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Abstract 

The functioning of the human immune system is highly dependent on the sex of the individual, which comes 
by virtue of sex chromosomes and hormonal differences. Epigenetic mechanisms such as X chromosome inactiva-
tion, mosaicism, skewing, and dimorphism in X chromosome genes and Y chromosome regulatory genes create 
a sex-based variance in the immune response between males and females. This leads to differential susceptibility 
in immune-related disorders like infections, autoimmunity, and malignancies. Various naturally available immunomod-
ulators are also available which target immune pathways containing X chromosome genes.
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Background
The immune response in males and females presents 
numerous differences, affecting the diagnosis, pathogen-
esis, and treatment of autoimmune diseases and infec-
tions. Females generally tend to have a more pronounced 
immune response, both innate and adaptive, compared to 
males. The statistics of the recent COVID-19 pandemic 
showed that although the infection rate varied between 
males and females the mortality rate and the number of 
patients admitted to intensive care units (ICUs) were 
higher in males [24] However, females are more predis-
posed toward autoimmune diseases. These significant 
differences in the functioning of the immune system of 
males and females are due to X and Y sex chromosomes 
and sex hormones [1].

Males and females have different genetic make-
ups with males having one X chromosome (XY) and 
females having two X chromosomes (XX). However, 

to maintain equivalent gene dosage between the two 
sexes, one of the X chromosomes in females is inacti-
vated [77]. The X chromosome inactivation happens by 
epigenetic mechanisms [64] and the inactive X chromo-
some is associated with repressive epigenetic markers, 
such as long non-coding RNAs (lncRNA), Firre, XIST, 
and Dxz4 [28], increased methylation levels [76] and 
histone modifications. The X chromosome that will be 
inactivated is chosen at random and the XIST (X inac-
tive specific transcript) RNA determines which X chro-
mosome will be inactivated. However, about 15% of the 
genes in the inactive X chromosome escape the inac-
tivation process [50]. This may create dimorphisms in 
immune response as the X chromosome has the highest 
number of immune-related genes [5, 102]. Sex hormones 
such as estrogen, progesterone, and testosterone change 
the immune response as they regulate the cells involved 
in the immune response [57]. Both the X chromosomes 
(Paternal and Maternal) have a 50% chance of getting 
inactivated in females, due to the random nature of the 
inactivation process, however, one of the chromosomes 
is more dominant towards inactivation than the other, 
hence making the inactivation process highly skewed [6]. 
A higher skewing ratio is typically found in autoimmune 
disorders [85].
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The Y chromosome is known as the functional waste-
land as it contains a very low number of genes and is 
mostly inactive. But some genes of the Y chromosome 
have regulatory functions; hence they show some sex-
dependent dimorphism in the immune response [68].

Immune pathways like TLR 7/8, NF-κB and JAK–STAT 
have downstream proteins which are encoded in the X 
chromosome. These escape X inactivation and are highly 
expressed in autoimmune disorders. Various inhibitors 
to components of these pathways are listed in Tables  1, 
2 and 3. Inflammatory responses in malignancies show 

Table 1 Naturally available compounds inhibiting the TLR 7 pathway

Compound Class Natural sources Mechanism of action References

1,4-Naphthoquinone Quinone (i) English walnut (Juglans regia)
(ii) American black walnut (Juglans 
nigra)

Inhibits IRAK 1 and it’s downstream 
molecules in in vitro human THP-1 
macrophages

[52]

Artemisinin derivative SM934 Sesquiterpene lactone Sweet wormwood (Artemisia annua) Downregulates TLR 7 expression, sup-
pressing B cell activation and Plasma 
cell formation

[98]

Thiostrepton Oligopeptide Streptomycetes Functions as TLR 7 antagonist [43]

Andrographolide Diterpenoid Green Chirata (Andrographis paniculata) Promotes MyD88 degradation [75]

Azithromycin Macrolide Streptomycetes Inhibited proteolytic processing of TLR 
7

[43]

Table 2 Naturally available compounds inhibiting the NF-κB pathway

Compound name Class Natural sources Mechanism of action References

β-Cryptoxanthine Carotenoids Tangerines, persimmons, oranges Elevates levels of IgM (B Cell receptor) [9]

Lycopene Carotenoids Tomatoes, grapefruit Elevated Levels of IgM [27]

Betulinic acid Pentacyclic terpenoid Betula pendula
(Birch tree)
Eucalyptus
Platanus
(plane tree)

Increases levels of IgM [60]

Tanshinone I Diterpene Salvia miltiorrhiza (red sage) Syk inhibitor [95]

Piceatannol Stilbene Vitis vinifera (red grapes) Syk inhibitor [13]

Quercetin Flavonoid Onions, apples, grapes Syk inhibitor [3]

Curcumin Diarylheptanoid Curcuma longa (turmeric) Syk inhibitor, modulates CD 40L expression [55, 101]

Glabrene Flavonoid Glycyrrhiza glabra (Licorice) Lyn inhibitor [34]

Lactucopicrin Sesquiterpene lactone Lactuca virosa (wild lettuce) Lyn inhibitor [34]

Honokiol Biphenol Magnolia (laurel magnolia) Lyn inhibitor, inhibiting proliferation and invasion, 
inducing apoptosis in Adenocarcinoma cells

