GCG GTG AGT ACT CTG CTC AA.
Gm6116_reverse CCA TCC AGT ACT GTG GGC TC.
K27me_R1_forward TGC CTG CAA TTC GTC CTC TT.
K27me_R1_reverse ACG AAG CAG CCG TGT AAG AA.
Meis2_forward TGC CAT TAC TTG AGA CAG AGC ACC 

AC.
Meis2_reverse GAG GGA ACA TGA GTG GTC .

Bivalent regions.
Csf1_forward GAG CAC CGA GGC AAA CTT TC.
Csf1_reverse GAG CCA GGG TGA TTT CCC AT.
Lmo1_forward AAG CGG GCT CTA ATT ACC CG.
Lmo1_reverse CTG CGA AGT GCT TCA CTC CT.
Pou4f1_forward CAA AGT GAG GCT GCT TGC TG.
Pou4f1_reverse GCG GAC TTT GCG AGT GTT TT.
Sox6_forward CGA TAC AGA AGC GCA GGC TA.
Sox6_reverse AGG GGC CCT TGT AGA TGG AT.
Colgalt2_forward ATG AGG ACG GAG AGG AAA CG.
Colgalt2_reverse CAT CCT GCT CTT GGG GTA GT.
Pfsd4a_forward CTA TCC CTC TCC AGT GCC AG.
Pfsd4a_reverse GAG TGA TCC GTG GCA ATT CG.
Rnf149_forward GAA GAG ACA ATG CGA GCC TG.
Rnf149_reverse TCT ACA GAT TCC CGA ACC CG.
Mcmdc2_forward GCA ACA TAG CCA GGT CGA AG.
Mcmdc2_reverse CCC AAA CAC CTC AGG ACT CA.
Tlx1_forward CAT ACA CCT CGG CCT TCC TC.
Tlx1_reverse GCA CGG AGC TCA GGG AAT AA.

Library preparation
Sample DNA concentrations were quantified using Qubit 
and libraries prepared using NEBNext Ultra II DNA 
library preparation kit (NEB) according to the manufac-
turer’s instructions with the following modifications. To 
achieve optimal final DNA concentrations, samples were 
re-quantified on the Qubit 3.0 following PCR amplifica-
tion and an additional 3 cycles (if concentration close to 
20ng/μl) or 5 cycles (if concentration <  < 20ng/μl) per-
formed if needed to obtain the ideal final library concen-
tration of 20-100ng/μl. A maximum of 20 cycles was used 
for any sample. Note that due to the low amounts of DNA 
obtained from the protocol, concentration measurements 

prior to amplification typically occur at the lower limit of 
detection and even if zero values are obtained, libraries 
can often still be generated. Libraries were purified using 
NEBNext sample purification beads and checked using 
Agilent Tapestation 2200 or 4150 on a high-sensitivity 
tape (HSD1000) aiming for a final library with dominant 
peak size of 270bp. Libraries were pooled and sequenced 
using the Illumina NextSeq500 platform with a target 
read depth of 20 million SE75bp reads per sample except 
for replicate 2 which was intentionally sequenced deeper.

Data pre‑processing
Single-end reads in fastqs were trimmed and filtered for 
quality (phred33 score > 20) and length (> 20bp) using 
TrimGalore (https:// github. com/ Felix Krueg er/ TrimG 
alore) v0.6.6 in single-end mode. Trimmed and qual-
ity filtered reads were then aligned to the mm10 mouse 
genome (GRCm38.p6) using bwa-mem [30] (bwa v0.7.13) 
with default parameters. Alignments were then con-
verted to the bam format and indexed using samtools 
v1.9. Duplicate alignments were then marked with using 
MarkDuplicates (picard v2.6.0, https:// broad insti tute. 
github. io/ picard/) and re-indexed with samtools [31]. big-
Wig files containing CPM/bp normalised coverage values 
for each sample were derived from duplicate marked bam 
files using bamCoverage (DeepTools v3.5.0 [32]) whilst 
excluding ENCODE blacklisted genomic regions [33] for 
the mm10 genome (v2).

