Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8 + T cell differentiation. Nat Rev Immunol. 2018;18:340–56. https://doi.org/10.1038/NRI.2017.146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mr A, Gk O. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13–40. https://doi.org/10.1146/ANNUREV-PHYSIOL-012110-142315.
Article
Google Scholar
Mortada I, Mortada R. Epigenetic changes in mesenchymal stem cells differentiation. Eur J Med Genet. 2018;61:114–8. https://doi.org/10.1016/J.EJMG.2017.10.015.
Article
PubMed
Google Scholar
Chandler LA, Jones PA. Hypomethylation of DNA in the regulation of gene expression. Dev Biol. 1988;5:335–49.
CAS
Google Scholar
Harrison PR. Molecular mechanisms involved in the regulation of gene expression during cell differentiation and development. Immunol Ser. 1990;49:411–64.
CAS
PubMed
Google Scholar
Roy S, Kundu TK. Gene regulatory networks and epigenetic modifications in cell differentiation. IUBMB Life. 2014;66:100–9. https://doi.org/10.1002/iub.1249.
Article
CAS
PubMed
Google Scholar
Edwards JR, Yarychkivska O, Boulard M, Bestor TH. DNA methylation and DNA methyltransferases. Epigenetic Chromatin. 2017. https://doi.org/10.1186/S13072-017-0130-8.
Article
Google Scholar
Pa J. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92. https://doi.org/10.1038/NRG3230.
Article
Google Scholar
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38. https://doi.org/10.1038/NPP.2012.112.
Article
CAS
PubMed
Google Scholar
Th B, Gl V. DNA methyltransferases. Curr Opin Cell Biol. 1994;6:380–9. https://doi.org/10.1016/0955-0674(94)90030-2.
Article
Google Scholar
Bogdanović O, Lister R. DNA methylation and the preservation of cell identity. Curr Opin Genet Dev. 2017;46:9–14. https://doi.org/10.1016/J.GDE.2017.06.007.
Article
PubMed
Google Scholar
Pennings S. DNA methylation, nucleosome formation and positioning. Brief Funct Genom Proteom. 2005;3:351–61. https://doi.org/10.1093/BFGP/3.4.351.
Article
CAS
Google Scholar
Choy JS, Wei S, Lee JY, Chu S, Tan S, Lee T-H. DNA methylation increases nucleosome compaction and rigidity. J Am Chem Soc. 2010;132:1782. https://doi.org/10.1021/JA910264Z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yizhar-Barnea O, Valensisi C, Jayavelu ND, Kishore K, Andrus C, Koffler-Brill T, Ushakov K, Perl K, Noy Y, Bhonker Y, Pelizzola M, Hawkins RD, Avraham KB. DNA methylation dynamics during embryonic development and postnatal maturation of the mouse auditory sensory epithelium. Sci Rep. 2018. https://doi.org/10.1038/S41598-018-35587-X.
Article
PubMed
PubMed Central
Google Scholar
Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA. 2006;103:1412–7. https://doi.org/10.1073/PNAS.0510310103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–22. https://doi.org/10.1101/GAD.2037511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21. https://doi.org/10.1101/GAD.947102.
Article
CAS
PubMed
Google Scholar
No H, Fg W, Ba B-K. Structural insights into methylated DNA recognition by the C-terminal zinc fingers of the DNA reader protein ZBTB38. J Biol Chem. 2018;293:19835–43. https://doi.org/10.1074/JBC.RA118.005147.
Article
Google Scholar
Alajem A, Roth H, Ratgauzer S, Bavli D, Motzik A, Lahav S, Peled I, Ram O. DNA methylation patterns expose variations in enhancer-chromatin modifications during embryonic stem cell differentiation. PLoS Genet. 2021. https://doi.org/10.1371/JOURNAL.PGEN.1009498.
