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Abstract
Background CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger 
domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary 
architectural protein involved in organizing chromosome topology and mediating enhancer–promoter interactions 
over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range 
interactions and chromatin boundaries. CTCFs of various organisms contain an unstructured N-terminal dimerization 
domain (DD) and clusters comprising eleven zinc-finger domains of the C2H2 type. The Drosophila (dCTCF) and 
human (hCTCF) CTCFs share sequence homology in only five C2H2 domains that specifically bind to a conserved 
15 bp motif.

Results Previously, we demonstrated that CTCFs from different organisms carry unstructured N-terminal dimerization 
domains (DDs) that lack sequence homology. Here we used the CTCFattP(mCh) platform to introduce desired changes 
in the Drosophila CTCF gene and generated a series of transgenic lines expressing dCTCF with different variants of 
the N-terminal domain. Our findings revealed that the functionality of dCTCF is significantly affected by the deletion 
of the N-terminal DD. Additionally, we observed a strong impact on the binding of the dCTCF mutant to chromatin 
upon deletion of the DD. However, chromatin binding was restored in transgenic flies expressing a chimeric CTCF 
protein with the DD of hCTCF. Although the chimeric protein exhibited lower expression levels than those of the 
dCTCF variants, it efficiently bound to chromatin similarly to the wild type (wt) protein.

Conclusions Our findings suggest that one of the evolutionarily conserved functions of the unstructured N-terminal 
dimerization domain is to recruit dCTCF to its genomic sites in vivo.
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Introduction
In higher eukaryotes, chromatin architecture is one of the 
essential determinants in the regulation of gene expres-
sion [1–7]. Existing models suggest that the CTCF pro-
tein, which contains a cluster of 11 Cys2-His2 zinc fingers 
(C2H2 domains), plays a key role in the organization of 
long-range interactions in mammals [8, 9]. Human CTCF 
protein (hCTCF) zinc fingers 3 to 7 specifically recognize 
a 15 bp long DNA motif [10]. It is assumed that in mam-
mals, chromatin loops are formed by cohesin complexes 
whose movement along the chromatin fiber is blocked at 
the most stable CTCF binding sites [11–17]. A conserved 
ten amino acid residue stretch that binds to cohesin has 
been found in the N-terminal part of hCTCF [18]. On 
average, mammalian genomes contain 40,000–80,000 
CTCF binding sites [19], which are often located at the 
boundaries of topologically associated domains (TADs), 
implying that CTCF facilitates long-range interactions 
between regulatory elements and participates in the 
organization of active promoters [20–22].

CTCF is the most studied representative of the largest 
group of DNA-binding transcription factors that contain 
clusters of at least five C2H2 domains [8, 23]. It has been 
demonstrated that several transcription factors within 
this group exhibit highly specific binding to 12–15  bp 
DNA motifs when comprising 4–5 C2H2 domains con-
nected by specific 5 amino acid linkers [10, 24, 25]. 
C2H2 proteins belong to one of the most rapidly evolv-
ing groups of proteins [23], and CTCF is likely one of the 
progenitors of these proteins since it has been found in 
most studied bilaterian organisms [26]. However, within 
the primary sequence of CTCF, conservation is limited 
to the cohesin-binding motif [18] and five C2H2 domains 
that enable binding to specific DNA sequences [26]. 
Common structural features of CTCF in different bila-
terians include the central location of the C2H2 cluster 
within the protein and the presence of an unstructured 
dimerizing domain (DD) at the N-terminus [27, 28]. In 
Drosophila, CTCF (dCTCF) does not play a dominant 
role in the organization of chromosome architecture [29–
33] and binds to fewer than 1000 genomic sites, mainly in 
promoter regions [34, 35]. dCTCF inactivation affects the 
expression of genes involved in the functioning of ner-
vous system (34) as well as the expression of Hox genes in 
the Bithorax complex [27, 34, 36–40], which represents 
an evolutionary conserved function of CTCF proteins 
[41–43]. In the Bithorax complex, dCTCF, in combina-
tion with Pita, Su(Hw), and additional yet unidentified 
architectural proteins, establishes the boundaries of reg-
ulatory domains that determine the expression of Hox 
genes [44, 45]. The Pita protein belongs to a large group of 
insect C2H2 proteins that feature zinc-finger associated 
domains (ZADs) at the N-terminus [46]. Structural anal-
ysis has shown that ZADs predominantly homodimerize 

[46, 47] and are necessary for organizing specific long-
range interactions between the ZAD-C2H2 protein bind-
ing sites [48, 49]. In Drosophila melanogaster, over half 
of the 170 C2H2 proteins contain a ZAD domain [50], 
consistent with the proposed model of the cooperative 
contribution of C2H2 proteins to the organization of 
the Drosophila chromatin architecture [8, 51]. Accord-
ing to the model, multiple specific interactions between 
the homodimerizing domains of architectural C2H2 pro-
teins play a key role in maintaining specific long-range 
interactions between regulatory elements [52]. Currently, 
the contribution of cohesin to the organization of Dro-
sophila chromatin architecture remains unknown [7, 
35, 53]. Interestingly, in mammals, specific long-range 
contacts between enhancers and promoters can also be 
maintained by homodimerization of the LDB1 protein, 
which is recruited simultaneously and independently to 
interacting enhancers and promoters [54]. Recent studies 
have also shown that, at certain loci, human CTCF estab-
lishes chromatin architecture together with other C2H2 
proteins, such as MAZ or ZNF143 [55–57]. The ZNF143 
protein can form chromatin loops independently of 
CTCF, although its interaction with the cohesin complex 
has not been confirmed [58, 59]. Meanwhile, the MAZ 
protein can interact with the cohesin complex, akin to 
CTCF [56]. Thus, accumulating experimental data sup-
port the idea that, similar to in Drosophila, a large group 
of C2Н2 proteins cooperatively establishes the architec-
ture of mammalian chromosomes.

Here, we investigated the functional significance of 
individual regions within the 287 amino acid N-termi-
nal domain of the Drosophila CTCF protein. Transgenic 
lines expressing mutant variants of the dCTCF protein 
tagged with the 3xHA epitope were generated for this 
purpose. Our results demonstrate that only the unstruc-
tured dimerization domain is functionally important. The 
mutant CTCF protein, lacking the dimerizing domain, 
loses its ability to effectively bind to a significant por-
tion of its genomic target sites. However, the addition of 
the N-terminal domain from human CTCF restores the 
functional activity and specific DNA binding of the chi-
meric protein.

Results
Testing in vivo functions of the N-terminal regions of 
dCTCF
The N-terminal region of dCTCF contains two con-
served regions present in CTCF from different bilaterians 
(Fig. 1A): the unstructured dimerization domain [28] and 
a 10 amino acid residue stretch (244–254 aa) that binds 
to cohesin [35]. The N-terminal dimerization domain of 
dCTCF maps between 80 and 163 aa [27, 28].

