Muchardt C, Yaniv M. ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job. J Mol Biol. 1999;293:187–98.
Article
CAS
PubMed
Google Scholar
Haber JE, Garvik B. A new gene affecting the efficiency of mating-type interconversions in homothallic strains of Saccharomyces cerevisiae. Genetics. 1977;87:33–50.
CAS
PubMed
PubMed Central
Google Scholar
Carlson M, Osmond BC, Botstein D. Mutants of yeast defective in sucrose utilization. Genetics. 1981;98:25–40.
CAS
PubMed
PubMed Central
Google Scholar
Neigeborn L, Carlson M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics. 1984;108:845–58.
CAS
PubMed
PubMed Central
Google Scholar
Peterson CL, Herskowitz I. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell. 1992;68:573–83.
Article
CAS
PubMed
Google Scholar
Chiba H, Muramatsu M, Nomoto A, Kato H. Two human homologues of saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 1994;22:1815–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muchardt C, Yaniv M. When the SWI/SNF complex remodels the cell cycle. Oncogene. 2001;20:3067–75.
Article
CAS
PubMed
Google Scholar
Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, et al. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J. 2006;25:3986–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Euskirchen GM, Auerbach RK, Davidov E, Gianoulis TA, Zhong G, et al. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet. 2011;7:e1002008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alfert A, Moreno N, Kerl K. The BAF complex in development and disease. Epigenet Chromatin. 2019;12:19.
Article
Google Scholar
Wu JI, Lessard J, Crabtree GR. Understanding the words of chromatin regulation. Cell. 2009;136:200–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Côté J, Xue Y, Zhou S, Khavari PA, et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 1996;15:5370–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phelan ML, Sif S, Narlikar GJ, Kingston RE. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell. 1999;3:247–53.
Article
CAS
PubMed
Google Scholar
Mashtalir N, D’Avino AR, Michel BC, Luo J, Pan J, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018;175(1272–1288):e20.
Google Scholar
Alpsoy A, Dykhuizen EC. Glioma tumor suppressor candidate region gene 1 (GLTSCR15) and its paralog GLTSCR15-like form SWI/SNF chromatin remodeling subcomplexes. J Biol Chem. 2018;293:3892–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gatchalian J, Malik S, Ho J, Lee D-S, Kelso TWR, et al. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun. 2018;9:5139.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lorch Y, Maier-Davis B, Kornberg RD. Mechanism of chromatin remodeling. Proc Natl Acad Sci USA. 2010;107:3458–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 2013;154:490–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarnowska EA, Gratkowska DM, Sacharowski SP, Cwiek P, Tohge T, et al. The role of SWI/SNF chromatin remodeling complexes in hormone crosstalk. Trends Plant Sci. 2016;21:594–608.
Article
CAS
PubMed
Google Scholar
Huang Z, Li J, Sachs LM, Cole PA, Wong J. A role for cofactor–cofactor and cofactor–histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 2003;22:2146–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
King HA, Trotter KW, Archer TK. Chromatin remodeling during glucocorticoid receptor regulated transactivation. Biochim Biophys Acta Gene Regul Mech. 2012;1819:716–26.
Article
CAS
Google Scholar
Sif S, Saurin AJ, Imbalzano AN, Kingston RE. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 2001;15:603–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadam S, Emerson BM. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol Cell. 2003;11:377–89.
Article
CAS
PubMed
Google Scholar
Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell. 2000;6:1287–95.
Article
CAS
PubMed
Google Scholar
Reyes JC, Barra J, Muchardt C, Camus A, Babinet C, et al. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J. 1998;17:6979–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glaros S, Cirrincione GM, Muchardt C, Kleer CG, Michael CW, et al. The reversible epigenetic silencing of BRM: implications for clinical targeted therapy. Oncogene. 2007;26:7058–66.
Article
CAS
PubMed
Google Scholar
Banerjee R, Bultman SJ, Holley D, Hillhouse C, Bain JR, et al. Non-targeted metabolomics of Brg1/Brm double-mutant cardiomyocytes reveals a novel role for SWI/SNF complexes in metabolic homeostasis. Metabolomics. 2015;11:1287–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha S, Verma S, Chaturvedi MM. Differential expression of SWI/SNF chromatin remodeler subunits brahma and brahma-related gene during drug-induced liver injury and regeneration in mouse model. DNA Cell Biol. 2016;35:373–84.
Article
CAS
PubMed
Google Scholar
Thompson K, Marquez SB, Lu L, Reisman D. Induction of functional Brm protein from Brm knockout mice. Oncoscience. 2015;2:349.
Article
PubMed
PubMed Central
Google Scholar
Yang M, Sun Y, Ma L, Wang C, Wu J, et al. Complex alternative splicing of the Smarca2 gene suggests the importance of Smarca2-B variants. J Cancer. 2011;2:386–400.