[21]

Cannabidiol Resorcinols Cannabis sativa (hemp) Modulates CD 40L expression [55]

Azithromycin Macrolide Streptomycetes Inhibits CD 40 [43]

Glycyrrhizin Triterpene saponins Glycyrrhiza glabra (liquorice) Upregulated CD 40 expression [7]

Table 3 Naturally available compounds inhibiting the JAK/STAT pathway

Compound name Class Natural sources Mechanism of action References

Duramycin Thiopeptide Streptomycetes CXCR 3 inhibitor [61]

Roselipins Polyketide glycosides Clonostachys rosea CXCR 3 inhibitor [61]

Hypoglausin A steroidal glycosides Blighia sapida (ackee fruit) CXCR 3 inhibitor [61]

Dioscin Steroidal glycosides Scrophularia nodosa L. (figwort) CXCR 3 inhibitor [61]

Gallic acid Phenolic acid Blueberry, blackberry, strawberry, plums, grapes, 
mango, cashew nut, hazelnut, walnut, tea, wine

IL2 inhibitor, FoxP3 inhibitor [38]
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difference in immune cell infiltration into tumors like 
tumor associated neutrophils, macrophages and B cells.

This review attempts to summarize the recent advance-
ments on how sex chromosome epigenetics can affect 
dimorphisms in the immune responses. It also provides 
insights on how X chromosome genes can affect the 
immune pathways and differential responses of infiltrat-
ing immune cells in tumors.

Sex chromosome epigenetics and effects 
on the immune system
X chromosome mosaicism, inactivation epigenetics 
and escape
The paternal X chromosome in females is inactivated 
to compensate for the dosage of genes between males 
and females [51]. Phenotypic variations of the male and 
female immune systems happen due to two processes: X 
chromosome mosaicism [83] and X chromosome inac-
tivation escape. Ohno and Haushuka reported in 1960 
that one X chromosome in females is heteropyknotic 
[51]. Lyon et al. further proved that one X chromosome 
is selected randomly at the embryonic stage for inacti-
vation. Lyon used mosaicism to explain the patches of 
white, normal, and intermediate color in mice with hete-
rozygous sex-linked genes which affected coat color [50]. 
Some of the autosomal genes determining coat color got 
translocated on the X chromosome and included a part 
of linkage group VIII, and the gene for the brown allele 
translocated on the X chromosome. The patches which 
were produced by translocated genes showed mosaicism 
[51]. However, it was also hypothesized that homologous 

genes to Y should escape inactivation to achieve equiva-
lent gene dosage [10]. Carrel et  al. reported that about 
15% of genes on the X chromosome could escape the X 
inactivation, and 10% of these genes are heterozygous, 
leading to a variation in X-linked gene expression [11].

There are various epigenetic mechanisms which are 
involved in the inactivation of the X chromosome (Fig. 1). 
X inactivation happens before implantation and affects 
numerous epigenetic markers. XIST is a lncRNA that 
employs a complex responsible for chromosome silenc-
ing [4]. XIST RNA expression is seen on embryonic days 
2–4 [17]. Ftx is a non-coding gene present on the X chro-
mosome inactivation center which acts as a cis-activator 
of Xist transcription [35]. Dzx4 is another lncRNA asso-
ciated with X inactivation. It is a microsatellite repeat, 
maintaining the bipartite super domain of the X chromo-
some. It is also involved in the formation of chromatin 
loops by CTCF-mediated interactions, which is responsi-
ble for the packaging of the inactive X. Another lncRNA, 
Firre, is also present, which is involved in recruiting chro-
matin organizers such as CTCF, YY1, and RAD 21 and 
maintains H3K27me3 methylation [28]. Inactive X also 
has inactivating methylation markers hypomethylated 
H3K4 and hypoacetylated H3K9, which appear at the 
8-celled stage. Eed-Ezh2, H3K27 methylation, and mac-
rohistone H2A association occur at the 16-celled morula 
stage, followed by Histone H3K9 methylation occurring 
at the 32-celled stage [50].

The region of the X chromosome which escapes the X 
inactivation is known as the pseudo-autosomal region 
(PAR), and the genes in this region have homologs on 

Fig. 1 Epigenetic events happening in the human X chromosome and the epigenetics of X chromosome inactivation escape (in red). (On left) 
genes escaping the X chromosome inactivation process which have implications on the immune system
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the Y chromosome (Sawalha, Harley, and Scofield 2009). 
The X-linked genes that escape X inactivation are found 
in the p-arm of the X chromosome, which may be corre-
lated with its distance from the XIST region.