Article
PubMed
PubMed Central
Google Scholar
Li Q, Li N, Hu X, Li J, Du Z, Chen L, Yin G, Duan J, Zhang H, Zhao Y, Wang J, Li N. Genome-wide mapping of DNA methylation in chicken. PLoS ONE. 2011;6:19428. https://doi.org/10.1371/JOURNAL.PONE.0019428.
Article
Google Scholar
Tsumagari K, Baribault C, Terragni J, Chandra S, Renshaw C, Sun Z, Song L, Crawford GE, Pradhan S, Lacey M, Ehrlich M. DNA methylation and differentiation: HOX genes in muscle cells. Epigenetics Chromatin. 2013. https://doi.org/10.1186/1756-8935-6-25.
Article
PubMed
PubMed Central
Google Scholar
Lim YC, Chia SY, Jin S, Han W, Ding C, Sun L. Dynamic DNA methylation landscape defines brown and white cell specificity during adipogenesis. Mol Metab. 2016. https://doi.org/10.1016/J.MOLMET.2016.08.006.
Article
PubMed
PubMed Central
Google Scholar
Gamage TKJB, Schierding W, Hurley D, Tsai P, Ludgate JL, Bhoothpur C, Chamley LW, Weeks RJ, Macaulay EC, James JL. The role of DNA methylation in human trophoblast differentiation. Epigenetics. 2018;13:1154–73. https://doi.org/10.1080/15592294.2018.1549462.
Article
PubMed
PubMed Central
Google Scholar
Singh P, Lessard SG, Mukherjee P, Rourke B, Otero M. Changes in DNA methylation accompany changes in gene expression during chondrocyte hypertrophic differentiation in vitro. Ann NY Acad Sci. 2021;1490:42–56. https://doi.org/10.1111/NYAS.14494.
Article
CAS
PubMed
Google Scholar
Menko SA. Lens epithelial cell differentiation. Exp Eye Res. 2002;75:485–90. https://doi.org/10.1006/EXER.2002.2057.
Article
CAS
Google Scholar
Bassnett S, Shi Y, Vrensen GFJM. Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci. 2011;366:1250–64. https://doi.org/10.1098/rstb.2010.0302.
Article
PubMed
PubMed Central
Google Scholar
Rao PV, Maddala R. The role of the lens actin cytoskeleton in fiber cell elongation and differentiation. Semin Cell Dev Biol. 2006;17:698–711. https://doi.org/10.1016/j.semcdb.2006.10.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson ML. An essential role for FGF receptor signaling in lens development. Semin Cell Dev Biol. 2006;17:726–40. https://doi.org/10.1016/j.semcdb.2006.10.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lovicu FJ, McAvoy JW. Growth factor regulation of lens development. Dev Biol. 2005;280:1–14. https://doi.org/10.1016/J.YDBIO.2005.01.020.
Article
CAS
PubMed
Google Scholar
Brennan LA, McGreal-Estrada R, Logan CM, Cvekl A, Menko AS, Kantorow M. BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation. Exp Eye Res. 2018. https://doi.org/10.1016/j.exer.2018.06.003.
Article
PubMed
PubMed Central
Google Scholar
Brennan L, Disatham J, Kantorow M. Mechanisms of organelle elimination for lens development and differentiation. Exp Eye Res. 2021. https://doi.org/10.1016/J.EXER.2021.108682.
Article
PubMed
Google Scholar
Disatham J, Chauss D, Gheyas R, Brennan L, Blanco D, Daley L, Menko AS, Kantorow M. Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression. Dev Biol. 2019. https://doi.org/10.1016/j.ydbio.2019.04.020.
Article
PubMed
PubMed Central
Google Scholar
Piatigorsky J. Lens differentiation in vertebrates: a review of cellular and molecular features. Differentiation. 1981;19:134–53. https://doi.org/10.1111/J.1432-0436.1981.TB01141.X.
Article
CAS
PubMed
Google Scholar
Audette DS, Scheiblin DA, Duncan MK. The molecular mechanisms underlying lens fiber elongation. Exp Eye Res. 2017;156:41–9. https://doi.org/10.1016/j.exer.2016.03.016.