Article
PubMed
PubMed Central
Google Scholar
Marquez-Vilendrer SB, Rai SK, Gramling SJB, Lu L. Loss of the SWI/SNF ATPase subunits BRM and BRG1 drives lung cancer development. Oncoscience. 2016;3:322–36.
PubMed
PubMed Central
Google Scholar
Kobayashi H, Kawahara N, Ogawa K, Yamada Y, Iwai K, et al. Conceptual frameworks of synthetic lethality in clear cell carcinoma of the ovary. Biomed Rep. 2018;9:112–8.
CAS
PubMed
PubMed Central
Google Scholar
Kosho T, Miyake N, Carey JC. Coffin–Siris syndrome and related disorders involving components of the BAF (mSWI/SNF) complex: historical review and recent advances using next generation sequencing. Am J Med Genet Part C Semin Med Genet. 2014;166:241–51.
Article
CAS
Google Scholar
Sekiguchi F, Tsurusaki Y, Okamoto N, Teik KW, Mizuno S, et al. Genetic abnormalities in a large cohort of Coffin–Siris syndrome patients. J Hum Genet. 2019;2:1–14.
Google Scholar
Wieczorek D, Bögershausen N, Beleggia F, Steiner-Haldenstätt S, Pohl E, et al. A comprehensive molecular study on Coffin–Siris and Nicolaides–Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum Mol Genet. 2013;22:5121–35.
Article
CAS
PubMed
Google Scholar
Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, et al. Mutations affecting components of the SWI/SNF complex cause Coffin–Siris syndrome. Nat Genet. 2012;44:376–8.
Article
CAS
PubMed
Google Scholar
Tsurusaki Y, Okamoto N, Ohashi H, Mizuno S, Matsumoto N, et al. Coffin–Siris syndrome is a SWI/SNF complex disorder. Clin Genet. 2014;85:548–54.
Article
CAS
PubMed
Google Scholar
Espín-Pérez A, de Kok TMCM, Jennen DGJ, Hendrickx DM, De Coster S, et al. Distinct genotype-dependent differences in transcriptome responses in humans exposed to environmental carcinogens. Carcinogenesis. 2015;36:1154–61.
Article
PubMed
CAS
Google Scholar
Raab JR, Runge JS, Spear CC, Magnuson T. Co-regulation of transcription by BRG1 and BRM, two mutually exclusive SWI/SNF ATPase subunits. Epigenet Chromatin. 2017;10:62.
Article
CAS
Google Scholar
Wu J, He K, Zhang Y, Song J, Shi Z, et al. Inactivation of SMARCA2 by promoter hypermethylation drives lung cancer development. Gene. 2019;687:193–9.
Article
CAS
PubMed
Google Scholar
Dunaief JL, Strober BE, Guha S, Khavari PA, Ålin K, et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell. 1994;79:119–30.
Article
CAS
PubMed
Google Scholar
Strober BE, Dunaief JL, Goff SP. Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol Cell Biol. 1996;16:1576–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trouche D, Le Chalony C, Muchardt C, Yaniv M, Kouzarides T. RB and hbrm cooperate to repress the activation functions of E2F1. Proc Natl Acad Sci USA. 1997;94:11268–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reisman DN, Strobeck MW, Betz BL, Sciariotta J, Funkhouser W Jr, et al. Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: differential effects on RB-mediated growth arrest vs CD44 expression. Oncogene. 2002;21:1196–207.
Article
CAS
PubMed
Google Scholar
Roesley SNA, La Marca JE, Deans AJ, Mckenzie L, Suryadinata R, et al. Phosphorylation of Drosophila Brahma on CDK-phosphorylation sites is important for cell cycle regulation and differentiation. Cell Cycle. 2018;17:1559–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell. 2000;101:79–89.
Article
CAS
PubMed
Google Scholar
Marquez-Vilendrer SB, Rai SK, Gramling SJB, Lu L, Reisman DN. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience. 2016;3:337–50.
PubMed
PubMed Central
Google Scholar
Lee D, Kim JW, Seo T, Hwang SG, Choi E-J, et al. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem. 2002;277:22330–7.
Article
CAS
PubMed
Google Scholar
Xu Y, Zhang J, Chen X. The activity of p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. J Biol Chem. 2007;282:37429–35.
Article
CAS
PubMed
Google Scholar
Brownlee PM, Meisenberg C, Downs JA. The SWI/SNF chromatin remodelling complex: its role in maintaining genome stability and preventing tumourigenesis. DNA Repair. 2015;32:127–33.