Software and datasets
Downstream data analyses were conducted using R 
(v4.1.2) or SeqMonk (v1.48.1) (http:// www. bioin forma 
tics. babra ham. ac. uk/ proje cts/ seqmo nk). In-line total 
H3K4me3, in-line total H3K27me3, IgG–IgG, bivalent 
K4-K27 and bivalent K27-K4 datasets for E14 ESCs, 
Dppa2/4 WT clones and Dppa2/4 DKO clones were 
generated in this study. Single-ChIP-seq data from 10 
million cells of H3K4me3, H3K27me3 and input con-
trols were obtained from [7] (GSE135841). Previously 
published single H3K4me3 and H3K27me3 ChIP, and 
H3K4me3-IgG, H3K27me3-IgG, H3K4me3-H3K27me3 
and H3K27me3-H3K4me3 reChIP datasets were reana-
lyzed from [14] (GSE99530). Gene expression data were 
obtained from [7] (GSE135841).

ChIP and reChIP data analysis
Peak calling for in-line total H3K4me3, total H3K27me3 
and K4-K27 and K27-K4 reChIP datasets were per-
formed separately for the two biological replicates using 
EPIC2 (v0.0.52) [34] (–bin-size 100 –gaps-allowed 1 –
fragment-size 147 – false-discovery-rate-cutoff 0.05) 
using IgG–IgG as control. EPIC2 is an ultrafast imple-
mentation of the original SICER peak calling algorithm 

https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk
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which performs well for diffuse histone marks. For 
total H3K4me3 and total H3K27me3 data derived from 
10 million cells, input DNA was used in peak call-
ing. Peaks were filtered  (log2FC > 2 and FDR < 0.05) and 
regions overlapping blacklisted regions from the mm10 
ENCODE blacklist [33] were excluded. To derive com-
monly enriched regions, intersections between replicates 
were performed using the GenomicRanges R package 
(intersect, subsetByOverlaps) (v1.46.1). To derive in silico 
bivalent regions total H3K4me3 and total H3K27me3 
peak sets were intersected once more. Similarly, K4-K27 
and K27-K4 reChIP peaks were also intersected to derive 
reciprocally bivalent regions. For differential expression 
analyses, a consensus peak set was first derived using 
the GenomicRanges R package (Reduce and union). 
Reads were counted at consensus peaks using the csaw 
R package (regionCounts) (v1.28.0) [35]. Normalisation 
factors for each sample were pre-computed by binning 
the genome into 10kb windows, generating counts for 
each 10kb window and performing trimmed mean of 
M-values (TMM) normalisation using csaw (normFac-
tors) to adjust for compositional biases. Differential 
enrichment was then performed using EdgeR (estimate-
Disp > glmQLFit(robust = TRUE) > glmQLFTest) (v3.36.0) 
in which double knockout clones (DKO) were contrasted 
with wild-type clones (WT) for each reChIP (K4-K27, 
K27-K4). Benjamini–Hochberg p-value corrections for 
multiple testing were applied to these contrasts. Signifi-
cant differential enrichment was defined as a region that 
had |log2FC|> 1 and FDR < 0.05.

Peaks were annotated using HOMER (annotatePeaks.
pl) (v4.11) which by default denotes promoter-TSS 
regions as 1kb upstream and 100bp downstream of tran-
scription start sites (TSS). Promoter-TSS regions were 
re-defined as the region spanning 1.5kb upstream and 
1.5kb downstream of transcriptional start sites (TSS). 
For hierarchically classifying promoter-TSSs, we assigned 
each unique promoter-TSS to a singular peak based on 
their classification (HC > K4b > K27b > LC). CpG island 
and ENCODE cis-regulatory element intersections were 
performed using the GenomicRanges R package (findO-
verlaps) and were obtained for the mm10 genome using 
the UCSC table browser [36].

For each peak set, the fraction of reads in peaks (FRiP) 
was calculated by first counting the reads in each bam 
at each peak with the csaw R package (v1.28.0) and then 
dividing the sum of these counts by the total number of 
reads in the library were performed using samtools (idx-
stats) (v1.9) and sambaba (view –subsampling-seed 1) 
(v0.6.7).