We used a previously developed platform 
(CTCFattP(mCh)) to assess the functional role of the 
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N-terminal region of dCTCF in vivo (Additional File 1: 
Fig. S1) [34]. This platform carries the substitution of a 
2173-bp region of the CTCF gene, spanning from the 
first intron to the end of the third exon (3L:7,352,322–
7,358,209, r6.52), with the attP site and Act5C:mCherry 
reporter flanked by loxP sites [34] (Fig. 1, Additional File 
1: Fig. S1). The dCTCF replacement constructs included 
the CTCF genome region from the first intron to the 
fourth exon with a HA tag incorporated within the fourth 
exon, a polyadenylation signal from SV40, and the white 
reporter flanked by loxP sites (Additional File 1: Fig. S1). 
After the deletion of the reporter genes, only one loxP site 
remains in the first intron of the CTCF gene. As a result, 
we obtained CTCF alleles expressing wild type dCTCF-
HA (CTCFwt-HA) and a group of dCTCF variants 
with the following deletions in the N-terminal region: 
2–80 aa (Δ2–80-HA), 80–125 aa—proximal part of the 
dimerization domain (Δ80–125-HA), 132–170 aa—dis-
tal part of the dimerization domain (Δ132–170-HA), 
80–170 aa—complete deletion of DD (Δ80–170-HA); 
171–243 (Δ171–243-HA) and 171–287—including 
putative cohesin-interacting region (Δ171–287-HA) 
[18] (Fig.  1A). Western blotting analysis demonstrated 
that the dCTCFΔ171–243-HA, dCTCFΔ171–287-HA and 
dCTCFΔ80–125-HA variants are expressed at similar levels 

to dCTCFwt-HA. Despite the inaccuracy of the West-
ern blot analysis, a slight decrease in expression can be 
observed for dCTCFΔ132–170-HA and dCTCFΔ80–170-HA 
in comparison to dCTCFwt-HA. Meanwhile, with the 
dCTCFΔ2–80-HA variant, the results of immunoblot 
analysis varied greatly: with anti-НА antibodies less pro-
tein was detected than dCTCFwt-HA, while at the same 
time, with anti-CTCF antibodies, the amount of protein 
became comparable to dCTCFwt-HA (Fig. 1B and Addi-
tional file 1: Fig. S2).

Unexpectedly, Western blot analysis also shows that 
dCTCFwt (y1w1118 line) is expressed more strongly than 
dCTCFwt-HA. To confirm this finding, we analyzed the 
expression of dCTCFwt-HA and dCTCFwt (y1w1118 line) 
in the cytoplasmic, nucleoplasmic, and chromatin frac-
tions (Additional File 1: Fig. S3; Additional File 2). We 
found that the dCTCFwt-HA protein level was reduced 
in comparison with that of dCTCFwt. Comparison of the 
amount of dCTCFwt protein in the y1w1118 line from one 
extraction procedure has demonstrated that most of it is 
associated with chromatin, while in the cytoplasm and 
nucleoplasm there is a smaller amount, but the protein is 
also detected (Additional File 1: Fig. S4). A previous study 
has shown that the 3xHA epitope leads to a decrease in 
the expression of tagged proteins in yeast for unknown 

Fig. 1 Mutations in the CTCF gene. (A) Schematic representation of dCTCF replacement. The untranslated regions of the CTCF gene are shown as grey 
arrows, and the coding region is marked with a blue line. The endpoint of the CTCFattP(mCh)platform is shown with breaks in the black line. The attP, loxP, 
and attB sites are shown as white, orange, and green arrows, respectively. Other designations are shown in the figure. The schematic representation of 
full-length restored dCTCF-HA (wt-HA) is shown below. The deletion variants of the CTCF gene are shown as black lines with breaks corresponding to 
the deleted domains. (B) Immunoblot analysis (6% SDS PAGE) of protein extracts prepared from adult flies of dCTCFwt-HA (wt-HA), dCTCFΔ2–80-HA (Δ2-80-
HA), dCTCFΔ132–170-HA (Δ132–170-HA), dCTCFΔ80–170-HA (Δ80–170-HA), dCTCFΔ80–125-HA (Δ80–125-HA), dCTCFΔ171–243-HA (Δ171–243-HA), and dCTCFΔ171–287-HA 
(Δ171–287-HA) lines with anti-HA and anti-lamin Dm0 (internal control) antibodies
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Fig. 2 (See legend on next page.)
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reasons [60]. Further investigation is necessary to under-
stand the mechanism underlying the decreased expres-
sion of proteins tagged with 3xHA.

The null CTCF mutations mainly affect Abd-B expres-
sion in the Drosophila Bithorax complex (BX-C) [34, 36, 
38]. The regulatory domains iab-5, iab-6, iab-7, and iab-
8,9 (Fig. 2A) control the gradual increase in the expres-
sion of Abd-B in parasegments (PS) PS10–PS14 that give 
rise to A5, A6, A7, and A8 (female) or A9 (male) adult 
segments, respectively [61]. The boundaries (Fig.  2A) 
provide functional autonomy to the iab domains during 
the regulation of Abd-B expression in the correspond-
ing segments [37, 38, 44]. The dCTCF binding sites are 
located in the Mcp (1 site), Fab-6 (2 sites), and Fab-8 (2 
sites) boundaries and in the promoter regions of Abd-B. 
In BX-C [44, 45, 62] and transgenic lines [63–65] dCTCF 
has been demonstrated to be essential for the activity 
of the Mcp, Fab-6, and Fab-8 boundaries. Additionally, 
dCTCF binding sites are present in the promoters of 
many genes [34, 35, 65].

As an example of null CTCF mutants [34, 36, 38], 
GE24185 males display held-out wings, partial trans-
formation of A4 into A5 (ectopic pigmentation on A4 
tergite), A6 into A5 (the presence of bristles on the A6 
sternite), A7 into A6 (appearance of A7 tergite that is 
absent in wild type (wt)) and deformed genitalia (A8 
(female), or A9 (male) segments) (Fig.  2B). GE24185 
flies are also characterized by delayed development and 
decreased viability. Both GE24185 males and females 
are partially fertile and can produce progeny in crosses 
with wt flies. It has been shown that approximately 90% 
of eggs laid by homozygous GE24185 parents remain 
unfertilized due to problems with the reproductive appa-
ratus of the males and females, the development of which 
depends on proper Abd-B expression [36].