Article
CAS
PubMed
Google Scholar
Ribeiro-Silva C, Aydin ÖZ, Mesquita-Ribeiro R, Slyskova J, Helfricht A, et al. DNA damage sensitivity of SWI/SNF-deficient cells depends on TFIIH subunit p62/GTF2H1. Nat Commun. 2018;9:4067.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, et al. BRCA1 is associated with a human SWI/SNF-related complex. Cell. 2000;102:257–65.
Article
CAS
PubMed
Google Scholar
Batsché E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol. 2006;13:22–9.
Article
PubMed
CAS
Google Scholar
Sakurai K, Furukawa C, Haraguchi T, Inada K-I, Shiogama K, et al. MicroRNAs miR-199a-5p and -3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res. 2011;71:1680–9.
Article
CAS
PubMed
Google Scholar
Kobayashi K, Sakurai K, Hiramatsu H, Inada K, Shiogama K, et al. The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines. Sci Rep. 2015;5:8428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Li J, Guo H, Wang F, Ma L, et al. BRM transcriptionally regulates miR-302a-3p to target SOCS5/STAT3 signaling axis to potentiate pancreatic cancer metastasis. Cancer Lett. 2019;449:215–25.
Article
CAS
PubMed
Google Scholar
Zhang Z, Wang F, Du C, Guo H, Ma L, et al. BRM/SMARCA2 promotes the proliferation and chemoresistance of pancreatic cancer cells by targeting JAK2/STAT3 signaling. Cancer Lett. 2017;402:213–24.
Article
CAS
PubMed
Google Scholar
Link KA, Burd CJ, Williams E, Marshall T, Rosson G, et al. BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF. Mol Cell Biol. 2005;25:2200–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marshall TW, Link KA, Petre-Draviam CE, Knudsen KE. Differential requirement of SWI/SNF for androgen receptor activity. J Biol Chem. 2003;278:30605–13.
Article
CAS
PubMed
Google Scholar
Wang S, Zhang B, Faller DV. BRG1/BRM and prohibitin are required for growth suppression by estrogen antagonists. EMBO J. 2004;23:2293–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim KH, Roberts CWM. Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth. Cancer Genet. 2014;207:365–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts CWM, Biegel JA. The role of SMARCB1/INI1 in development of rhabdoid tumor. Cancer Biol Ther. 2009;8:412–6.
Article
CAS
PubMed
Google Scholar
Kahali B, Yu J, Marquez SB, Thompson KW, Liang SY, et al. The silencing of the SWI/SNF subunit and anticancer gene BRM in Rhabdoid tumors. Oncotarget. 2014;5:3316–32.
Article
PubMed
PubMed Central
Google Scholar
Herpel E, Rieker RJ, Dienemann H, Muley T, Meister M, et al. SMARCA4 and SMARCA2 deficiency in non–small cell lung cancer: immunohistochemical survey of 316 consecutive specimens. Ann Diagn Pathol. 2017;26:47–51.
Article
PubMed
Google Scholar
Matsubara D, Kishaba Y, Ishikawa S, Sakatani T, Oguni S, et al. Lung cancer with loss of BRG1/BRM, shows epithelial mesenchymal transition phenotype and distinct histologic and genetic features. Cancer Sci. 2013;104:266–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshimoto T, Matsubara D, Nakano T, Tamura T, Endo S, et al. Frequent loss of the expression of multiple subunits of the SWI/SNF complex in large cell carcinoma and pleomorphic carcinoma of the lung. Pathol Int. 2015;65:595–602.
Article
CAS
PubMed
Google Scholar
Fukuoka J, Fujii T, Shih JH, Dracheva T, Meerzaman D, et al. Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer. Clin Cancer Res. 2004;10:4314–24.
Article
CAS
PubMed
Google Scholar
Liu G, Gramling SJB, Munoz D, Cheng D, Azad AK, et al. Two novel BRM insertion promoter sequence variants are associated with loss of BRM expression and lung cancer risk. Oncogene. 2011;30:3295–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zernickel E, Sak A, Riaz A, Klein D, Groneberg M, et al. Targeting of BRM sensitizes BRG1 -mutant lung cancer cell lines to radiotherapy. Mol Cancer Ther. 2019;18:656–66.
Article
CAS
PubMed
Google Scholar
Sarnowska EA, Szymanski M, Rusetska N, Ligaj M, Jancewicz I, et al. Evaluation of the role of downregulation of SNF5/INI1 core subunit of SWI/SNF complex in clear cell renal cell carcinoma development. Am J Cancer Res. 2017;7:2275.
CAS
PubMed
PubMed Central
Google Scholar
The Cancer Genome Atlas Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.
Article
CAS
Google Scholar
Xia Q-Y, Rao Q, Cheng L, Shen Q, Shi S-S, et al. Loss of BRM expression is a frequently observed event in poorly differentiated clear cell renal cell carcinoma. Histopathology. 2014;64:847–62.