In SeqMonk (v1.48.1), aligned read (bam) files were 
imported using standard parameters (no deduplication, 
MAPQ > 20, primary alignments only), extending reads 

by 200 bp. Normalised read densities within peaks were 
calculated as  log2-transformed read counts in peaks cor-
rected for library size (counts per million reads) and peak 
length (per bp) yielding CPM/bp. Box plots represent 
median (horizontal line), 25th–75th interquartile range 
(box) and 2 × the 25th-75th interquartile range (whisk-
ers) with outliers shown as dots. Scatterplots compare 
 log2CPM/bp values for either peaks called using EPIC2 
(Figs. 3C, 4D, E, 5C) or 200bp sliding window bins across 
the genome (Additional file 2: Figure S1H). Relative dis-
tribution probe trend plots weight each probe equally 
in the final average profile at 1bp resolution. Per-probe 
normalized hierarchical clustered heatmaps are ordered 
using correlation based clustering to group probes 
(genes) with similar shaped quantitation profiles. Values 
are normalised across the set of samples (median value 
for each gene is subtracted from the actual value for that 
gene in each of the samples) to enable easier comparison.

Gene expression analysis
Data were trimmed with Trim Galore (v0.4.4, default 
parameters) and mapped using HiSat2 v2.1.0 to the 
mouse GRCm38 genome assembly. RNA-sequencing 
analysis was performed using SeqMonk software using 
inbuilt RNA-sequencing quantification pipeline. Expres-
sion values represent  log2 transformed quantification of 
merged transcripts counting opposing-strand reads over 
exons. Gene expression heatmaps are normalized for 
each transcript independently by subtracting the median 
value for that transcript across all samples from each 
sample value. Bean plots represent smoothed density of 
all points over the bandwidth window corresponding to 
5% of the total quantitation range displayed in the plot.

Genomic enrichment heatmaps and trackplots
To generate genomic enrichment heatmaps and track-
plots bigWigs containing CPM/bp normalised read den-
sities were imported to R using the rtracklayer package 
(import.bw) (v1.54.0). For heatmaps, each peak region 
was first extended to 5kb upstream and downstream and 
then split into 100 equally sized bins using the Genomi-
cRanges R package (resize) (v1.46.1) [37]. The average 
CPM/bp was calculated for each bin for each ChIP using 
the EnrichedHeatmap R package (normalizeToMatrix) 
(v1.24.0) [38]. Bins with values surpassing the 99th per-
centile of all bins within each ChIP were masked (i.e., 
assigned the 99th percentile value) to eliminate extreme 
outliers from affecting colour scales. Each bin was then 
scaled relative to the highest value (so values range 
between 0 and 1 and represent the relative enrichment of 
signal across all regions). Enriched heatmaps were then 
plotted using the same package (EnrichedHeatmap), 
with the average bin value plotted as continuous curves 
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atop each heatmap. Genomic track plots were plotted 
using the rtracklayer (v1.54.0) [39] and Gviz R packages 
(v1.38.4) [40]. CpG island annotations for the mm10 
genome were retrieved from the UCSC table browser 
[41].

Gene ontology
The enrichment of gene ontologies across subclasses of 
genes with bivalent promoters (HC, K4b, K27b, LC) were 
determined using the clusterProfiler R package (v4.2.2) 
[42]. Gene symbols were first converted to entrez IDs 
using the biomaRt R package (v2.50.3) [43] and were 
input alongside a background list of all expressed genes 
to clusterProfiler (compareCluster) against the Gene 
Ontology (GO) Biological Processes (BP) database [44]. 
Significantly enriched GO terms were those with a Ben-
jamini–Hochberg (BH) corrected p-value < 0.05, had at 
least 10 genes present in the pathway and a gene ratio 
(genes in subclass/genes in pathway) > 0.01. Representa-
tive pathways were plotted using the ggplot2 R package 
(v3.3.5) [45].