Article
CAS
PubMed
Google Scholar
Chauss D, Basu S, Rajakaruna S, Ma Z, Gau V, Anastas S, Brennan LA, Hejtmancik JF, Menko AS, Kantorow M. Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens. G3. 2014;4:1515–27. https://doi.org/10.1534/g3.114.012120.
Article
PubMed
PubMed Central
Google Scholar
Cheng C, Nowak RB, Fowler VM. The lens actin filament cytoskeleton: diverse structures for complex functions. Exp Eye Res. 2017;156:58–71. https://doi.org/10.1016/j.exer.2016.03.005.
Article
CAS
PubMed
Google Scholar
Costello MJ, Brennan LA, Basu S, Chauss D, Mohamed A, Gilliland KO, Johnsen S, Menko AS, Kantorow M. Autophagy and mitophagy participate in ocular lens organelle degradation. Exp Eye Res. 2013;116:141–50. https://doi.org/10.1016/j.exer.2013.08.017.
Article
CAS
PubMed
Google Scholar
FitzGerald PG. Lens intermediate filaments. Exp Eye Res. 2009;88:165–72. https://doi.org/10.1016/j.exer.2008.11.007.
Article
CAS
PubMed
Google Scholar
Mathias RT, White TW, Gong X. Lens gap junctions in growth, differentiation, and homeostasis. Physiol Rev. 2010;90:179–206. https://doi.org/10.1152/physrev.00034.2009.
Article
CAS
PubMed
Google Scholar
Perng M-D, Zhang Q, Quinlan RA. Insights into the beaded filament of the eye lens. Exp Cell Res. 2007;313:2180–8. https://doi.org/10.1016/j.yexcr.2007.04.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cvekl A, Zhang X. Signaling and gene regulatory networks in mammalian lens development. Trends Genet. 2017;33:677–702. https://doi.org/10.1016/j.tig.2017.08.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang C, Yang Y, Brennan L, Bouhassira EE, Kantorow M, Cvekl A. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J. 2010;24:3274–83. https://doi.org/10.1096/fj.10-157255.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Zheng D, Cvekl A. A comprehensive spatial-temporal transcriptomic analysis of differentiating nascent mouse lens epithelial and fiber cells. Exp Eye Res. 2018. https://doi.org/10.1016/j.exer.2018.06.004.
Article
PubMed
PubMed Central
Google Scholar
Disatham J, Brennan L, Chauss D, Kantorow J, Afzali B, Kantorow M. A functional map of genomic HIF1α-DNA complexes in the eye lens revealed through multiomics analysis. BMC Genom. 2021. https://doi.org/10.1186/S12864-021-07795-9.
Article
Google Scholar
Lachke SA, Alkuraya FS, Kneeland SC, Ohn T, Aboukhalil A, Howell GR, Saadi I, Cavallesco R, Yue Y, Tsai AC-H, Nair KS, Cosma MI, Smith RS, Hodges E, Alfadhli SM, Al-Hajeri A, Shamseldin HE, Behbehani A, Hannon GJ, Bulyk ML, Drack AV, Anderson PJ, John SWM, Maas RL. Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science. 2011;331:1571–6. https://doi.org/10.1126/science.1195970.
Article
CAS
PubMed
PubMed Central
Google Scholar
McAvoy JW, Dawes LJ, Sugiyama Y, Lovicu FJ. Intrinsic and extrinsic regulatory mechanisms are required to form and maintain a lens of the correct size and shape. Exp Eye Res. 2017;156:34–40. https://doi.org/10.1016/j.exer.2016.04.009.
Article
CAS
PubMed
Google Scholar
Zhao Y, Zheng D, Cvekl A. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways. Epigenetics Chromatin. 2019. https://doi.org/10.1186/s13072-019-0272-y.
Article
PubMed
PubMed Central
Google Scholar
Han W, Xue Q, Li G, Yin J, Zhang H, Zhu Y, Xing W, Cao Y, Su Y, Wang K, Zou J. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics. 2020;112:2677–87. https://doi.org/10.1016/J.YGENO.2020.02.007.