Article
PubMed
Google Scholar
Agaimy A, Amin MB, Gill AJ, Popp B, Reis A, et al. SWI/SNF protein expression status in fumarate hydratase–deficient renal cell carcinoma: immunohistochemical analysis of 32 tumors from 28 patients. Hum Pathol. 2018;77:139–46.
Article
CAS
PubMed
Google Scholar
Xia Q-Y, Zhan X-M, Fan X-S, Ye S-B, Shi S-S, et al. BRM/SMARCA2-negative clear cell renal cell carcinoma is associated with a high percentage of BRM somatic mutations, deletions and promoter methylation. Histopathology. 2016;70:711–21.
Article
Google Scholar
Agaimy A, Daum O, Markl B, Lichtmannegger I, Michal M, et al. SWI/SNF complex-deficient undifferentiated/rhabdoid carcinomas of the gastrointestinal tract: a series of 13 cases highlighting mutually exclusive loss of SMARCA4 and SMARCA2 and frequent co-inactivation of SMARCB1 and SMARCA2. Am J Surg Pathol. 2016;40:544–53.
Article
PubMed
Google Scholar
Yu Y, Cheng D, Parfrey P, Liu G, Savas S. Two functional indel polymorphisms in the promoter region of the Brahma gene (BRM) and disease risk and progression-free survival in colorectal cancer. PLoS ONE. 2018;13:1–17.
Google Scholar
Wong KM, Qiu X, Cheng D, Azad AKALA, Habbous S, et al. Two BRM promoter insertion polymorphisms increase the risk of early-stage upper aerodigestive tract cancers. Cancer Med. 2014;3:426–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamichi N, Inada KI, Ichinose M, Yamamichi-Nishina M, Mizutani T, et al. Frequent loss of Brm expression in gastric cancer correlates with histologic features and differentiation state. Cancer Res. 2007;67:10727–35.
Article
CAS
PubMed
Google Scholar
Takeshima H, Niwa T, Takahashi T, Wakabayashi M, Yamashita S, et al. Frequent involvement of chromatin remodeler alterations in gastric field cancerization. Cancer Lett. 2015;357:328–38.
Article
CAS
PubMed
Google Scholar
Numata M, Morinaga S, Watanabe T, Tamagawa H, Yamamoto N, et al. The clinical significance of SWI/SNF complex in pancreatic cancer. Int J Oncol. 2013;42:403–10.
Article
PubMed
Google Scholar
Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, et al. Convergent structural alterations define SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci. 2012;109:E252–9.
Article
CAS
PubMed
Google Scholar
Endo M, Yasui K, Zen Y, Gen Y, Zen K, et al. Alterations of the SWI/SNF chromatin remodelling subunit-BRG1 and BRM in hepatocellular carcinoma. Liver Int. 2013;33:105–17.
Article
CAS
PubMed
Google Scholar
Pasic I, Wong KM, Lee JJ, Espin-Garcia O, Brhane Y, et al. Two BRM promoter polymorphisms predict poor survival in patients with hepatocellular carcinoma. Mol Carcinog. 2018;57:106–13.
Article
CAS
PubMed
Google Scholar
Wang JR, Gramling SJB, Goldstein DP, Cheng D, Chen D, et al. Association of two BRM promoter polymorphisms with head and neck squamous cell carcinoma risk. Carcinogenesis. 2013;34:1012–7.
Article
CAS
PubMed
Google Scholar
Ho AS, Kannan K, Roy DM, Morris LGT, Ganly I, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet. 2013;45:791–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jagielska B, Sarnowska E, Rusetska N, Jancewicz I, Durzynska M, et al. Advanced adenoid cystic carcinoma (ACC) is featured by SWI/SNF chromatin remodeling complex aberrations. J Cancer Res Clin Oncol. 2019;145:201–11.
Article
CAS
PubMed
Google Scholar
Cohet N, Stewart KM, Mudhasani R, Asirvatham AJ, Mallappa C, et al. SWI/SNF chromatin remodeling enzyme ATPases promote cell proliferation in normal mammary epithelial cells. J Cell Physiol. 2010;223:667–78.
CAS
PubMed
PubMed Central
Google Scholar
Wu Q, Madany P, Akech J, Dobson JR, Douthwright S, et al. The SWI/SNF ATPases are required for triple negative breast cancer cell proliferation. J Cell Physiol. 2015;230:2683–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guerrero-Martínez JA, Reyes JC. High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Sci Rep. 2018;8:1–17.
Article
CAS
Google Scholar
Yang Y, Liu L, Fang M, Bai H, Xu Y. The chromatin remodeling protein BRM regulates the transcription of tight junction proteins: implication in breast cancer metastasis. Biochim Biophys Acta Gene Regul Mech. 2019;1862:547–56.