CpG islands also correlate with escape, as methylation 
plays a significant role [11]. L1 elements help properly 
anchor the X chromosome to the XIST lncRNA and are 
absent in the escape genes. Accelerated telomere short-
ening due to aging correlates with X chromosome reac-
tivation (XCI) [4]. Liu et al. recently reported age-related 
differential in methylation in regions which escape XCI 
[49]. Sometimes, if the Y chromosome loses its analog, 
XCI (X chromosome Inactivation) escape may occur 
to maintain gene dosage. X chromosome also has an 
extremely high number of microRNAs. There are only 
118 microRNAs on the X chromosome compared to only 
4 on Y chromosome—an average of 40–50 microRNAs 
in the autosomes [22]. These can also escape the meiotic 
sex chromosome inactivation event as they have a role 
in meiosis. TSIX is a gene antisense to the XIST gene. 
Before the inactivation event happens in the embryo, the 
TSIX expression is higher than XIST. TSIX checks any 
pre-imprinted bias for inactivation towards one chromo-
some, leading to an increase in the levels of H3K4me3 on 
the XIST-associated chromatin and hence an increase 
in the expression of XIST and Tsix [8]. There are many 
macro-RNAs present in the inactive X chromosome that 
govern the decision as to which X chromosome will be 
inactivated. DXPas34, located at 3’ to XIST, ensures that 
the X chromosomes remain in the N-1 condition. Xite, a 
small gene upstream of the Tsix, modulates its expression 
whose differential methylation patterns along the CTCF 
(CCCTC binding factor) binding can modulate the Tsix 
expression at the early paired X stage.

Inactivation skewing and autoimmune disorders
Theoretically, the X chromosome inactivation happens 
in a 50:50 manner, however deviations from this make 
the process of X chromosome inactivation is highly 
skewed where, generally, the inactivation of one X chro-
mosome is favored over the other [84]. This skewing 
pattern however shows variations across the body. Zito 
et  al. showed that 11% of genes escaping XCI, are con-
stitutively expressed and 23% is tissue restricted [104]. 
Skewing patterns also show imbalance with age [69]. 
This has implications in autoimmune diseases. Shvetsova 
et al. reported in a study that 17.7% of individuals showed 
skewing towards the maternal X chromosome and 31.6% 
towards the paternal X chromosome. Seven of the 79 
female test candidates showed 100% skewing in all blood 
cells. No correlation was found between the skewing pat-
terns of mother and daughter, proving that the X inacti-
vation process was random [6]. Chachoub et al. showed 

that skewing was > 80% in 34.2% of individuals with rheu-
matoid arthritis and 26% of patients with autoimmune 
thyroid disease. Mononuclear cells have more skewing 
due to a higher turnover [14].

Dendritic cells derived from late blastula hematopoi-
etic stem cells will present the self-antigen on only one 
X chromosome. Hence, T cells interacting with cells 
containing antigens on the second X chromosome will 
be directly attacked by cell-mediated immunity. Stewart 
et  al. showed that near 0:100 (only one X chromosome 
is presented in all the body cells), this would allow some 
sets of dendritic cells to present an endogenous X anti-
gen and the generation of autoreactive T cells. So, if the 
skewing is 50:50, taking 15 dendritic cells per T cell, 1 
in 10,000 T cells will be autoreactive. Similarly, with a 
10:90 skewing, 20% of T cells become autoreactive [4]. 
Autosomal genes determining coat color are translo-
cated on the X chromosome (used to define mosaicism). 
Similar translocations may occur in the case of immune-
related genes. Changnon et al. showed that in SLE t(X;Y)
(p22.33;p11.2), translocation can give rise to duplication 
of the PAR “Background” (pseudo-autosomal region) 
region genes. 2 out of the 12 genes held particular inter-
est, IL3, which is a growth factor in HSC (hematopoietic 
stem cell) development, and CD99, which is involved in 
the adhesion and apoptosis of T cells.

Variations in inactivation epigenetics in immune cells
Xist regulation is dynamic in female lymphocytes, which 
can give rise to the biallelic expression of some X-linked 
immune genes, such as TLR 7, CXCR 3, and CD 40L. The 
dynamic nature of Xist RNA expression can be under-
stood by its expression in various sets of lymphocyte 
cells. It is absent in plasmacytoid dendritic cells but pre-
sent in the nucleus of natural killer cells and dendritic 
cells and co-located with H3K27me3 in macrophages 
made from the bone marrow. T and B cells, both naïve 
and mature, lack inactivating epigenetic modifications on 
the inactived X chromosome [17].

Based on the nuclear localization of XIST RNA, 
Wang et al. classified the Xist RNA expression into four 
types, based on RNA FISH (fluorescent in situ hybridi-
zation) performed by double-stranded exon 1 and short 
oligos: Type 1, nuclei contain tightly clustered pin-
points localized to one X chromosome; Type 2: diffuse 
pinpoints encompass the nuclear area and have a size of 
one whole X chromosome, Type 3 with dispersed pin-
points extending beyond the X chromosome and Type 4 
which lacks the Xist expression [92]. Natural killer cells 
were deficient in detectable Xist RNA signals (Type 4), 
and only 20–30% had type 3 signals. Myeloid and lym-
phoid dendritic cells have Type 2 signals. T cells stimu-
lated with CD 3 or CD 28 showed type 1 XIST RNA 
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clouds. COT RNA holes with XIST clouds can detect 
XIST localization with transcriptional silencing of 
chromosomes. In this, the naïve T cells showed faint 
COT 1 signals, and activated T cells showed compara-
tively more intensity. Type 1 XIST RNA decreased after 
five days of stimulation, and the number of type 3 levels 
increased. In macrophages produced by the bone mar-
row, LPS stimulation increased the Type 1 signals but 
not type 2 or type 3. Type 1 signal cells were observed 
to decrease in number after 3–4 days of stimulation. 
Xist RNA was observed to co-localize with H3K27me3 
in 30–50% of cells, but 20–50% of cells lacked the 
H3K27me3 signal. Xist RNA presence is required for 
the H3K27me3 signal. No detectable Xist RNA was 
detected in plasmacytoid dendritic cells, which are type 
4 cells. It was not found to be localized in inactivated 
X chromosomes and lacked H3K27me3 foci, causing 
more expression of TLR7 in systemic lupus erythema-
tosus related diseases [86].