The expression of dCTCFΔ2–80-HA, dCTCFΔ171–243-HA, 
and dCTCFΔ171–287-HA mainly restored the viability, fer-
tility and the wt phenotype of transgenic flies, similar 
to dCTCFwt-HA (Fig.  2B). Rare additional bristles were 
observed on the A6 sternite, indicating weak loss of func-
tion (LOF) of the iab-6 domain. This finding suggests 
that the expression of these dCTCF deletion variants only 
weakly affects the expression of Abd-B in the A6 seg-
ment. A decrease in the expression of these dCTCF-HA 

variants compared to that of the dCTCFwt protein could 
also be the reason for the observed weak mutant pheno-
type. These results imply that the deletions of 2–80 aa, 
171–243 aa, and 171–287 aa do not significantly affect the 
functional activity of dCTCF, indicating that the poten-
tial cohesin-interacting motif [18] is not essential for 
dCTCF function (Fig. 2A). In contrast, the expression of 
dCTCFΔ80–170-HA (DD deletion) and dCTCFΔ132–170-HA 
(deletion of the distal part of the DD) led to a stron-
ger mutant phenotype than the null GE24185 muta-
tion (Fig.  2A). While in GE24185 females, the vaginal 
plates (A8) were only moderately reduced in size, in 
dCTCFΔ80–170-HA and dCTCFΔ132–170-HA females, the 
vaginal plates are absent or have partial transformation 
into abdominal segments. As a result, females expressing 
dCTCFΔ80–170-HA or dCTCFΔ132–170-HA are completely 
sterile. Similar to GE24185 males, the deletion of DD 
in the dCTCF mutants leads to the appearance of pig-
mented spots on the A4 tergite, which is explained by the 
inability of the Mcp boundary to effectively block cross-
talk between the iab-4 and iab-5 enhancers, resulting in 
ectopic Abd-B expression in the A4 segment. However, 
in contrast to GE24185 the dCTCFΔ132–170-HA males are 
sterile. The deletion of the 80–125 aa (the proximal part 
of DD) from dCTCF had a moderate effect on dCTCF 
functionality, and the phenotype of mutant flies was simi-
lar to GE24185 flies: several bristles on the A6 sternite, 
the male genitalia rotated and extruded, female genitalia 
reduced in size. The degree of genital deformation and 
the level of protein in the maternal gonads limit fertility 
of the dCTCFΔ80–125, as in GE24185 (Fig. 2A). Thus, the 
N-terminal DD (80–170 aa) is key for dCTCF functions 
in vivo.

We investigated the ability of the proximal and dis-
tal parts of the domain to dimerize in the yeast two-
hybrid system to confirm the modular structure of 
the DD (Fig.  3). Our findings confirmed that the first 
ninety amino acids of the N-terminus (dCTCF 1–90) 
are incapable of homodimerization and interaction with 
the full fragment, dCTCF 1–170. Although dCTCF 
1–132 cannot homodimerize, it can interact with 
dCTCF 1–170 or dCTCF Δ80–125. In contrast, dCTCF 
1–170 can homodimerize and interact with dCTCF 
Δ80–125, whereas dCTCF Δ80–125 itself can undergo 

(See figure on previous page.)
Fig. 2 Morphology of the abdominal segments of the dCTCF mutants. (A) Scheme of BX-C (presented as a sequence coordinate line). The Ubx, Abd-A, 
and Abd-B transcripts are marked by horizontal black arrows. The boundary positions are indicated by vertical black bars with dotted lines. The mapped 
dCTCF-binding sites in the boundaries are indicated by red circles. (B) Morphology of the abdominal segments of the dCTCF mutants. Male (top) and 
female (bottom) abdominal cuticles are shown for lines expressing wt and mutant variants of dCTCF. The filled red arrowheads show morphological 
features indicative of transformations associated with increased or ectopic Abd-B expression. The empty red arrowheads indicate signs of transformations 
associated with decreased Abd-B expression relative to that in wt. The double-sided arrows indicate the size of the A7 tergite and female genitalia. Circular 
arrows indicate rotation of the male genitalia. Fertility was determined by the ability of males or females to produce offspring when crossed with males 
or females from the same line or y1w1118 line. “Fertile” means that the CTCF mutants produce offspring when crossed with each other. “Low fertile” means 
that the CTCF mutants cannot produce offspring when crossed with each other, but produce offspring when crossed with CTCF+ flies (y1w1118). “Sterile” 
means that the CTCF mutants cannot produce offspring when crossed with CTCF+ flies (y1w1118)
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homodimerization. These results demonstrate that the 
distal 132–170 aa region is the core part of the domain 
that can homodimerize and interact with the proximal 
80–125 aa region.

The N-terminal dimerization domain is essential for dCTCF 
binding
One of the functional roles of the DD may involve facili-
tating the efficient chromatin binding of dCTCF. We 
performed a genome-wide chromatin immunoprecipi-
tation followed by high-throughput sequencing (ChIP-
seq) analysis to evaluate the binding of dCTCFwt-HA 
and dCTCFΔ132–170-HA in adult flies. Although embryos 
are best suited for ChIP-seq analysis, we used 3-day-old 
flies because dCTCFΔ132–170-HA homozygotes are sterile. 
dCTCF is expressed in oocytes and exhibits a maternal 
effect, which may influence the results of association with 
chromatin of the dCTCFΔ132–170-HA mutant. We col-
lected chromatin samples from three-day-old flies and 
performed ChIP using antibodies against the 3xHA epi-
tope followed by Illumina high-throughput sequencing.

Comparing the binding profiles, we identified 674 peaks 
for dCTCFwt-HA and 544 peaks for dCTCFΔ132–170-HA. 
Both dCTCFwt-HA and dCTCFΔ132–170-HA bound to 
the same DNA binding motif in 526 and 438 peaks, 
respectively (Fig.  4A). Among these motif-confirmed 
peaks, 233 (with motif/269 total) peaks overlapping 
both dCTCFΔ132–170-HA and dCTCFwt-HA colocalized 

with CP190 (Fig.  4B). Over 50% of these colocal-
izing peaks were found in promoter regions. Addi-
tionally, we observed relatively small groups of sites 
colocalized with CP190 that were exclusively bound 
by either dCTCFwt-HA (45 with motif/total 93) or 
dCTCFΔ132–170-HA (24 with motif/total 30). There were 
a significant number of peaks that did not overlap with 
the CP190 peaks and where dCTCFΔ132–170-HA and 
dCTCFwt-HA bound the same sites (143 peaks with a 
motif out of a total of 166). Sites bound exclusively by 
dCTCFΔ132–170-HA had a significantly lower frequency 
of binding motif occurrence compared to sites overlap-
ping with CP190 or dCTCFwt-HA (p = 1.5·10− 18 chi-
squared test, N = 544). They were also significantly less 
frequent in promoters (p = 0.0013, chi-squared test, 
N = 544)) (Fig.  4B). In terms of signal levels, CP190-
colocalizing peaks demonstrated strong binding by both 
dCTCFwt-HA and dCTCFΔ132–170-HA, whereas their 
binding to peaks lacking the CP190 signal was weaker 
(Fig. 4C, p = 3.4·10− 77 for dCTCFwt-HA and p = 3.1·10− 35 
for dCTCFΔ132–170-HA, two-sided Mann-Whitney U test 
for peaks with motif, N1 = 308, N2 = 279). These find-
ings indicate that CP190 is associated with most robust 
dCTCF binding sites. In addition, the average signal 
intensity of dCTCFΔ132–170-HA peaks with the motif 
was reduced at least two-fold compared to that of the 
dCTCFwt-HA peaks (p = 7.5·10− 60 two-sided Wilcoxon 
rank-sum test for peaks with motif, N = 587 × 2). Notably, 

Fig. 3 Results of the Y2H assay of the dimerization activity of the proximal and distal parts of DD from dCTCF. (A) Multiple sequence alignment of the N-
terminal DD regions from different Drosophila species. Color intensities indicate percentage identity. Secondary structures were predicted with AlphaFold 
(https://alphafold.ebi.ac.uk/): green arrows represent putative beta sheets, and the red line represents the alpha helix. (B) AD represents the GAL4 activa-
tion domain, and BD stands for the GAL4 DNA binding domain. The ‘+’ interaction indicates the ability of yeast to grow on assay plates without histidine
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a significantly reduced signal in dCTCFΔ132–170-HA bind-
ing compared to that with dCTCFwt-HA was observed 
in 52 peaks associated with CP190 (Fig. 4D, p < 0.05, see 
Methods). These results suggest that the N-terminal 
dimerization domain is essential for the efficient binding 
of dCTCF to a substantial number of its sites.