Article
CAS
PubMed
Google Scholar
Cho H, Kim JS-Y, Chung H, Perry C, Lee H, et al. Loss of ARID1A/BAF250a expression is linked to tumor progression and adverse prognosis in cervical cancer. Hum Pathol. 2013;44:1365–74.
Article
CAS
PubMed
Google Scholar
Serber DW, Rogala A, Makarem M, Rosson GB, Simin K, et al. The BRG1 chromatin remodeler protects against ovarian cysts, uterine tumors, and mammary tumors in a lineage-specific manner. PLoS ONE. 2012;7:1–10.
Article
CAS
Google Scholar
Guan B, Wang TL, Shih IM. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 2011;71:6718–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shadeo A, Chari R, Lonergan KM, Pusic A, Miller D, et al. Up regulation in gene expression of chromatin remodelling factors in cervical intraepithelial neoplasia. BMC Genomics. 2008;9:64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin DI, Chudnovsky Y, Duggan B, Zajchowski D, Greenbowe J, et al. Comprehensive genomic profiling reveals inactivating SMARCA4 mutations and low tumor mutational burden in small cell carcinoma of the ovary, hypercalcemic-type. Gynecol Oncol. 2017;147:626–33.
Article
CAS
PubMed
Google Scholar
Witkowski L, Carrot-Zhang J, Albrecht S, Fahiminiya S, Hamel N, et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet. 2014;46:438–43.
Article
CAS
PubMed
Google Scholar
Ramos P, Karnezis AN, Craig DW, Sekulic A, Russell ML, et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet. 2014;46:427–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jelinic P, Mueller JJ, Olvera N, Dao F, Scott SN, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet. 2014;46:424–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kupryjańczyk J, Dansonka-Mieszkowska A, Moes-Sosnowska J, Plisiecka-Hałasa J, Szafron Ł, et al. Ovarian small cell carcinoma of hypercalcemic type—evidence of germline origin and smarca4 gene inactivation. A pilot study. Polish J Pathol. 2013;64:238–46.
Article
Google Scholar
Karnezis AN, Wang Y, Ramos P, Hendricks WPD, Oliva E, et al. Dual loss of the SWI/SNF complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell carcinoma of the ovary, hypercalcaemic type. J Pathol. 2016;238:389–400.
Article
CAS
PubMed
Google Scholar
Jelinic P, Schlappe BA, Conlon N, Tseng J, Olvera N, et al. Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type. Mod Pathol. 2016;29:60–6.
Article
CAS
PubMed
Google Scholar
Itamochi H, Oishi T, Oumi N, Takeuchi S, Yoshihara K, et al. Whole-genome sequencing revealed novel prognostic biomarkers and promising targets for therapy of ovarian clear cell carcinoma. Br J Cancer. 2017;117:717–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Zheng Z, Jia L, Suo S, Liu B, et al. Overexpression of SMARCA2 or CAMK2D is associated with cisplatin resistance in human epithelial ovarian cancer. Oncol Lett. 2018;16:3796–804.
PubMed
PubMed Central
Google Scholar
Kothandapani A, Gopalakrishnan K, Kahali B, Reisman D, Patrick SM. Downregulation of SWI/SNF chromatin remodeling factor subunits modulates cisplatin cytotoxicity. Exp Cell Res. 2012;318:1973–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramalingam P, Croce S, McCluggage WG. Loss of expression of SMARCA4 (BRG1), SMARCA2 (BRM) and SMARCB1 (INI1) in undifferentiated carcinoma of the endometrium is not uncommon and is not always associated with rhabdoid morphology. Histopathology. 2017;70:359–66.
Article
PubMed
Google Scholar
Gustavsson H, Jennbacken K, Welén K, Damber J-E. Altered expression of genes regulating angiogenesis in experimental androgen-independent prostate cancer. Prostate. 2008;68:161–70.
Article
CAS
PubMed
Google Scholar
Shen H, Powers N, Saini N, Comstock CESS, Sharma A, et al. The SWI/SNF ATPase Brm is a gatekeeper of proliferative control in prostate cancer. Cancer Res. 2008;68:10154–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bock VL, Lyons JG, Huang XXJ, Jones AM, McDonald LA, et al. BRM and BRG1 subunits of the SWI/SNF chromatin remodelling complex are downregulated upon progression of benign skin lesions into invasive tumours. Br J Dermatol. 2011;164:1221–7.
Article
CAS
PubMed
Google Scholar
Moloney FJ, Lyons JG, Bock VL, Huang XX, Bugeja MJ, et al. Hotspot mutation of Brahma in non-melanoma skin cancer. J Invest Dermatol. 2009;129:1012–5.