The X-linked gene dosage in individuals with X-linked 
lymphoproliferative syndrome who have chronic inflam-
matory bowel illness XIAP impacts natural killer cell 
function, highlighting the importance of X-linked gene 
expression in natural killer cells. It was discovered that, 
unlike lymphocytes, resting macrophages produced from 
bone marrow had largely Type 2 Xist RNA patterns and 
that CpG stimulation produced few Type 1 cells in vitro. 
As a result, the epigenetic characteristics of Xi in female 
bone marrow-derived macrophages are more similar to 
those of female fibroblasts, albeit with weaker Xist RNA 
clouds. H3K27me3 foci are associated with Xist RNA 
localization on the inactivated X chromosome. Splenic 
myeloid and lymphoid dendritic cells exhibit stronger 
and more detectable Xist RNA signals, with the majority 
of these dendritic cells classed as Type 3 with Xist RNA 
distributed across the nucleus and some cells classified 
as Type 2 with clustered Xist RNA pinpoints. Plasmacy-
toid dendritic cells are unique because they lack detect-
able Xist RNA and are only Type 4. However, H3K27me3 
foci were seen in 10–20% of plasmacytoid dendritic cells, 
indicating that Xist RNA localization at the inactivated X 
chromosome is not needed for H3K27me3 enrichment in 
these cells. Probably, 80–90% of plasmacytoid dendritic 
cells that do not have Xist RNA/H3K27me3 enrichment 
is poised for inactivated X chromosome-mediated gene 
reactivation. TLR7 expression is biallelic in some plas-
macytoid dendritic cells. This suggests that Xist RNA and 
heterochromatin marks localized on the inactivated X 
chromosome promote transcriptional silence, and when 
these epigenetic alterations are lacking, gene reactivation 
occurs more readily from the Xi. Six X-linked immune 
genes, including TLR7, were dose compensated in 
female mouse plasmacytoid dendritic cells. B cells from 

patients with SLE show reduced XIST RNA and histone 
H2AK119 mono-ubiquitination (H2AK119Ub) [67].

Effects of epigenetic inactivation on immune cells
Xist RNA localized to the Xi is not required for X-linked 
gene dosage compensation in female plasmacytoid den-
dritic cells. In plasmacytoid dendritic Cells, Xist tran-
scription and localization are uncoupled, which could 
explain the lack of H3K27me3 accumulation on the 
inactivated X chromosome in these cells. In female and 
male plasmacytoid dendritic cells stimulated with R848, 
there were no significant sex differences in the expres-
sion of these genes. In female plasmacytoid dendritic 
cells, higher levels of IFN production have been found 
than in male plasmacytoid dendritic cells. While IFN 
concentrations varied, it was observed that no signifi-
cant increase in IFN production in female plasmacytoid 
Dendritic Cells, implying that, unlike humans, female 
and male plasmacytoid dendritic cells produce equivalent 
quantities of IFN. No significant differences in CXCR3, 
CFP, IRAK1, IL2RG, MSN, and TLR7 gene expression 
were observed between men and women. These find-
ings show that female mouse plasmacytoid dendritic cells 
can sustain X-linked gene dosage compensation without 
X-linked gene dosage compensation.

Dimorphism in immune response due to X chromosome 
genes
Several X chromosome genes like CD40L, CXCR3, and 
OGT (O-linked N-acetylglucosamine (GlcNAc) trans-
ferase) are upregulated in patients with SLE. Klinefelter’s 
syndrome patients are likelier to develop female-pre-
dominant autoimmune disorders like acquired hypo-
thyroidism, Addison’s disease, and multiple sclerosis 
In experimental autoimmune encephalitis, autoanti-
gen sensitized XX lymph node was more encephalito-
genic than XY. To test this, the effect of Y chromosome 
genes needed to be removed, which was done by delet-
ing the Sry gene producing an XX and XY-mouse strain. 
To achieve this, the SJL (Swiss James Lambert) mouse 
strain, which was chosen due to its greater female-biased 
disease severity, was chosen. Sry deficient Y chromo-
some was backcrossed with the original outbred MF1 
mice to the SJL until F 16 generation to get XY-mice. 
These mice were gonadectomized to reduce the effects of 
the sex chromosome, hence producing pure XXsry and 
 XY−sry [8]. Proteolipoprotein (PLP) 139–151 sensitized 
lymph node cells derived from XX mice and  XY− mice 
were transferred into a common recipient, XX cells have 
more severe EAE (experimental autoimmune encephalo-
myelitis) compared to those receiving XY- [25]. Hence, 
the sex chromosome affects the induction of encepha-
litogenic immune responses during immunization of 
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adult mice with PLP (phospho lipoprotein) 139–151. Sex 
chromosomes are expressed more than autosomes in the 
brain, which may also explain sex bias [25] Pristane was 
injected into XXsry and XY-sry mice to induce lupus. XX 
mice showed a greater tubular disease score and chronic 
lesions compared to XY-. XX mice also showed higher 
levels of IgG anti-ds DNA antibodies when compared to 
XY-mice. The survival rate was also significantly lesser in 
XY-mice with 30.4% compared to 68.4% in the XY-mice. 
This was even seen in gonad-intact mice, with a 27.3% 
survival rate in XX mice compared to 66.7% in XY-mice. 
PLP-immunized mouse lymph node cells (LNCs) were 
drained to assess for cytokine production, and it was 
found that Th2 cytokines, IL 1, and IL 15 were higher in 
XY-mice than XX. Pristane-injected mice and anti-CD 
3 and CD 28 cultured splenocytes showed higher levels 
of IL 13 and IL 5 in XY-mice. IL13Rα is a decoy receptor 
with Th2 suppressing activity detected in dendritic cells, 
macrophages, and B cells in spleens of PLP autoantigen 
immunized mice with a higher expression in XX mice 
[80].