The N-terminal domain of hCTCF can functionally 
substitute the DD of dCTCF
Since the human N-terminal domain also contains an 
unstructured dimerization domain [28] (Additional File 
1: Fig. S5), we hypothesized that the hCTCF N-terminal 
domain could function in Drosophila despite the lack of 
sequence homology with the DD of dCTCF. To test this, 
we generated a construct expressing a chimeric pro-
tein dCTCFhN in which the 265 amino acid N-terminus 
of hCTCF was fused to the dCTCF without the DD 

Fig. 4 Comparison of dCTCF binding in CTCFwt-HA and CTCFΔ132–170-HA adult flies. (A) Average signal (RPKM) of ChIP-seq peaks with DNA binding motif 
(left) and motif logos (right) for CTCFwt-HA (wt-HA) and CTCFΔ132–170-HA (Δ132–170-HA). The motifs associated with the peaks in both datasets are the 
same. (B) UpSet plot showing an overlap of CP190 binding sites in the y1w1118 line and dCTCF binding sites in CTCFwt-HA (wt-HA) and CTCFΔ132–170-HA 
(Δ132–170-HA) lines considering all dCTCF sites (top) and only sites with the binding motif (bottom). The bars are colored according to the distribution 
of the genomic elements in the corresponding regions. Only regions with dCTCF binding sites are shown. (C) Average signals (RPKM) (top) and signal 
heatmaps (bottom) for CP190 peaks in the y1w1118 line and dCTCF peaks in the CTCFwt-HA (wt-HA) and CTCFΔ132–170-HA (Δ132–170-HA) lines. Three different 
sets of peaks are displayed (columns): a combined set of dCTCF binding sites with the binding motif (both wt-HA and Δ132–170-HA) overlapping with 
CP190 binding sites (denoted as “dCTCF motif; CP190 signal”); a combined set of dCTCF binding sites with the motif and not overlapping with CP190 
binding sites (denoted as “dCTCF motif; no CP190 signal”); a combined set of dCTCF binding sites without the motif but overlapping with CP190 binding 
sites (denoted as “no dCTCF motif; CP190 signal”). The “dCTCF motif; CP190 signal” and “dCTCF motif; no CP190 signal” sets were motif-centered, and “no 
CTCF motif; CP190 signal” set was centered on the peak summit. (D) Comparison of dCTCF signal (RPKM) in the CTCFwt-HA (wt-HA) and CTCFΔ132–170-HA 
(Δ132–170) lines in the combined set of dCTCF peaks with the binding motif. Outliers were detected using linear regression (see Methods). Regions over-
lapping with CP190 binding sites are circled in black
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(dCTCFΔ80–170). To compare the ability of the N-termi-
nal domains of dCTCFwt, dCTCFΔ80–170 and dCTCFhN 
to dimerize, we fused the tested N-terminal domains to 
FLAG or HA epitopes in expression vectors. The same 
N-terminal domains, fused to either FLAG or HA, were 
coexpressed in S2 Drosophila cells, and their ability to 
interact was assessed by co-immunoprecipitation (Addi-
tional File 1: Fig. S6). We have confirmed that the N-ter-
minal domain of dCTCFwt, as well as of dCTCFhN, is able 
to oligomerize, whereas that of dCTCFΔ80–170 is not.

Next, the transgenic line expressing CTCFhN-HA was 
created. We were unable to detect any protein by West-
ern blot analysis. To enhance the expression of the chi-
meric protein, we obtained a transgenic line expressing 
CTCFhN without the HA tag (Fig. 5A).

We used antibodies against the C-terminal domain 
of dCTCF [34] to detect the dCTCF variants. Again, 
we were unable to detect dCTCFhN in the total protein 
extract by Western blotting (Fig.  6, Additional File 3). 
We have found that CTCFhN was expressed at very low 
levels due to incorrect splicing of the first intron of the 
transgene (Additional File 1: Fig. S7). Also, the expression 
levels of dCTCFΔ80–170-HA and dCTCFΔ132–170-HA were 
reduced compared to the levels of dCTCFwt-HA. Next, 
we compared the expression levels of dCTCFwt-HA, 
dCTCFΔ132–170-HA, and dCTCFhN in the cytoplasmic, 
nucleoplasmic, and chromatin fractions (Fig.  6, Addi-
tional File 3). The band corresponding to dCTCFhN was 
not detected in the cytoplasmic and nucleoplasmic frac-
tions. However, all three dCTCF variants (dCTCFwt-HA, 
dCTCFΔ132–170-HA, and dCTCFhN) were present at com-
parable levels in the chromatin fraction.

Despite its low expression, dCTCFhN largely restored 
the wild type phenotype as the dCTCFwt-HA (Fig.  5B). 
Furthermore, we examined polytene chromosomes 
from third instar larvae expressing the dCTCF vari-
ants to assess their binding patterns. The C-terminal 
dCTCF antibodies stained over one hundred interband 
regions of the polytene chromosomes of larvae express-
ing dCTCFwt-HA (Fig.  5C). A similar pattern of poly-
tene chromosomes was observed in larvae expressing 
dCTCFhN. In larvae expressing dCTCFΔ80–170-HA, how-
ever, the fluorescence intensity was decreased, and some 
bands were absent. These results indicate that the anti-
bodies effectively recognize dCTCF sites in polytene 
chromosomes and that dCTCFhN binds to chromatin 
with the same efficiency as dCTCFwt-HA. Conversely, 
the binding efficiency of dCTCFΔ80–170-HA is reduced 
(Fig. 5C).