Motif analysis
Enrichments for transcription factor binding motifs in 
peak subclasses were calculated using the monaLisa R 
package (v1.0.0). Position weight matrices for transcrip-
tion factor binding sites in vertebrates were retrieved 
from the JASPAR2020 database [46]. Binned motif 
enrichment for peak subclasses (HC, K4b, K27b, LC) was 
then conducted in monaLisa [47] (calcBinnedMotifEnrR) 
while including randomised sequences modelled off the 
width and re-sampled based on the GC-content of all 
bivalent peaks (made with the regioneR R package (creat-
eRandomRegions) (v1.26.1) [48] and nullranges R package 
(matchRanges) [49] providing GC-content as a covariate) 
(v1.0.1) as the background. Significant enrichments were 
those with a BH-adjusted p-value < 0.05 and  log2-fold 
enrichment over random sequences > 1. Motif heatmaps 
were also plotted using monaLisa (plotMotifHeatmaps).

CG content
CG content was determined for peak subclasses (HC, 
K4b, K27b, LC) as well as the same random control 
sequences above using the Biostrings R package (oligo-
nucleotideFrequency) (v2.62.0) [50] by first calculating all 
oligonucleotide frequencies and then by summing C and 
G frequencies. All dinucleotide frequencies were calcu-
lated using monaLisa (plotBinDiagnostics) and then GC/
CG dinucleotide frequencies were summed. These data 
were plotted using ggplot2, and the significance of com-
parisons were determined using pairwise t-tests followed 
by BH-adjustments of p-values to account for multiple 
comparisons.

Chromatin state discovery
Bam files were first converted to the bed format using 
bedtools (bamtobed) (v2.27.1) [51]. bed files were then 
partitioned into 200bp bins and then binarized for the 
determination of bin-specific enrichments (providing 
replicate in-line ChIPs or reChIPs and using IgG–IgG 
as the control) using ChromHMM (BinarizeBed) (v1.24) 
[52]. Hidden Markov Models were then used to dis-
cover chromatin states across these genomic bins using 
ChromHMM (LearnModel) using a 5-state model. Seg-
ment bed files containing chromatin state annotations 
were then overlapped with our bivalent peak annota-
tions (HC, K4b, K27b, LC), where each peak was then re-
assigned to the chromatin state with the highest degree 
of overlap using the GenomicRanges R package (findO-
verlaps and pintersect) (v1.46.1) [37]. Heatmaps contain-
ing emission probabilities, transition probabilities, TSS 
enrichments and annotation overlaps from the Chrom-
HMM model were then plotted using the ComplexHeat-
map R package (v2.10.0) [53].

Software
Plots were generated using SeqMonk software (v1.48.1) 
or R (v4.1.2/RStudio v2022.02.0 + 443) and edited in Ink-
scape. Schematic figures were made with BioRender.com 
with publishing licence agreement numbers RM25U-
DOLG3, UQ25UDOE0U and MC25UDOPHO.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13072‑ 024‑ 00527‑9.

Additional file 1: Detailed step‑by‑step protocol for ChIP‑reChIP.

Additional file 2: Figure S1. (A) Agarose DNA gel showing chromatin 
fragmented with MNase versus sonication (B) ChIP‑qPCR for single (top) 
and reChIP (bottom) experiments using IgG (Invitrogen, black), H3K4me3 
(CST 9751, green) and H3K27me3 (CST 9733, red) antibodies on sonicated 
chromatin. An active H3K4me3 region (Gapdh1), inactive H3K27me3 
region (Meis2) and 6 bivalent regions are assayed, four of which are novel 
to this study. (C) Single ChIP‑qPCR analysis using IgG (Invitrogen, left), 
H3K4me3 (Millipore 07‑473, middle) and H3K27me3 (Active Motif 91167, 
right) antibodies with variable number of cells ranging from 1 million 
(1M), through to 2,000 (2K). Five primer sets were used including three 
H3K4me3 enriched regions (green) and two H3K27me3 enriched regions 
(red). Note that below 50K the background increases and specificity 
of enrichment is no longer detected. For this experiment a different 
H3K27me3 antibody was used to the sequenced reChIP datasets. (D, E) 
downsampling analysis for K4‑K27 and K27‑K4 datasets using the higher 
coverage replicate 2. Peaks were called separately for each downsam‑
pled dataset and classified according to Figure 3A. (D) Total peaks, (E) 
promoter peaks. (F, G) Downsampling analysis of independent total 
H3K4me3 and total H3K27me3 from (GSE135841) (7) showing in silico 
bivalent predictions atall peaks (G) and promoter peaks (H) at different 
simulated read depths. (H) Pseudocolour density scatterplot showing  log2 
CPM/bp enrichment at combined H3K4me3 and H3K4me3‑IgG peaks 
for total H3K4me3 single ChIP (x‑axis) compared to H3K4me3‑IgG reChIP 
(y‑axis). R=0.906. Data reanalysed from Mas et al. 2018 (14). Figure S2. 
(A) Schematic showing peak calling strategy for in silico bivalent peak 
prediction (B‑F) Genome browser views of (B) H3K4me3‑only, (C) high‑
confidence, (D) K4‑biased, (E) K27‑biased, and (F) low confidence genes 