Y chromosome and implications on the immune 
system
The Y chromosome is one of the shortest chromosomes 
in the human genome, containing fewer protein-coding 
genes [79]. It is heterochromatic, possesses only a few 
sex-determining genes, and is mainly composed of multi-
copy genes, repeat sequences, and transposable elements 
[103]. The Y chromosome contains 64 protein-coding, 
45 male-specific sequences, and 19 pseudo-autosomal 
region genes. Due to these attributes, it is usually known 
as the functional wasteland [8]. But this chromosome is 
actively involved in gene regulation by affecting chroma-
tin dynamics through its variation in multicopy riboso-
mal genes [103].

There are some reports of the implications of this chro-
mosome on the immune system mostly because of its 
regulatory functions. Kutch et  al. showed that Y-linked 
regulatory variations have effects on the IMD pathway, 
which is highly conserved as an NF-kB immune pathway 
in Drosophila [58]. RT-PCR analysis of three genes in the 
pathway showed two genes had variation in expression: 
attacin A and cecropin A 1. The CT values of all three 
genes were positively correlated. Case et al. showed that 
genetic variations in the Y chromosome affected the sus-
ceptibility of B6 Y consomic mice to experimental auto-
immune encephalomyelitis and showed dimorphism. The 
basal levels of natural killer T cells were also affected by 
gene variations outside the sex-determining region of the 
Y chromosome [12]. A mosaic loss of Y chromosomes 
(LOYs) is also found in the leukocytes of male individu-
als, which can affect the immune system. Mattison et al. 

showed that single cells with LOY showed a decreased 
expression of CD 99 mRNA and surface protein, which 
was evaluated by the CITEseq assay. For this, cells were 
treated with oligonucleotide conjugated CD 99 antibod-
ies to have a barcode similar to the scRNA seq. LOY sta-
tus was examined using the male-specific region of the Y 
chromosome. LOY frequency was found in 2.4–18.3% in 
all cell types [54].

Dumanski et  al. showed that the loss of Y chromo-
somes in immune cells dysregulated the autosomal genes. 
Loss of Y chromosomes was tested in peripheral blood 
mononuclear cells (PBMCs) from 29 males, and single-
celled transcriptome sequencing was done (scRNAseq). 
LOYs were detected in all 29 males but varied between 
all cell types: NK cells, monocytes, B and T lymphocytes 
were 27% (7–87%), 23% (7–87%), 7% (2–40%), and 3% 
(1–6%), respectively. Pairwise samples studied In  vivo 
with scRNAseq, RNAseq, and DNAseq showed highly 
consistent LOY as well as in vitro studies with 13 lymph-
oblastoid cell lines, which were done by an SNP-based 
array using digital droplet PCR targeting a 6bp sequence 
difference between AMELY and AMELX. LOY-associ-
ated transcriptional effects (LATE) were tested between 
LOY and non-Loy cells. It was seen that MSY genes had 
reduced expression in the bulk RNA seq and were absent 
in the single-celled RNA seq. The PAR genes also showed 
decreased expression, however not as distinct as that of 
MSY genes, as they are even expressed in the PAR region 
of the X chromosome. In the case of autosomes, 489 
LATE genes were found, and ten non-PAR LATE X chro-
mosome genes were found, which showed both over and 
under-expression, with LYPD2 showing 8.6-fold higher 
and IL2R showing 2.5 times lower. Autosomal genes 
expressed with MSY also showed differential expression 
patterns in single cells with LOY [26].

Immune pathways of X chromosome genes 
and natural immunomodulators
The X chromosome has the highest density of immune-
related genes involved in innate and adaptive immune 
responses [73]. Various pathways significant to the 
functioning of the immune system have genes which 
are located on the X chromosome, have been explained 
in this section. Natural immunomodulators specific to 
these pathways have also been tabulated (Tables 1, 2, 3). 
Figure  2 shows all the pathways in the immune system 
which involve X chromosome genes.