Next, we investigated whether the human N-ter-
minal domain restores the efficiency of dCTCF bind-
ing to genomic sites. We performed genome-wide 
ChIP-seq analysis with antibodies against the C-termi-
nus of dCTCF to assess the binding of dCTCFwt-HA, 

dCTCFΔ80–170-HA, and dCTCFhN in adult flies. We iden-
tified a total of 836 peaks for dCTCFwt-HA, 496 peaks 
for dCTCFΔ80–170-HA, and 723 peaks for dCTCFhN, 
all containing the same motif (Fig.  7A). Again, peaks 
associated with CP190 were significantly stronger 
(Fig.  7B, p = 6.0·10− 79 for dCTCFwt-HA, p = 2.1·10− 68 
for dCTCFΔ80–170-HA and p = 3.2·10− 52 for dCTCFhN, 
two-sided Mann-Whitney U test for peaks with motif, 
N1 = 529, N2 = 466). The average signal of dCTCFhN 
was only slightly weaker than that of dCTCFwt-HA. 
In contrast, the average signal of dCTCFΔ80–170-HA 
was decreased by more than half in comparison with 
that of dCTCFwt-HA and dCTCFhN (Fig.  7B, compari-
son between dCTCFΔ80–170-HA and dCTCFhN signals: 
p = 6.5·10− 66 for peaks with motif N = 995 × 2). Interest-
ingly, a small group of promoters, including an Abd-B 
promoter, demonstrated equal binding efficiency for all 
three dCTCF variants (Fig. 8A), indicating that DD is not 
essential for dCTCF binding in some genomic regions. 
However, at the most robust dCTCF/CP190 sites, includ-
ing the Fab-8 and Mcp boundaries, both dCTCFwt-HA 
and dCTCFhN showed increased binding in comparison 
with that of dCTCFΔ80–170-HA (Fig. 8B). At these specific 
genomic sites, the human dimerization domain compen-
sates for the deletion of the DD in dCTCF and restores 
binding of the dCTCFhN protein to its target sites.

We observed weak average signals in two sets of peaks: 
one with the CTCF motif but without the CP190 sig-
nal, and the other without the CTCF motif but with the 
CP190 signal (Fig. 7B). Interestingly, all dCTCF variants 
displayed similar average binding efficiency in both sets 
of peaks. High-signal CP190 sites colocalizing with weak 
dCTCF genomic sites were mainly located in the pro-
moter region, 5’ untranslated region (5’UTR), 3’ untrans-
lated region (3’UTR), and within the gene (Fig.  8C). 
Notably, the deletion of the DD did not appear to affect 
dCTCF binding to these genomic regions. Thus, the DD 
is critical for dCTCF binding to strong CP190-dependent 
sites where dCTCF plays an important functional role, 
such as the Mcp and Fab-8 boundaries.

Discussion
Our analysis of N-terminal deletions of the dCTCF pro-
tein revealed that the dimerization domain plays a cru-
cial role in the activity of dCTCF in vivo. The DD is 
required for the efficient binding of dCTCF to a set of 
genomic sites, including boundaries in the Bithorax com-
plex. Although the unstructured dimerization domains 
of human and Drosophila CTCF proteins lack sequence 
homology [28], they represent a prominent feature of 
CTCF proteins alongside the highly conserved C2H2 
domains that mediate binding to a similar 15  bp DNA 
motif across different species [26]. Unlike the Drosoph-
ila N-terminal domain, the human N-terminal domain 
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does not dimerize when expressed in bacteria, which 
may be due to disruption of its correct folding [28]. 
This is the reason for conflicting results about the abil-
ity of the N-terminal domain of human CTCF protein 

to homodimerize [28, 66, 67]. However, the results pre-
sented here and in a previous study [28] show that the 
N-terminal domain of human CTCF dimerizes when 
it is expressed in yeast and Drosophila S2 cells. In this 

Fig. 5 The dimerization domain from hCTCF can functionally replace the DD in dCTCF. (A) Schematic representation of dCTCFwt(wt-HA) and its mutant 
variants dCTCFΔ80–170-HA (Δ80–170-HA) and dCTCFhN(hN). (B) Morphology of the abdominal segments of the lines with dCTCF mutations. The designations 
correspond to those shown in Figs. 1 and 2. (C) Localization of dCTCFwt, dCTCFΔ80–170-HA, and dCTCFhN in the polytene chromosomes from third instar 
female larvae of respective fly lines. The panels show the results of immunostaining of dCTCF variants (with rabbit anti-dCTCF_C antibodies) and CP190 
(rat anti-CP190 antibody). DNA was stained with DAPI (blue). Scale bar is 20 μm

 



Page 10 of 19Kamalyan et al. Epigenetics & Chromatin            (2024) 17:9 

Fig. 6 Immunoblot analysis of total extract and cytoplasmic, nucleoplasmic, chromatin fractions prepared from two-day-old adult males of y1w1118(y1w1), 
dCTCFwt-HA (wt-HA), dCTCFΔ132–170-HA (Δ132–170-HA), dCTCFΔ80–170-HA (Δ80–170-HA), and dCTCFhN(hN) lines. The total extract and cytoplasmic, nucleoplas-
mic, and chromatin fractions were prepared as described in the Materials and Methods section and briefly explained in the right panel of the figure. Blots 
were stained with anti-dCTCF_C antibodies and control antibodies against tubulin (cytoplasmic marker), lamin (nuclear marker), and histone H3 (his3, 
chromatin marker)
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Fig. 7 (See legend on next page.)
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study, we demonstrated the functional equivalence of the 
dimerization domains between Drosophila and human 
CTCF proteins. Despite its low expression level, the chi-
meric dCTCFhN protein efficiently bound to genomic 
sites comparably to dCTCFwt-HA, demonstrating fully 
restored functional activity. Given the lack of homology 
between the dimerization domains of human and Dro-
sophila CTCF proteins, it is likely that the dimerization 
activity, rather than the ability of this domain to interact 
with partner proteins, plays a significant role in the func-
tionality of dCTCF.

Our findings suggest that the 132–170 amino acid 
region is the core part of the DD, enabling homodi-
merization and interaction with the 80–132 amino acid 
region. The flexible organization of unstructured dimer-
ization domains contributes to their rapid sequence 
variability during evolution, facilitating functional 
improvement or acquisition of new functions. We previ-
ously observed a similar pattern in the multifunctional 
zinc finger transcription factor CLAMP, which also 
contains an intrinsically disordered N-terminal domain 
consisting of two parts both capable of homo- and het-
erodimerization [68]. However, in contrast to the low 
conservation of the CTCF DD sequence, even among 
Drosophila species, the N-terminal dimerization domain 
of CLAMP is conserved across most insects.

DD is likely involved in the formation of local chroma-
tin loops between dCTCF sites. However, proving this 
through Hi-C or Micro-C experiments in flies is chal-
lenging. Even in early embryos [69] and cell lines [70] 
with highly homogeneous chromatin, complete inacti-
vation of dCTCF does not significantly affect chromatin 
architecture. This effect may be attributed to the collab-
orative role of dCTCF with other architectural proteins 
in forming regulatory elements and establishing chroma-
tin loops [7, 52]. For example, dCTCF forms the bound-
aries of regulatory domains in the BX-C together with 
Pita, Su(Hw), and other yet-unidentified architectural 
proteins [49]. Recent studies have shown that mamma-
lian CTCF also forms topologically associating domain 
boundaries in cooperation with at least several other pro-
teins, including some that interact with cohesin [55–57, 
71]. One of the prominent roles of dCTCF is its involve-
ment in long-range interactions between the iab enhanc-
ers and the Abd-B promoter and in the establishment of 

insulators between adjacent iab domains. For example, in 
dCTCF mutants, ectopic activation of Abd-B in the A4 
segment implies that reduced dCTCF binding affects the 
insulator function of the Mcp boundary located between 
the iab-4 and iab-5 domains (Fig. 1A).