Article
CAS
PubMed
Google Scholar
Shi J, Xu J, Chen YE, Li JS, Cui Y, Shen L, Li JJ, Li W. The concurrence of DNA methylation and demethylation is associated with transcription regulation. Nat Commun. 2021;12:1–12. https://doi.org/10.1038/s41467-021-25521-7.
Article
CAS
Google Scholar
Ehrlich M, Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics. 2013;5:553–68. https://doi.org/10.2217/EPI.13.43.
Article
CAS
PubMed
Google Scholar
Benelli M, Franceschini GM, Magi A, Romagnoli D, Biagioni C, Migliaccio I, Malorni L, Demichelis F. Charting differentially methylated regions in cancer with Rocker-meth. Commun Biol. 2021;4:1–15. https://doi.org/10.1038/s42003-021-02761-3.
Article
CAS
Google Scholar
Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, Jeon M, Ma’ayan A. Gene set knowledge discovery with enrichr. Curr Protoc. 2021;1:e90. https://doi.org/10.1002/cpz1.90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkw377.
Article
PubMed
PubMed Central
Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013. https://doi.org/10.1186/1471-2105-14-128.
Article
Google Scholar
Berry V, Ionides A, Pontikos N, Georgiou M, Yu J, Ocaka LA, Moore AT, Quinlan RA, Michaelides M. The genetic landscape of crystallins in congenital cataract. Orphanet J Rare Dis. 2020. https://doi.org/10.1186/S13023-020-01613-3.
Article
PubMed
PubMed Central
Google Scholar
Graw J. Genetics of crystallins: cataract and beyond. Exp Eye Res. 2009;88:173–89. https://doi.org/10.1016/J.EXER.2008.10.011.
Article
CAS
PubMed
Google Scholar
Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development. Development. 2014;141:4432–47. https://doi.org/10.1242/dev.107953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wistow G. The human crystallin gene families. 2012. http://neibank.nei.nih.gov. Accessed 6 Feb 2019.
Takai D, Jones PA. Origins of bidirectional promoters: computational analyses of intergenic distance in the human genome. Mol Biol Evol. 2004;21:463–7. https://doi.org/10.1093/MOLBEV/MSH040.
Article
CAS
PubMed
Google Scholar
Limi S, Zhao Y, Guo P, Lopez-Jones M, Zheng D, Singer RH, Skoultchi AI, Cvekl A. Bidirectional analysis of Cryba4-Crybb1 Nascent transcription and nuclear accumulation of Crybb3 mRNAs in lens fibers. Invest Ophthalmol Vis Sci. 2019;60:234. https://doi.org/10.1167/IOVS.18-25921.
Article
CAS
PubMed
PubMed Central
Google Scholar
Min J-N, Zhang Y, Moskophidis D, Mivechi NF. Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation. Genesis. 2004;40:205–17. https://doi.org/10.1002/GENE.20087.
Article
CAS
PubMed
Google Scholar
Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S-I, Kato K, Yonemura S, Inouye S, Nakai A. HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J. 2004;23:4297–306. https://doi.org/10.1038/SJ.EMBOJ.7600435.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saravanamuthu SS, Le TT, Gao CY, Cojocaru RI, Pandiyan P, Liu C, Zhang J, Zelenka PS, Brown NL. Conditional ablation of the Notch2 receptor in the ocular lens. Dev Biol. 2012;362:219–29. https://doi.org/10.1016/J.YDBIO.2011.11.011.
Article
CAS
PubMed
Google Scholar
Rowan S, Conley KW, Le TT, Donner AL, Maas RL, Brown NL. Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol. 2008;321:111–22. https://doi.org/10.1016/j.ydbio.2008.06.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLeay RC, Bailey TL. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinform. 2010;11:165. https://doi.org/10.1186/1471-2105-11-165.