Toll like receptor 7 (TLR 7) pathway
Toll like receptor 7 (TLR 7) is an intracellular immune 
sensor present on the endosomal compartment, which 
recognizes ss-RNA containing immune complexes com-
partment [65]. The gene encoding TLR 7 is present on 
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the q-arm of the X chromosome (Xq22.3) [29]. TLR 7 
upon activation recruits toll interleukin receptor (TIR) 
containing adaptor, My D88 which then forms a complex 
with a group of Interleukin-1 receptor associated kinases 
(IRAKs), forming a Myddosome. IRAK 4 activates 
IRAK 1 which then associates with tumor necrosis fac-
tor receptor associated factor (TRAF 6), a RING-domain 
associated E3 domain associated ligase. The IRAK-1 gene 
is present on the q-arm of the X chromosome (Xq28) 
[39]. TRAF-6 then activates Interferon Regulatory fac-
tor 7 (IRF-7) [42] which leads to the transcription of Type 
1 interferons (IFN α and INF β) [36] hence activating an 
innate immune response. TLR 7 is mostly expressed in B 
cells and plasmacytoid dendritic cells (pDCs).

TLR 7 is associated with systemic lupus erythemato-
sus (SLE) [93]. Souyris et al. [81] assessed the escape of 
this gene is SLE patients utilizing the detection of dial-
lelic single nucleotide polymorphisms (SNPs) located 
on the 5’ untranslated region (UTRs) of the TLR 7 
mRNA. In 40% of B cells, 23.8% monocytes and 18.5% 
showed biallelic tags showing X inactivation escape. A 
fraction of CD27 + B cells displayed two nuclear foci 
on RNA FISH experiments, one was located on the 

inactive X chromosome, which was found by XIST 
non-coding region-specific probe. Resting PBMCs 
(peripheral blood mononuclear cells) showed a 1.31- to 
1.38-fold increase in the expression of TLR 7 in rest-
ing PBMCs. The CD 27 + plasma cells get activated 
and expand more vigorously in females than in males 
on stimulation with TLR 7 activator IFN I (Interferon 
I). Increased expression of TLR 7 also increases the 
frequency of IgG class switching, hence inactivation 
escape may lead to greater class switching in B cells. 
TLR 7 inactivation escape was also reported in males 
with Klinefelter’s syndrome, which elevated their risk 
of developing SLE. Claudia et  al. 2023 also showed an 
increase in the number of IRF-5 positive B cells on 
stimulation of TLR 7. IRAK 1 also escapes X chromo-
some inactivation and hence making the TLR signal-
ing pathway more pronounced in females as compared 
to males. Spiering and Vries [82] reported that a pro-
nounced TLR 7 signaling has led to the sex-based bias 
in COVID 19 infections and death rates.

Table  1 shows the naturally available immunomodu-
lators which acts on the TLR 7 pathway.

Fig. 2 Immune pathways related to X chromosome genes (X chromosome genes are in red boxes)
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Nuclear factor kappa light chain enhancer of activated B 
cells (NF‑κB) pathway
NF-κB is a transcription factor responsible for multiple 
aspects of the innate as well as adaptive immune system. 
It transcribes genes for pro-inflammatory cytokines and 
chemokines, for inflammasome regulation as well as 
genes responsible for immune cell growth, differentia-
tion, cell survival, migration, and apoptosis [48]. NF-κB 
transcription factor is activated by several pathways of 
the immune system and the pathways include X chromo-
some genes.

The NF-κB transcription factor is bound to the inhibi-
tor of κB proteins (IκB), and for its activation IκB has to 
be phosphorylated after which NF-κB is disassociates 
from IκB. IκB is phosphorylated by IκB kinase complex 
(IKK), which is a complex formed by 3 kinases: IKKα, 
IKKβ and NF-κB essential modulator (NEMO). NEMO 
is encoded by the Inhibitor Of Nuclear Factor Kappa B 
Kinase Regulatory Subunit Gamma (IKBKG) gene which 
is present on the X chromosome (Xq28) [41]. The NEMO 
gene is central to canonical NF-κB activation [87]. Hence 
all types of canonical activators of NF-κB will be involve 
NEMO. Pattern recognition receptors (PRRs), Tumor 
necrosis factor receptor (TNFR), B cell and T cell recep-
tors activate the canonical NF-κB pathway [48]. The 
NEMO gene was reported to show heterogeneity in X 
chromosome escape [62].

There are numerous signaling pathways which activate 
NF-κB, and these pathways also contain X chromosome 
genes. The B cell receptor (BCR) activates NF-κB by the 
canonical pathway for differentiation, proliferation and 
survival of B cells [36]. BCR activates tyrosine kinases 
Spleen tyrosine kinase (Syk) and Lck/Yes tyrosine kinase 
(Lyn) [44], which activates Bruton’s tyrosine kinase (Btk) 
mediated by B cell linker protein (BLNK). Btk gene is 
located on the X chromosome (Xq21.3-q22). Btk associ-
ates with IκB-α and phosphorylates it which activates the 
NF-κB pathway [66]. The Btk gene has been reported to 
escape X chromosome inactivation in the immune cells 
of females [33].