In the present study, most robust dCTCF binding sites 
colocalized with CP190 peaks in chromatin samples from 
adult flies. In adult flies, binding of dCTCF variants was 
examined in an average mixture of a large number of 
different cell types. It is possible that in some cell types 
dCTCF loses its ability to bind to regulatory elements, 
which become inactive. Because CP190 binds preferen-
tially to the promoters of housekeeping genes, dCTCF 
binding is maintained at high levels at such genomic 
sites. Previous studies have demonstrated that the C-ter-
minal region spanning amino acids 705 to 733 of the 
dCTCF protein interacts with the BTB and M domains of 
the CP190 protein [34, 72]. In flies expressing the mutant 
dCTCFΔ705–733 protein, the efficiency of CP190 binding 
remains largely unaffected [34], consistent with the model 
that each regulatory element, along with dCTCF, is asso-
ciated with other architectural proteins that also interact 
with CP190 [7, 52]. Thus, the robust dCTCF/CP190 sites 
are bound by groups of architectural proteins that recruit 
CP190. Interestingly, while dCTCFΔ705–733 binding is not 
impaired in comparison with that of dCTCFwt [73], sev-
eral studies have shown that CP190 inactivation results 
in reduced dCTCF binding [38, 74]. This observation can 
be explained by the essential role of CP190 in the forma-
tion of open chromatin regions [73, 75–78], which likely 
facilitates the binding of architectural C2H2 proteins to 
chromatin.

Our results also suggest that dCTCF can bind to 
genomic sites lacking the consensus motif indepen-
dent of the presence of the DD. However, the binding of 
dCTCF to such motif-lacking sites is relatively weak and 
could be mediated by direct interactions with unknown 
DNA-binding architectural proteins and transcription 
factors. Further studies are required to understand the 
mechanisms underlying the motif-independent binding 
of dCTCF.

(See figure on previous page.)
Fig. 7 Comparison of dCTCFwt-HA (wt), dCTCFΔ80–170-HA(Δ80–170) and dCTCFhN (hN) binding in adult flies. (A) Average signal (RPKM) of ChIP-seq peaks 
with motif (left) and motif logo (right) for dCTCF protein (anti-dCTCF_C antibodies) in lines expressing dCTCFwt-HA (wt), dCTCFΔ80–170-HA (Δ80–170) and 
CTCFhN (hN). The motifs associated with the peaks are the same in all three datasets. (B) Average signal (RPKM) (top) and signal heatmaps (bottom) for 
CP190 in the y1w1118 line and dCTCF in the wt-HA, Δ80–170-HA, and hN lines. Different sets of peaks for all three lines (wt-HA, Δ80–170-HA, and hN) are 
shown (columns): a combined set of dCTCF binding sites with the binding motif overlapping with CP190 binding sites (denoted as “dCTCF motif; CP190 
signal”); a combined set of dCTCF binding sites with the motif and not overlapping with CP190 binding sites (denoted as “dCTCF motif; no CP190 signal”); 
a combined set of dCTCF binding sites without the motif but overlapping with CP190 binding sites (denoted as “no dCTCF motif; CP190 signal”). The 
“dCTCF motif; CP190 signal” and “dCTCF motif; no CP190 signal” sets were motif-centered, and “no CTCF motif; CP190 signal” set was centered on the peak 
summit
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Fig. 8 Genome browser tracks for representative regions with occupancy of dCTCFwtHA, dCTCFΔ80–170-HA, dCTCFhN. The dCTCF motif track is shown for 
convenience. Protein-coding genes are depicted in dark blue, lncRNA-coding genes are shown in yellow, and arrowheads indicate promoters. (A) Regions 
with CTCFwtHA, CTCFd80–170-HA, and dCTCFhN occupancy, with peaks confirmed by motifs. (B) Regions lacking CTCFd80–170-HA binding with peaks con-
firmed by motifs. Red dashed lines mark the boundaries of the regulatory iab domains. (C) Regions with CTCFwtHA, CTCFd80–170-HA, dCTCFhN occupancy, 
and CP190 enrichment, lacking the dCTCF DNA binding motif
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Materials and methods
Fly crosses and generation of transgenic lines
Drosophila strains were maintained on standard medium 
at 25 °C and 50–60% humidity. A previously obtained fly 
line with the landing platform (CTCFattP(mCh)) [34] was 
used for the insertion of transgenic constructs using the 
φC31-mediated site-specific integration system [79]. 
The constructs were assembled based on the pBlue-
scriptSK vector and contained genetic elements in the 
following order: [mini-white]-[loxP]-[modified CTCF]-
[SV40polyA]-[attB] (Additional File 1: Fig. S1). Muta-
tions in the protein-coding region were generated by 
overlap extension polymerase chain reaction (PCR) using 
the primers listed in Additional File 4 and were verified 
by sequencing. Successful genomic integration events 
were visualized through the expression of the mini-white 
reporter in the eyes. The mini-white and Act5C:mCherry 
reporters were further excised by Cre-mediated recom-
bination between the lox sites. All crosses were con-
ducted using the TM6 balancer. Fertility was determined 
by the ability of males or females to produce offspring 
when crossed with males or females from the same line 
or y1w1118 line. “Fertile” means that the CTCF mutants 
produce offspring when crossed with each other. “Low 
fertile” means that the CTCF mutants cannot produce 
offspring when crossed with each other, but produce off-
spring when crossed with CTCF+ flies (y1w1118). “Sterile” 
means that the CTCF mutants cannot produce offspring 
when crossed with CTCF+ flies (y1w1118). Details of the 
crosses, the primers used for the genetic analysis, and all 
stocks are available upon request.

Cuticle preparations
Three-day-old adult flies were collected in 1.5  ml tubes 
and stored in 70% ethanol for at least 1  day. The etha-
nol was then replaced with 10% KOH, and the flies were 
heated at 70  °C for 1  h. After heating, the flies were 
washed twice with dH2O and heated again in dH2O for 
45  min. The digested flies were then washed with 70% 
ethanol and stored in 70% ethanol. The abdomen cuticles 
were cut from the rest of the digested fly using fine twee-
zers and an insulin syringe needle and placed in a drop 
of glycerol on a glass slide. The abdomens were then cut 
longitudinally on the dorsal side through all the tergites 
with the syringe. Some cuts were made between the ter-
gites to ensure that the cuticle lay flat on the slide. The 
cuticles were then flattened with a coverslip. Photographs 
in the bright or dark field were taken on a Nikon SMZ18 
stereomicroscope using Nikon DS-Ri2 digital camera, 
processed with ImageJ 1.50c4 and Fiji bundle 2.0.0-rc-46.