Article
CAS
PubMed
Google Scholar
Farrell AW, Halliday GM, Lyons JG. Brahma deficiency in keratinocytes promotes UV carcinogenesis by accelerating the escape from cell cycle arrest and the formation of DNA photolesions. J Dermatol Sci. 2018;92:254–63.
Article
CAS
PubMed
Google Scholar
Vachtenheim J, Ondrušová L, Borovanský J. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells. Biochem Biophys Res Commun. 2010;392:454–9.
Article
CAS
PubMed
Google Scholar
Buscarlet M, Krasteva V, Ho L, Simon C, Hebert J, et al. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance. Blood. 2014;123:1720–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doménech E, Gómez-López G, Gzlez-Peña D, López M, Herreros B, et al. New mutations in chronic lymphocytic leukemia identified by target enrichment and deep sequencing. PLoS ONE. 2012;7:2–7.
Article
CAS
Google Scholar
Eisfeld A-K, Kohlschmidt J, Mrózek K, Volinia S, Blachly JS, et al. mutational landscape and gene expression patterns in adult acute myeloid leukemias with monosomy 7 as a sole abnormality. Cancer Res. 2017;77:207–18.
Article
CAS
PubMed
Google Scholar
Li L, Fan XS, Xia QY, Rao Q, Liu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247–54.
Article
CAS
PubMed
Google Scholar
Amankwah EK, Thompson RC, Nabors LB, Olson JJ, Browning JE, et al. SWI/SNF gene variants and glioma risk and outcome. Cancer Epidemiol. 2013;37:162–5.
Article
CAS
PubMed
Google Scholar
Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013;45:592–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gramling S, Rogers C, Liu G, Reisman D. Pharmacologic reversal of epigenetic silencing of the anticancer protein BRM: a novel targeted treatment strategy. Oncogene. 2011;30:3289–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Januario T, Ye X, Bainer R, Alicke B, Smith T, et al. PRC2-mediated repression of SMARCA2 predicts EZH2 inhibitor activity in SWI/SNF mutant tumors. Proc Natl Acad Sci. 2017;114:12249–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourachot B, Yaniv M, Muchardt C. Growth inhibition by the mammalian SWI-SNF subunit Brm is regulated by acetylation. EMBO J. 2003;22:6505–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marquez SB, Thompson KW, Lu L, Reisman D. Beyond mutations: additional mechanisms and implications of SWI/SNF complex inactivation. Front Oncol. 2015;4:1–20.
Article
Google Scholar
Ouyang X, Ye XL, Wei HB. BRM promoter insertion polymorphisms increase the risk of cancer: a meta-analysis. Gene. 2017;626:420–5.
Article
CAS
PubMed
Google Scholar
Segedi M, Anderson LN, Espin-Garcia O, Borgida A, Bianco T, et al. BRM polymorphisms, pancreatic cancer risk and survival. Int J Cancer. 2016;139:2474–81.
Article
CAS
PubMed
Google Scholar
La Rochelle J, Klatte T, Dastane A, Rao N, Seligson D, et al. Chromosome 9p deletions identify an aggressive phenotype of clear cell renal cell carcinoma. Cancer. 2010;116:4696–702.
Article
PubMed
Google Scholar
Gramling SJB, Reisman D. Discovery of BRM targeted therapies: novel reactivation of an anticancer gene. Lett Drug Des Discov. 2011;8:93–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oike T, Ogiwara H, Tominaga Y, Ito K, Ando O, et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res. 2013;73:5508–18.
Article
CAS
PubMed
Google Scholar
Papillon JPN, Nakajima K, Adair CD, Hempel J, Jouk AO, et al. Discovery of orally active inhibitors of brahma homolog (BRM)/SMARCA2 ATPase activity for the treatment of brahma related gene 1 (BRG1)/SMARCA4-mutant cancers. J Med Chem. 2018;61:10155–72.
Article
CAS
PubMed
Google Scholar
Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol. 2019;15:672–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reisman DN, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene. 2009;28:1653–68.
Article
CAS
PubMed
Google Scholar
Yamamichi N, Yamamichi-Nishina M, Mizutani T, Watanabe H, Minoguchi S, et al. The Brm gene suppressed at the post-transcriptional level in various human cell lines is inducible by transient HDAC inhibitor treatment, which exhibits antioncogenic potential. Oncogene. 2005;24:5471–81.
Article
CAS
PubMed
Google Scholar
Kahali B, Gramling SJB, Marquez SB, Thompson KW, Lu L, et al. Identifying targets for the restoration and reactivation of BRM. Oncogene. 2014;33:653–64.
