Prado F, Maya D. Regulation of replication fork advance and stability by nucleosome assembly. Genes (Basel). 2017;8:49.
Article
CAS
Google Scholar
Polo SE, Almouzni G. Chromatin dynamics after DNA damage: the legacy of the access-repair-restore model. DNA Repair. 2015;36:114–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venkatesh S, Workman JL. Histone exchange, chromatin structure and the regulation of transcription. Nature. 2015;16:178–89.
CAS
Google Scholar
Maeshima K, Ide S, Babokhov M. Dynamic chromatin organization without the 30-nm fiber. Curr Opin Cell Biol. 2019;58:95–104.
Article
CAS
PubMed
Google Scholar
Kschonsak M, Haering CH. Shaping mitotic chromosomes: from classical concepts to molecular mechanisms. BioEssays. 2015;37:755–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nitiss JL. DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer. 2009;9:327–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kakui Y, Uhlmann F. SMC complexes orchestrate the mitotic chromatin interaction landscape. Curr Genet. 2017;64:335–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Michaelis C, Ciosk R, Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997;91:35–45.
Article
CAS
PubMed
Google Scholar
Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, et al. Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell. 2000;5:243–54.
Article
CAS
PubMed
Google Scholar
Srinivasan M, Scheinost JC, Petela NJ, Gligoris TG, Wissler M, Ogushi S, et al. The cohesin ring uses its hinge to organize DNA using non-topological as well as topological mechanisms. Cell. 2018;173:1–31.
Article
CAS
Google Scholar
Glynn EF, Megee PC, Yu H-G, Mistrot C, Ünal E, Koshland DE, et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2004;2:e259-15.
Article
CAS
Google Scholar
Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, Itoh T, et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature. 2004;430:573–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laloraya S, Guacci V, Koshland D. Chromosomal addresses of the cohesin component Mcd1p. J Cell Biol. 2000;151:1047–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stigler J, Çamdere GÖ, Koshland DE, Greene EC. Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin. Cell Rep. 2016;15:988–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tóth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 1999;13:320–33.
Article
PubMed
PubMed Central
Google Scholar
Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner K-P, Shirahige K, et al. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell. 2006;23:787–99.
Article
CAS
PubMed
Google Scholar
Murayama Y, Samora CP, Kurokawa Y, Iwasaki H, Uhlmann F. Establishment of DNA-DNA interactions by the cohesin ring. Cell. 2018;172(465–469):e15.
Google Scholar
Rhodes JDP, Haarhuis JHI, Grimm JB, Rowland BD, Lavis LD, Nasmyth KA. Cohesin can remain associated with chromosomes during DNA replication. Cell Rep. 2017;20:2749–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uhlmann F, Lottspeich F, Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature. 1999;400:37–42.
Article
CAS
PubMed
Google Scholar
Makrantoni V, Marston AL. Cohesin and chromosome segregation. Curr Biol. 2018;28:R688–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uhlmann F. SMC complexes: from DNA to chromosomes. Nature. 2016;17:1–14.
Google Scholar
Villa-Hernández S, Bermejo R. Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr Genet. 2018;16:281.
Google Scholar
Remeseiro S, Losada A. Cohesin, a chromatin engagement ring. Curr Opin Cell Biol. 2013;25:63–71.
Article
CAS
PubMed
Google Scholar
Dorsett D, Merkenschlager M. Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans. Curr Opin Cell Biol. 2013;25:327–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehta GD, Kumar R, Srivastava S, Ghosh SK. Cohesin: functions beyond sister chromatid cohesion. FEBS Lett. 2013;587:2299–312.
Article
CAS
PubMed
Google Scholar
Lopez-Serra L, Kelly G, Patel H, Stewart A, Uhlmann F. The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat Genet. 2014;46:1147–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Hsu J-M, Laurent BC. The RSC nucleosome-remodeling complex is required for cohesin’s association with chromosome arms. Mol Cell. 2004;13:739–50.
Article
CAS
PubMed
Google Scholar
Muñoz S, Minamino M, Casas-Delucchi CS, Patel H, Uhlmann F. A role for chromatin remodeling in cohesin loading onto chromosomes. Mol Cell. 2019;74:664–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Litwin I, Bakowski T, Maciaszczyk-Dziubinska E, Wysocki R. The LSH/HELLS homolog Irc5 contributes to cohesin association with chromatin in yeast. Nucl Acids Res. 2017;45:6404–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hakimi M-A, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, et al. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature. 2002;418:994–8.