Yeast two-hybrid assay
The yeast two-hybrid assay was performed as previously 
described [80]. Fragments of dCTCF cDNA were fused 

to either DNA-binding or activation domains of GAL4 
using pGBT9 and pGAD424 vectors (Clontech, USA), 
respectively, with the primers listed in Additional File 
4. Generated plasmids were transformed into Saccharo-
myces cerevisiae PJ69-4A strain (MATa trp1–901 leu2–
3,112 ura3–52 his3–200 gal4∆ gal80∆ LYS2::GAL1-HIS3 
GAL2-ADE2 met2::GAL7-lacZ) using the LiAc/SS-DNA/
PEG method [81]. The cells were plated on medium lack-
ing tryptophan and leucine. After three-day growth at 
30ºC, the samples were streaked on selective medium 
lacking tryptophan, leucine, histidine, and adenine and 
incubated at 30ºC. Colony growth was assessed 3 days 
later. Each assay was repeated three times.

Antibodies
Antibodies against the N-terminal domain (anti-
dCTCF_N) of dCTCF (amino acids 1–287) and amino 
acids 657–818 of the C-terminal domain (anti-dCTCF_C) 
were produced in rabbits and purified by affinity purifica-
tion on Aminolink resin (Thermo Fisher Scientific, USA) 
according to standard protocols. These antibodies were 
characterized in a previous study [34]. The other anti-
bodies used were as follows: mouse monoclonal anti-HA 
antibodies, clone HA-7 (#H3663, Sigma, USA); mouse 
monoclonal anti-FLAG antibodies, clone M2 (F1804, 
Sigma, USA); mouse monoclonal anti-lamin Dm0, clone 
ADL84.12 (#ADL84.12, DSHB, USA); rat anti-CP190; 
anti-histone H3 (#39163, Active Motif, USA); anti-α-
tubulin (#39527, Active Motif, USA).

Fly extract preparation
Nuclear protein extract
Twenty adult flies were homogenized with a Dounce 
homogenizer (Wheaton) in buffer A (15 mM HEPES pH 
7.6, 60 mM KCl, 15 mM NaCl, 10 mM EDTA, 0.5 mM 
EGTA, 0.5% NP40, 1mM DTT, 1 mM PMSF, and 1:500 
Calbiochem Complete Protease inhibitor cocktail). The 
cells were collected by centrifugation at 3000 x g and 
resuspended in buffer B (20 mM Tris-HCl 7.4, 10 mM 
KCl, 10 mM MgCl2, 2 mM EDTA, 10% glycerol, 1% Tri-
ton X-100, 1mM DTT, 1 mM PMSF, and 1:500 Calbio-
chem Complete Protease inhibitor cocktail), sonicated 
2 × 10  s at 5  W, and centrifuged at 3000 x g to separate 
the cytoplasm fraction from the nuclei. The nuclei were 
thrice washed with the same buffer, resuspended in buf-
fer B, and 4x SDS-PAGE sample buffer with 2  M Urea 
and 300 mM NaCl was added to all the samples. The 
extracts then were boiled for 5 min at 100 °C, centrifuged 
for 5 min at 16,000 x g, and loaded on a 6% or 8% SDS–
PAGE gels.

Total protein extract
Twenty adult flies were cooled in liquid nitrogen, homog-
enized for 30 s with a pestle in 200 µL of extraction buffer 
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(20 mM HEPES, pH 7.5, 100 mM KCl, 5% glycerol, 10 
mM EDTA, 1% NP-40, 1% sodium deoxycholate, 0.1% 
SDS, 1 mM DTT, 5 mM PMSF, and 1:100 Calbiochem 
Complete Protease Inhibitor Cocktails VII and V) and 
incubated on ice for 10  min. The suspension was soni-
cated in a Bioruptor (Diagenode, USA) for 3 min on set-
ting H, 15 s ON/45 sec OFF. Then 4x SDS-PAGE sample 
buffer was added to the homogenate. Extracts were incu-
bated for 10 min at 100 °C, centrifuged at 16,000 x g for 
5 min, and loaded on a 6% or 8% SDS-PAGE gel.

Cellular Fractionation
Cellular fractionation was performed as described in [82], 
with some modifications. Sixty adult flies were homog-
enized with Potter and Dounce homogenizers (Wheaton) 
in 500 µL of ice-cold cytoplasm extraction buffer (CEB 
(50 mM HEPES-KOH pH 7.5, 10 mM NaCl, 1 mM EDTA 
pH8.0, 10% glycerol, 0.5% NP-40, 0.25% triton X-100, 1 
mM DTT, and 1:100 Calbiochem Complete Protease 
Inhibitor Cocktails VII and V), filtered through a 70 μm 
cell strainer (Miltenyi Biotec, USA) and incubated on ice 
for 10 min. The homogenate was centrifuged at 3000 x g 
at 4 °C for 5 min.

The supernatant was collected in a fresh tube (cytoplas-
mic fraction), and the nuclear fraction was thrice washed 
with the same buffer. Then, the pellet was resuspended 
in 100 µL of ice-cold nuclear extraction buffer (NEB 
(10 mM Tris-HCl pH8.0, 200 (or 300) mM NaCl, 1 mM 
EDTA pH8.0, 0.5 mM EGTA pH8.0, and 1:100 Calbio-
chem Complete Protease Inhibitor Cocktails VII and V), 
incubated on ice for 10 min and centrifuged at 3000 x g at 
4 °C for 5 min. The supernatant was collected in a fresh 
tube (nucleoplasmic fraction), and the chromatin pellet 
was thrice washed with the same buffer. Then, the pellet 
was resuspended in 100 µL of ice-cold chromatin extrac-
tion buffer (ChEB (500 mM Tris-HCl, 500 mM NaCl, and 
1:100 Calbiochem Complete Protease Inhibitor Cocktails 
VII and V) and incubated on ice for 10  min. The solu-
tion (chromatin fraction) was sonicated in a Bioruptor 
(Diagenode, USA) for 5  min on setting H, 30  s ON/30 
sec OFF and centrifuged at 16,000 x g at 4 °C for 10 min. 
The supernatant was collected in a fresh tube (chromatin 
fraction). Then 4x SDS–PAGE sample buffer was added 
to all the samples, and the extracts were boiled for 5 min 
at 100 °C, centrifuged for 5 min at 16,000 x g, and loaded 
on a 6% or 8% SDS–PAGE gel.

Protein samples were analyzed by immunoblot analysis. 
Proteins were detected using the ECL Plus Western Blot-
ting substrate (Thermo Fisher Scientific, USA). Quanti-
tative analysis of bands on immunoblots was performed 
using ImageLab 6.0.1 software (Bio-Rad) with ‘Relative 
quantity tool’.