Article
CAS
PubMed
Google Scholar
Chan-Penebre E, Armstrong K, Drew A, Grassian AR, Feldman I, et al. Selective killing of SMARCA2- and SMARCA4-deficient small cell carcinoma of the ovary, hypercalcemic type cells by inhibition of EZH2: in vitro and in vivo preclinical models. Mol Cancer Ther. 2017;16:850–60.
Article
CAS
PubMed
Google Scholar
Wang Y, Chen SY, Colborne S, Lambert G, Shin CY, et al. Histone deacetylase inhibitors synergize with catalytic inhibitors of EZH2 to exhibit antitumor activity in small cell carcinoma of the ovary, hypercalcemic type. Mol Cancer Ther. 2018;17:2767–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer. Nat Rev Genet. 2017;18:613–23.
Article
PubMed
CAS
Google Scholar
Hoffman GR, Rahal R, Buxton F, Xiang K, McAllister G, et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc Natl Acad Sci. 2014;111:3128–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pascolini G, Valiante M, Bottillo I, Laino L, Fleischer N, et al. Striking phenotypic overlap between Nicolaides–Baraitser and Coffin–Siris syndromes in monozygotic twins with ARID1B intragenic deletion. Eur J Med Genet. 2019;14:103739.
Article
Google Scholar
Dai Y, Ngo D, Jacob J, Forman LW, Faller DV. Prohibitin and the SWI/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Carcinogenesis. 2008;29:1725–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lempiäinen JK, Niskanen EA, Vuoti K-M, Lampinen RE, Göös H, et al. Agonist-specific protein interactomes of glucocorticoid and androgen receptor as revealed by proximity mapping. Mol Cell Proteomics. 2017;16:1462–74.
Article
PubMed
PubMed Central
Google Scholar
van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Trapman J, et al. Functional screening of FxxLF-like peptide motifs identifies SMARCD1/BAF60a as an androgen receptor cofactor that modulates TMPRSS2 expression. Mol Endocrinol. 2009;23:1776–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hill DA, de la Serna IL, Veal TM, Imbalzano AN. BRCA1 interacts with dominant negative SWI/SNF enzymes without affecting homologous recombination or radiation-induced gene activation of p21 or Mdm2. J Cell Biochem. 2004;91:987–98.
Article
CAS
PubMed
Google Scholar
Fontana GA, Rigamonti A, Lenzken SC, Filosa G, Alvarez R, et al. Oxidative stress controls the choice of alternative last exons via a Brahma-BRCA1-CstF pathway. Nucleic Acids Res. 2017;45:902–14.
Article
CAS
PubMed
Google Scholar
Kondo T, Raff M. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev. 2004;18:2963–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G-L, Iakova P, Wilde M, Awad S, Timchenko NA. Liver tumors escape negative control of proliferation via PI3 K/Akt-mediated block of C/EBP alpha growth inhibitory activity. Genes Dev. 2004;18:912–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lavigne M, Eskeland R, Azebi S, Saint-André V, Jang SM, et al. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet. 2009;5:e1000769.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nozawa R-S, Nagao K, Masuda H-T, Iwasaki O, Hirota T, et al. Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation. Nat Cell Biol. 2010;12:719.
Article
CAS
PubMed
Google Scholar
Steunou A-L, Ducoux-Petit M, Lazar I, Monsarrat B, Erard M, et al. Identification of the hypoxia-inducible factor 2α nuclear interactome in melanoma cells reveals master proteins involved in melanoma development. Mol Cell Proteomics. 2013;12:736–48.
Article
CAS
PubMed
Google Scholar
Zhang Y, Cheng M, Zhang Y, Zhong X, Dai H, et al. A switch from hBrm to Brg1 at IFNγ-activated sequences mediates the activation of human genes. Cell Res. 2010;20:1345–60.
Article
CAS
PubMed
Google Scholar
Ichinose H, Garnier J-M, Chambon P, Losson R. Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene. 1997;188:95–100.
Article
CAS
PubMed
Google Scholar
Jiang X-X, Nguyen Q, Chou Y, Wang T, Nandakumar V, et al. Control of B cell development by the histone H2A deubiquitinase MYSM1. Immunity. 2011;35:883–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, et al. ALL-1 Is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell. 2002;10:1119–28.
Article
CAS
PubMed
Google Scholar
Li J, Xi Y, Li W, McCarthy RL, Stratton SA, et al. TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. Oncogene. 2017;36:2991–3001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamichi N, Inada K, Furukawa C, Sakurai K, Tando T, et al. Cdx2 and the Brm-type SWI/SNF complex cooperatively regulate villin expression in gastrointestinal cells. Exp Cell Res. 2009;315:1779–89.