Article
CAS
PubMed
Google Scholar
Liu J, Czajkowsky DM, Liang S, Shao Z. Cell cycle-dependent nucleosome occupancy at cohesin binding sites in yeast chromosomes. Genomics. 2008;91:274–80.
Article
CAS
PubMed
Google Scholar
Blat Y, Kleckner N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell. 1999;98:249–59.
Article
CAS
PubMed
Google Scholar
Lee C-K, Shibata Y, Rao B, Strahl BD, Lieb JD. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet. 2004;36:900–5.
Article
CAS
PubMed
Google Scholar
Yuan G-C, Liu Y-J, Dion MF, Slack MD, Wu LF, Altschuler SJ, et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science. 2005;309:626–30.
Article
CAS
PubMed
Google Scholar
Chen K, Xi Y, Pan X, Li Z, Kaestner K, Tyler J, et al. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res. 2013;23:341–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haering CH, Schoffnegger D, Nishino T, Helmhart W, Nasmyth K, Löwe J. Structure and stability of cohesin’s Smc1-Kleisin interaction. Mol Cell. 2004;15:951–64.
Article
CAS
PubMed
Google Scholar
Tirosh I, Barkai N. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 2008;18:1084–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaugg JB, Luscombe NM. A genomic model of condition-specific nucleosome behavior explains transcriptional activity in yeast. Genome Res. 2012;22:84–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubik S, Bruzzone MJ, Jacquet P, Falcone J-L, Rougemont J, Shore D. Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast. Mol Cell. 2015;60:422–34.
Article
CAS
PubMed
Google Scholar
Kubik S, Bruzzone MJ, Shore D. Establishing nucleosome architecture and stability at promoters: roles of pioneer transcription factors and the RSC chromatin remodeler. BioEssays. 2017;39:1600237-10.
Article
CAS
Google Scholar
Floer M, Wang X, Prabhu V, Berrozpe G, Narayan S, Spagna D, et al. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell. 2010;141:1–12.
Article
CAS
Google Scholar
Basehoar AD, Zanton SJ, Pugh BF. Identification and distinct regulation of yeast TATA box-containing genes. Cell. 2004;116:699–709.
Article
CAS
PubMed
Google Scholar
Huisinga KL, Pugh BF. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell. 2004;13:573–85.
Article
CAS
PubMed
Google Scholar
Petrenko N, Jin Y, Wong KH, Struhl K. Evidence that Mediator is essential for Pol II transcription, but is not a required component of the preinitiation complex in vivo. eLife. 2017;6:e28447.
Article
PubMed
PubMed Central
Google Scholar
Bruzzone MJ, Grünberg S, Kubik S, Zentner GE, Shore D. Distinct patterns of histone acetyltransferase and Mediator deployment at yeast protein-coding genes. Genes Dev. 2018;32:1252–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morillo-Huesca M, Clemente-Ruiz M, Andújar E, Prado F. The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z. PLoS ONE. 2010;5:e12143.
Article
PubMed
PubMed Central
CAS
Google Scholar
Murillo-Pineda M, Cabello-Lobato MJ, Clemente-Ruiz M, Monje-Casas F, Prado F. Defective histone supply causes condensin-dependent chromatin alterations, SAC activation and chromosome decatenation impairment. Nuclic Acids Res. 2014;42:12469–82. Corrigendum: Nucl Acids Res. 2016. https://doi.org/10.1093/nar/gkw058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prado F, Aguilera A. Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Mol Cell Biol. 2005;25:1526–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gossett AJ, Lieb JD. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet. 2012;8:e1002771.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. Conserved nucleosome positioning defines replication origins. Genes Dev. 2010;24:748–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Xu Z, Leng H, Zheng P, Yang J, Chen K, et al. RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly. Science. 2017;355:415–20.
Article
CAS
PubMed
Google Scholar
Barlow T, Eliasson R, Platz A, Reichard P, Sjöberg BM. Enzymic modification of a tyrosine residue to a stable free radical in ribonucleotide reductase. Proc Natl Acad Sci USA. 1983;80:1492–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu B, Petela N, Kurze A, Chan KL, Chapard C, Nasmyth K. Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq. Nucl Acids Res. 2015;43:e132.