ChIP-Seq
Chromatin was prepared from two- to three-day-old 
adult flies. One gram of adult flies was ground in a mor-
tar in liquid nitrogen and resuspended in 20 mL of buf-
fer A (15 mM HEPES-KOH, pH 7.6, 60 mM KCl, 15 mM 
NaCl, 13 mM EDTA, 0.1 mM EGTA, 0.15 mM sperm-
ine, 0.5 mM spermidine, 0.5% NP-40, and 0.5 mM DTT) 
supplemented with 0.5 mM PMSF and Calbiochem 
Cocktail V. The suspension was then homogenized in a 
Potter and Dounce homogenizer with a tight pestle, fil-
tered through a 100  μm Nylon Cell Strainer (Miltenyi 
Biotec, United States), and cross-linked with 1% form-
aldehyde for 15 min at room temperature. Cross-linking 
was stopped by adding glycine to a final concentration 
of 125 mM. The nuclei were washed with three 10-mL 
portions of wash buffer (15 mM HEPES-KOH, pH 7.6, 
60 mM KCl, 15 mM NaCl, 1 mM EDTA, 0.1 mM EGTA, 
0.1% NP-40, and protease inhibitors) and one 5-mL por-
tion of nuclear lysis basic buffer (15 mM HEPES, pH 7.6, 
140 mM NaCl, 1 mM EDTA, 0.1 mM EGTA, 1% Triton 
X-100, 0.5 mM DTT, 0.1% sodium deoxycholate, and 
protease inhibitors) and resuspended in 1 mL of nuclear 
lysis buffer (15 mM HEPES, pH 7.6, 140 mM NaCl, 1 
mM EDTA, 0.1 mM EGTA, 1% Triton X-100, 0.5 mM 
DTT, 0.1% sodium deoxycholate, 0.5% SLS, 0.1% SDS, 
and protease inhibitors). The suspension was sonicated 
in a Covaris ME220 focused-ultrasonicator (40 alter-
nating 15-s ON and 45-s OFF intervals, peak power 75, 
duty % factor 25), and 50-µL aliquots were used to test 
the extent of sonication and measure the DNA concen-
tration. Debris was removed by centrifugation at 14,000 
x g, 4 °C, for 10 min, and chromatin was pre-cleared with 
Protein A Dynabeads (Invitrogen, USA). Corresponding 
antibodies were incubated for 1  h at room temperature 
with 20 µL aliquots of Protein A (anti-CTCF C, 1:200) 
or G (anti-CP190, 1:200) Dynabeads (Invitrogen, USA) 
mixed with 200 µL of PBST. Then antibody–Dynabead 
complexes and anti-HA Magnetic beads (Pierce) were 
washed and equilibrated in nuclear lysis buffer. Chroma-
tin samples containing 10–20  µg of DNA equivalent in 
200 µL nuclear lysis buffer (2 µL aliquots of pre-cleared 
chromatin as input material) were incubated overnight at 
4 °C with antibody–Dynabead complexes. After 3 rounds 
of washing with lysis buffer supplemented with 500 
mM NaCl and TE buffer (10 mM Tris-HCl, pH 8; 1 mM 
EDTA), the DNA was eluted with elution buffer (50 mM 
Tris-HCl, pH 8.0; 1 mM EDTA, 1% SDS), the cross-links 
were reversed, and the precipitated DNA was extracted 
using a ChIP DNA Clean &Concentrator kit (Zymo 
Research, USA).

The ChIP-seq libraries were prepared with the NEB-
Next®_Ultra™_II DNA Library Prep kit per the manufac-
turer’s instructions. Amplified libraries were quantified 
using fluorometry with DS-11 (DeNovix, United States) 
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and a Bioanalyzer 2100 (Agilent, United States). Diluted 
libraries were clustered on a pair-read flowcell and 
sequenced using a NovaSeq 6000 system (Illumina, 
United States). ChIP-seq analysis was performed for 
eight samples (CTCFwt-HA, CTCFΔ132–170-HA, CTCFwt, 
CTCFΔ80–170, CTCFhN, CP190, preimmune controls 
against HA, and rabbit antibodies). Two biological repli-
cates were obtained for each sample. Reads were paired-
end and were processed as described previously [34]. The 
main steps were as follows:

  • Trimming Illumina adapters with cutadapt [83], 
parameters: -a “T{100}”, -m 20 --trim-n --minimum-
length = 20 --pair-filter = any;

  • Trimming low-quality ends with sickle (https://
github.com/najoshi/sickle), parameters: -q 20 -l 20 
–n;

  • Alignment with bowtie2 [84], parameters: 
--no-discordant --no-mixed;

  • Filtration of PCR duplicates and non-unique 
mapping with picard (https://broadinstitute.
github.io/picard/) functions FilterSamReads and 
MarkDuplicates;

  • Blacklist filtration with bedtools [85];
  • Reproducible peak calling against corresponding 

preimmune controls with IDR pipeline (https://
github.com/nboley/idr). A soft p-value threshold 
for MACS2 in IDR of 0.01 was used [86]. The IDR 
threshold was set to 0.05 for true replicates and 0.01 
for pseudoreplicates.

All samples showed good reproducibility between bio-
logical replicates (the rescue and self-consistency ratios 
were below 2).

ChIP-seq coverage tracks (BedGraph) were obtained 
using deepTools [87] bamCoverage function, with a bin 
width of 50 bp and RPKM normalization (bam files from 
two replicates were preliminary merged). De novo motif 
discovery was performed using ChIPMunk [88, 89]. For 
motif discovery, the top 200 peaks per sample were nar-
rowed to ± 200  bp around the summit, ChIPMunk was 
run in peak summit mode, and the motif length was set 
to 15. Genome-wide motif sites were identified using 
sarus (https://github.com/VorontsovIE/sarus) with a 
p-value threshold of 1 × 10-4. Heatmaps and coverage for 
peak sets were obtained with the deepTools functions 
computeMatrix and plotHeatmap [90].

Downstream analysis was performed in R statistical 
programming language, version 4.2.2. Peak annotation 
was performed using ChIPseeker [91] and Genomi-
cRanges [92] packages; promoter segments were consid-
ered ± 200 bp from the TSS. The overlapping peaks were 
analyzed with ChIPpeakAnno [93] and visualized using 
the UpSetR package [94].

To compare CTCFwt-HA and CTCFΔ132–170-HA bind-
ing, we performed a linear regression of their signals 
(RPKM) in a combined set of their binding sites:

 log10
(
RPKM(CTCF∆132−170HA)

)
∼ log10

(
RPKM(CTCFwtHA)

)
 (1)

Then, we detected outliers as previously described [34] 
by calculating studentized regression residuals and find-
ing those with the probability of arising from the normal 
distribution less than 0.05 (p < 0.05).

Immunostaining of polytene chromosomes
Drosophila 3rd instar larvae were cultured at 18 °C under 
standard conditions. Polytene chromosome staining was 
performed as previously described [95]. The following 
primary antibodies were used: rat anti-CP190 at 1:300 
dilution, anti-CTCF_C at 1:400 dilution, mouse anti-
HA at 1:100 dilution. The secondary antibodies were 
Alexa Fluor 488 goat anti-rabbit 1:2000 and Alexa Fluor 
555 goat anti-mouse 1:2000 (Invitrogen). The polytene 
chromosomes were co-stained with DAPI (AppliChem). 
Images were acquired with the Nikon Eclipse Ti fluo-
rescent microscope using Nikon DS-Qi2 digital camera, 
processed with ImageJ 1.50c4 and Fiji bundle 2.0.0-rc-46. 
Three to four independent stainings and 4–5 samples of 
polytene chromosomes were performed per transgenic 
line.
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