https://doi.org/10.1186/s13072-024-00527-9
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showing H3K4me3 (green), total H3K27me3 (red) and K4‑K27 (purple) and 
K27‑K4 (blue) reChIP datasets. Height of peak represents CPM/bp. E‑M 
represents data from independent 10 million cell total H3K4me3 and total 
H3K27me3 (GSE135841) (7). R1 and R2 are two independent biological 
replicates from this study. (G) number of bivalent promoters overlapping 
(dark grey) or not‑overlapping (light grey) CpG islands for the four differ‑
ent classes. Genome‑wide 51.97% promoters overlap a CpG island using 
these criteria (H) Overlap of non‑promoter bivalent regions with candidate 
cis‑regulatory regions (cCREs) from ENCODE for the four different classes. 
Figure S3. (A) Classification strategy for calling bivalent promoters in data 
from Mas et al. 2018 (14). Note only one replicate of the reChIP datasets 
were generated in this study. Numbers denote number of peaks/promot‑
ers at each step. (B) Enrichment of bivalent promoters shared between 
this study and Mas et al. 2018 (14) (top, n=3593) or unique to our study 
(bottom, n=1511) in Mas et al. 2018 (14) datasets. (C)  log2 fold change in 
gene expression levels for pluripotency genes (top) and a random set of 
expressed non‑bivalent genes (bottom) across 9 days of embryoid body 
differentiation. Each gene has been normalised separately across the 
time series. Top and bottom groups of genes are on different scales. Gene 
expression data reanalysed from (GSE135841). Figure S4. (A) Classification 
strategy for calling differential bivalent promoters between wild type (WT) 
and Dppa2/4 double knockout (DKO) clones. Numbers denote number of 
peaks/promoters at each step.

Additional file 3: Table S1. library statistics, list of all bivalent peaks and 
list of peaks called in each replicate for total H3K4me3, total H3K27me3, 
bivalent K4‑K27 and K27‑K4 reChIP datasets generated in this study (E14 
rep1 and rep2), independently generated (GSE135841) and Dppa2/4 WT 
(clones 57 and 58) and double knockout (clones 43 and 53) samples. In 
the list of all bivalent peaks (tab 2), peaks are classified as high‑confidence 
(hc), K4‑biased (k4b), K27‑biased (K27b), or low confidence (lc) using 
either in‑line total ChIPs (column E) or independent total ChIPs (column 
F). Table S2. motif analysis of bivalent peaks using monaLisa along with 
associated statistics. Table S3. list of bivalent genes classified as high con‑
fidence, K4‑biased, K27‑biased and low confidence along with  log2 CPM/
bp enrichment scores for independent total H3K4me3 and H3K27me3, 
IgG‑IgG, in‑line total H3K4me3 and H3K27me3 ChIP and K4‑K27 and K27‑
K4 bivalent reChIP datasets. Table S4. Gene ontology enrichment of dif‑
ferent bivalent gene classifications (first column) together with associated 
statistics and list of associated genes. Table S5. list of EDGER differentially 
enriched peaks for bivalent K4‑K27 (tab1) and K27‑K4 (tab2) reChIP 
between Dppa2/4 WT and DKO clones. Consensus differentially enriched 
peak list is shown in tab 3 along with HOMER classification of peak, enrich‑
ment statistics and (for promoters) whether they were previously classified 
as differentially enriched.
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