Article
CAS
PubMed
Google Scholar
Wang F, Zhang R, Beischlag TV, Muchardt C, Yaniv M, et al. Roles of Brahma and Brahma/SWI2-related gene 1 in hypoxic induction of the erythropoietin gene. J Biol Chem. 2004;279:46733–41.
Article
CAS
PubMed
Google Scholar
Secombe J, Li L, Carlos L, Eisenman RN. The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev. 2007;21:537–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, et al. A census of human soluble protein complexes. Cell. 2012;150:1068–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pal S, Yun R, Datta A, Lacomis L, Erdjument-Bromage H, et al. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol Cell Biol. 2003;23:7475–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Q, Wang X, Zhao M, Yang R, Malik R, et al. The central role of EED in the orchestration of polycomb group complexes. Nat Commun. 2014;5:3127.
Article
PubMed
CAS
Google Scholar
Kowenz-Leutz E, Leutz A. A C/EBPβ Isoform Recruits the SWI/SNF Complex to Activate Myeloid Genes. Mol Cell. 1999;4:735–43.
Article
CAS
PubMed
Google Scholar
Ito T, Yamauchi M, Nishina M, Yamamichi N, Mizutani T, et al. Identification of SWI.SNF complex subunit BAF60a as a determinant of the transactivation potential of Fos/Jun dimers. J Biol Chem. 2001;276:2852–7.
Article
CAS
PubMed
Google Scholar
Kim BR, Coyaud E, Laurent EMN, St-Germain J, Van de Laar E, et al. Identification of the SOX2 interactome by BioID reveals EP300 as a mediator of SOX2-dependent squamous differentiation and lung squamous cell carcinoma growth. Mol Cell Proteomics. 2017;16:1864–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cox JL, Wilder PJ, Gilmore JM, Wuebben EL, Washburn MP, et al. The SOX2-interactome in brain cancer cells identifies the requirement of MSI2 and USP9X for the growth of brain tumor cells. PLoS ONE. 2013;8:e62857.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, et al. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol. 1998;18:5355–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sauter JL, Graham RP, Larsen BT, Jenkins SM, Roden AC, et al. SMARCA4-deficient thoracic sarcoma: a distinctive clinicopathological entity with undifferentiated rhabdoid morphology and aggressive behavior. Mod Pathol. 2017;30:1422–32.
Article
CAS
PubMed
Google Scholar
Bookhout C, Bouldin TW, Ellison DW. Atypical teratoid/rhabdoid tumor with retained INI1 (SMARCB1) expression and loss of BRG1 (SMARCA4). Neuropathology. 2018;38:305–8.
Article
PubMed
Google Scholar
Mei L, Alikhan M, Mujacic I, Parilla M, Antic T. Genomic alterations in undifferentiated malignant tumors with rhabdoid phenotype and loss of BRG1 immunoexpression identified by fine needle aspirates. Acta Cytol. 2019;63:438–44.
Article
CAS
PubMed
Google Scholar
Orvis T, Hepperla A, Walter V, Song S, Simon J, et al. BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Res. 2014;74:6486–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat. 2008;29:617–22.
Article
CAS
PubMed
Google Scholar
Rao Q, Xia Q-Y, Shen Q, Shi S-S, Tu P, et al. Coexistent loss of INI1 and BRG1 expression in a rhabdoid renal cell carcinoma (RCC): implications for a possible role of SWI/SNF complex in the pathogenesis of RCC. Int J Clin Exp Pathol. 2014;7:1782–7.
PubMed
PubMed Central
Google Scholar
Sentani K, Oue N, Kondo H, Kuraoka K, Motoshita J, et al. Increased expression but not genetic alteration of < i>BRG1 </i > a component of the SWI/SNF complex, is associated with the advanced stage of human gastric carcinomas. Pathobiology. 2001;69:315–20.
Article
CAS
PubMed
Google Scholar
Gunduz E, Gunduz M, Ouchida M, Nagatsuka H, Beder L, et al. Genetic and epigenetic alterations of BRG1 promote oral cancer development. Int J Oncol. 2005;26:201–10.
CAS
PubMed
Google Scholar
Bai J, Mei P, Zhang C, Chen F, Li C, et al. BRG1 is a prognostic marker and potential therapeutic target in human breast cancer. PLoS ONE. 2013;8:1–9.
Google Scholar
Lin H, Wong RPC, Martinka M, Li G. BRG1 expression is increased in human cutaneous melanoma. Br J Dermatol. 2010;163:502–10.
Article
CAS
PubMed
Google Scholar
Saladi S, Keenen B, Marathe HG, Qi H, Chin K-V, et al. Modulation of extracellular matrix/adhesion molecule expression by BRG1 is associated with increased melanoma invasiveness. Mol Cancer. 2010;9:280.
Article
PubMed
PubMed Central
CAS
Google Scholar