PubMed
PubMed Central
Google Scholar
Brackley CA, Allan J, Keszenman-Pereyra D, Marenduzzo D. Topological constraints strongly affect chromatin reconstitution in silico. Nucl Acids Res. 2014;43:63–73.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rao SSP, Huang S-C, Hilaire BGS, Engreitz JM, Perez EM, Kieffer-Kwon K-R, et al. Cohesin loss eliminates all loop domains. Cell. 2017;171:305–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schalbetter SA, Goloborodko A, Fudenberg G, Belton J-M, Miles C, Yu M, et al. SMC complexes differentially compact mitotic chromosomes according to genomic context. Nat Cell Biol. 2017;19:1071–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazar Stefanita L, Scolari VF, Mercy G, Muller H, Guérin TM, Thierry A, et al. Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J. 2017;36:2684–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frattini C, Villa-Hernández S, Pellicanò G, Jossen R, Katou Y, Shirahige K, et al. Cohesin ubiquitylation and mobilization facilitate stalled replication fork dynamics. Mol Cell. 2017;68(758–771):e5.
Google Scholar
Samora CP, Saksouk J, Goswami P, Wade Ben O, Singleton MR, Bates PA, et al. Ctf4 Links DNA replication with sister chromatid cohesion establishment by recruiting the Chl1 helicase to the replisome. Mol Cell. 2016;63:1–33.
Article
CAS
Google Scholar
Huang H, Strømme CB, Saredi G, Hödl M, Strandsby A, González-Aguilera C, et al. A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks. Nat Struct Mol Biol. 2015;22:618–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, et al. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep. 2013;3:892–904.
Article
CAS
PubMed
Google Scholar
Dorsett D. Cohesin: genomic insights into controlling gene transcription and development. Curr Opin Genet Dev. 2011;21:199–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lenstra TL, Benschop JJ, Kim T, Schulze JM, Brabers NACH, Margaritis T, et al. The specificity and topology of chromatin interaction pathways in yeast. Mol Cell. 2011;42:536–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Ruiten MS, Rowland BD. SMC complexes: universal DNA looping machines with distinct regulators. Trends Genet. 2018;34:477–87.
Article
PubMed
CAS
Google Scholar
Chereji RV, Ocampo J, Clark DJ. MNase-sensitive complexes in yeast: nucleosomes and non-histone barriers. Mol Cell. 2017;65(565–577):e3.
Google Scholar
Brahma S, Henikoff S. RSC-associated subnucleosomes define MNase-sensitive promoters in yeast. Mol Cell. 2019;73(238–249):e3.
Google Scholar
Kubik S, O’Duibhir E, de Jonge WJ, Mattarocci S, Albert B, Falcone J-L, et al. Sequence-directed action of RSC remodeler and general regulatory factors modulates +1 nucleosome position to facilitate transcription. Mol Cell. 2018;71(89–102):e5.
Google Scholar
Sun M, Nishino T, Marko JF. The SMC1–SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Nucl Acids Res. 2013;41:6149–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H, Boone C, Brown GW. Genetic dissection of parallel sister-chromatid cohesion pathways. Genetics. 2007;176:1417–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borges V, Smith DJ, Whitehouse I, Uhlmann F. An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma. 2013;122:121–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clemente-Ruiz M, Prado F. Chromatin assembly controls replication fork stability. EMBO Rep. 2009;10:790–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wyrick JJ, Holstege FC, Jennings EG, Causton HC, Shore D, Grunstein M, et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature. 1999;402:418–21.
Article
CAS
PubMed
Google Scholar
Remeseiro S, Cuadrado A, Losada A. Cohesin in development and disease. Development. 2013;140:3715–8.
Article
CAS
PubMed
Google Scholar
Longtine MS, Mckenzie A III, Demarini DJ, Shah NG, Wach A, Brachat A, et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998;14:953–61.
Article
CAS
PubMed
Google Scholar
Langmead Ben, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucl Acids Res. 2016;44:W3–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen K, Chen Z, Wu D, Zhang L, Lin X, Su J, et al. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat Genet. 2015;47:1149–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucl Acids Res. 2016;44:W160–5.
Article
PubMed
CAS
PubMed Central
Google Scholar
Köhrer K, Domdey H. Preparation of high molecular weight RNA. Methods Enzymol. 1991;194:398–405.
Article
PubMed
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics. 2011;27:1691–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotech. 2010;28:511–5.
Article
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.
Article
CAS
Google Scholar
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.
Article
CAS
PubMed
PubMed Central
Google Scholar