The X-linked ectodermal dysplasia receptor (XEDAR) 
is a recently discovered protein which belongs to the 
TNF class of receptors. It is an evolutionary conserved 
pathway, which is involved in the development of ecto-
dermal appendage organs like hair, eccrine sweat glands 
and mammary glands [97]. XEDAR activates both the 
canonical as well as non-canonical NF-κB pathway. In the 
canonical pathway, XEDAR activates the IKK complex 
via TRAF-3 and -6 [78]. In the non-canonical NF-κB acti-
vation, the p100 processing requires TRAF-3 and -6 as 
well as IKKα, which then processes p100 into p52 which 
associates with RelB and translocates into the nucleus 
[90].

The gene for the ligand of cluster of differentiation 
CD-40, CD 40L/ CD 154, is present on the X chromo-
some (Xq 26.3). CD 40L activates CD 40, which acti-
vates the non-canonical NF-κB pathway. A complex 
consisting of TRAF-2, -3, cIAP1/2 and NIK is present 
in the cytoplasm, where the NIK levels are kept low 
by ubiquitination by TRAF3. On activation, TRAF3 
degrades and NIK levels are stabilized and translocate 
to the cytoplasmic part of the CD 40 receptor. NIK 
activates IKKα, which then phosphorylates p50 [23] 
found an increase in CD 40 as well as CD 40L expres-
sion on draining lymph node (dLN) T cells and B cells 
in female adjuvant induced arthritis rats as compared 
to male rats.

There are numerous natural immunomodulators 
which act on the mentioned pathway.

Janus kinase/signal transducers and activator 
of transcription (Jak/STAT pathway)
Jak/STAT pathway plays a very important role in the 
functioning of the immune system. It is involved in 
infection resistance, immune tolerance, cytokine pro-
duction, cell growth and differentiation, cell survival, 
cell migration and apoptosis. Aberrant Jak/STAT path-
way can also lead to autoimmune diseases [91]. Numer-
ous immune receptors activate the Jak–STAT pathway, 
which contains X chromosome genes.

Chemokine receptor 3 (CXCR 3) is a chemokine 
receptor involved in the T cell migration and traffick-
ing. The gene for CXCR3 islocated on the X chromo-
some (Xq13.1). CXCR 3 is a G protein coupled receptor, 
which is activated by chemokine ligands (CXCL), 9, 
10 and 11. CXCR 3 can activate the JAK/STAT path-
way, and also the PI3K/Akt and Ras/ERK pathway 
[20]. CXCR 3 gene has been reported to escape the X 
chromosome inactivation process and give a sex asso-
ciated bias in infections [59]. IL 13 receptor (IL 13 Rα 
and IL 13 Rβ) are encoded on the X chromosome and 
it activates JAK/STAT pathway. However, IL 13Rα1 is 
subject to X chromosome inactivation. The gene for 
the gamma chain of IL 2 receptor, IL2RG is expressed 
on the X chromosome Xq13.1. The IL 2 receptor also 
activates the JAK-Stat Pathway. IL2RG is involved in 
X-linked severe combined immunodeficiency (XSCID) 
[47]. Forkhead Box P3 gene (FoxP3) is expressed on 
the X chromosome (Xp11.23), and is a result of the IL 
2 Jak/Stat pathway [30]. FoxP3 suppresses NF-κB and 
is involved in the suppression of antigen priming of T 
cells and is involved in maintaining immune tolerance. 
However, FoxP3 is subjected to X chromosome inacti-
vation [89].
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Sex difference in immune responses and cancers
Cancers are one of the leading causes of mortality in the 
world causing 1 in 6 deaths globally. Cancers are asso-
ciated with the immune system. Cancer is associated 
with inflammatory responses, which is considered as 
a hallmark for cancer [19]. When tumorigenesis is ini-
tiated, inflammation occurs at the tumor site and the 
immune cells like CD 8 + and CD 4 + T cells, cytotoxic 
macrophages and neutrophils are activated. However, as 
the tumor progresses and becomes metastatic, it is able 
to escape immune recognition. This balance between 
immune inflammation and immune tolerance, helps the 
cancer cells to resist the immune system [31].

Li et  al. [45] analyzed somatic mutations and mRNA 
expression in Lung Adenocarcinoma data and found 
that females had a higher expression of immune-related 
genes. Male patients with mutations in epidermal growth 
factor receptor (EGFR) had increased infiltration of 
CD8 + cells and CD4 + cells in females [45]. Warde et al. 
[96] showed that males with Zinc finger ring 3 (ZNFR 
3) deletion show a greater myeloid cell accumulation 
and a greater anti-tumor immune response. Neutro-
phils are affects by male and female sex hormones, with 
female hormones delaying neutrophil apoptosis and male 
hormones increasing the neutrophil activation in non-
inflammatory states [37]. Hence females have higher neu-
trophil counts and neutrophil-to-lymphocyte ratio (NLR) 
females having late menopause have been reported to 
have a lower risk of developing gastric cancer whereas 
[63], androgen ablation reduces neutrophils [37]. Tumor 
associated neutrophils (TAN) were found to be an inde-
pendent predictor of tumor associated survival rates [18]. 
TAN was also found to be higher in males in Hepatocel-
lular carcinoma models (HCC) of zebrafishes [99] and in 
oral cancers [72]. Gwak et al. 2007 reported that females 
showed more immune compromised response to gastrec-
tomy when compared to male patients and females had 
a higher neutrophil to lymphocyte ratio (NLR) [32]. A 
higher NLR value was also reported by Lin et al. 2018 in 
head and neck squamous cell carcinoma (HNSCC) [46].

Human macrophages express receptors for sex hor-
mones like Progesterone receptor (PR), estrogen receptor 
(ER) and androgen receptors (AR) and are also subject 
to hormonal modulation effects [74]. Tumor associated 
macrophages (TAMs) play an important role in cancer-
induced inflammation. TAM number was reported to 
significantly lower in females than in males in pancreatic 
ductal adenocarcinoma (PDAC) [53]. However, TAMs 
form female patients with non-small cell lung cancer, 
were reported to be more immunogenic and male TAMs 
were more immunosuppressive with upregulated PPARs 
and matrix remodeling pathways [100]. Non-muscle 
invasive bladder cancer (NMIBC) tumors from females 

showed higher infiltration from M-2 macrophages [16]. 
Dendritic cells (DCs) infiltrate tumors, however, do not 
contain any receptors for sex hormones. DC infiltration 
was reported to be more in female tumors as compared 
to male tumors [88]. B cells express androgen receptors 
at pro-B and pre-B stages and hence have an impact on 
the maturation of B cells. Estrogen controls B cell dif-
ferentiation, activity and function and has ER-β recep-
tors. Female tumors from NMIBC show increased B cell 
recruitment.

Discussion
The twenty-first century is the era of personalized medi-
cine and therapeutics tailored to the patient and one 
of the primary considerations the is sex of the patient. 
Biological differences should be taken into consid-
eration while research as well as therapeutics [56]. The 
immune systems show sex-based dimorphisms result-
ing in females with immune regulatory genes on the X 
chromosome able to cope with many illnesses, whereas 
males are unable to survive. The basic mechanism in 
the human immune system exhibits sexual dimorphism 
with immune responses differing between females and 
males, which is due to various factors like, including 
sex hormones, fetal microchimerism, sex chromosome 
abnormalities, and epigenetic mechanisms like skewed 
X chromosome inactivation. This has important roles in 
a plethora of diseases like infections, autoimmunity and 
malignancies.

Maintenance of gene dosage between males and 
females requires one X chromosome to be silenced, 
which is achieved by various epigenetic mechanisms like 
association with lncRNA, hypomethylation and silencing 
histone modifications. However, this process is imper-
fect which leads to skewing in the inactivation process 
and escape of genes from the inactive X chromosome 
hence, creating dimorphic gene expression patterns 
between males and females. Skewed inactivation and 
inactivation escape is increased in autoimmune disor-
ders. Omics approaches can be used to analyze differen-
tially expressed X chromosome genes, in immune-related 
diseases. Sauteraud et al. developed an R package which 
is able to analyze escape genes from RNA-seq data [70]. 
Keniry et al. have reviewed the findings produced by sin-
gle-celled genomics approaches to understand inactiva-
tion epigenetics [40].

There are many important immune-related genes 
on the X chromosome which escape the X inactivation 
event. These genes are part of important immune regu-
latory pathways like NF-κB and JAK–STAT, which are 
important for immune responses. Further work needs 
to be done on how the X chromosome genes affect these 
pathways and how it can produce a differential immune 
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response in various scenarios. There is a growing inter-
est in phytochemicals and natural compounds with 
immunomodulatory effect for preventing and managing 
diseases as they provide complimentary and or alterna-
tive drugs. They can also serve as starting points for 
drug development [13]. There are numerous naturally 
available compounds which act as inhibitors to the pre-
viously mentioned immune pathways which are listed 
in Tables 1, 2 and 3. Any compound inhibiting proteins 
coded by X chromosome in the immune pathway as well 
as inhibiting the proteins preceding will have dimor-
phisms in action due to the differential expression. How-
ever, further work needs to be done to prove the effects of 
inhibiting X chromosome genes.

The immune system is also related to cancer as malig-
nant tumors can create an inflammatory microen-
vironment. Various sets of innate immune cells like 
neutrophils, macrophages and adaptive immune cells 
like B cells show differences in tumor infiltration. This 
effect may be due to sex hormones like androgen, pro-
gesterone and estrogen as well as due to X chromosome 
genes. However, further work needs to be done to estab-
lish mechanisms behind these sex-based differences in 
tumor infiltration. Immunotherapy promises an effec-
tive solution to cancer therapeutics; however, sex-based 
differences are reported. Immune checkpoint inhibitors 
(ICIs) have been reported to be more effective in males as 
compared to females. This may be due to increased anti-
genicity in male tumors. Chimeric antigen receptor T cell 
(CAR-T cell) therapy is coming up as a novel therapeutic 
solution to cancers. It utilizes the autologous T cells iso-
lated from the patient’s blood followed by expression of a 
Chimeric antigen receptor specific for the patient’s tumor 
and injecting it back into the patient body. Sex based dif-
ferences due to hormones, X chromosome genes, and dif-
ferences in tumor antigenicity will have an effect on the 
outcome of the treatment, however further work needs 
to be done to determine how sex can affect therapeutic 
outcomes in CAR-T cell therapy.
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