Article
CAS
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS, Suite MEME. Tools for motif discovery and searching. Nucleic Acids Res. 2009. https://doi.org/10.1093/nar/gkp335.
Article
PubMed
PubMed Central
Google Scholar
Brennan L, Disatham J, Kantorow M. Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a. Exp Eye Res. 2020;198: 108129. https://doi.org/10.1016/j.exer.2020.108129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebong S, Yu C-R, Carper DA, Chepelinsky AB, Egwuagu CE. Activation of STAT signaling pathways and induction of suppressors of cytokine signaling (SOCS) proteins in mammalian lens by growth factors. Invest Ophthalmol Vis Sci. 2004;45:872–8.
Article
PubMed
Google Scholar
Ebong S, Chepelinsky AB, Robinson ML, Zhao H, Yu CR, Egwuagu CE. Characterization of the roles of STAT1 and STAT3 signal transduction pathways in mammalian lens development. Mol Vis. 2004;10:122–31.
CAS
PubMed
Google Scholar
Cavalheiro GR, Matos-Rodrigues GE, Zhao Y, Gomes AL, Anand D, Predes D, de Lima S, Abreu JG, Zheng D, Lachke SA, Cvekl A, Martins RAP. N-myc regulates growth and fiber cell differentiation in lens development. Dev Biol. 2017;429:105–17. https://doi.org/10.1016/J.YDBIO.2017.07.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HY, Wroblewski E, Philips GT, Stair CN, Conley K, Reedy M, Mastick GS, Brown NL. Multiple requirements for Hes1 during early eye formation. Dev Biol. 2005;284:464–78. https://doi.org/10.1016/j.ydbio.2005.06.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohtaka-Maruyama C, Wang X, Ge H, Chepelinsky AB. Overlapping Sp1 and AP2 binding sites in a promoter element of the lens-specific MIP gene. Nucleic Acids Res. 1998;26:407–14. https://doi.org/10.1093/nar/26.2.407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong L, Ji WK, Hu XH, Hu WF, Tang XC, Huang ZX, Li L, Liu M, Xiang SH, Wu E, Woodward Z, Liu YZ, Nguyen QD, Li DWC. Sumoylation differentially regulates Sp1 to control cell differentiation. Proc Natl Acad Sci USA. 2014;111:5574–9. https://doi.org/10.1073/pnas.1315034111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Zhou P, Fan F, Li D, Wu J, Lu Y, Luo Y. CpG site methylation in CRYAA promoter affect transcription factor Sp1 binding in human lens epithelial cells. BMC Ophthalmol. 2016. https://doi.org/10.1186/s12886-016-0309-y.
Article
PubMed
PubMed Central
Google Scholar
Antosova B, Smolikova J, Borkovcova R, Strnad H, Lachova J, Machon O, Kozmik Z. Ectopic activation of Wnt/β-catenin signaling in lens fiber cells results in cataract formation and aberrant fiber cell differentiation. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0078279.
Article
PubMed
PubMed Central
Google Scholar
Reza HM, Urano A, Shimada N, Yasuda K. Sequential and combinatorial roles of maf family genes define proper lens development. Mol Vis. 2007;13:18.
CAS
PubMed
PubMed Central
Google Scholar
Cvekl A, Yang Y, Chauhan BK, Cveklova K. Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens. Int J Dev Biol. 2004;48:829–44. https://doi.org/10.1387/ijdb.041866ac.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki-Kerr H, Baba Y, Tsuhako A, Koso H, Dekker JD, Tucker HO, Kuribayashi H, Watanabe S. Forkhead Box Protein P1 is dispensable for retina but essential for lens development. Investig Opthalmol Vis Sci. 2017;58:1916. https://doi.org/10.1167/iovs.16-20085.
Article
CAS
Google Scholar
Yoshida T, Yasuda K. Characterization of the chicken L-Maf, MafB and c-Maf in crystallin gene regulation and lens differentiation. Genes Cells. 2002;7:693–706.
Article
CAS
PubMed
Google Scholar
Takeuchi T, Kudo T, Ogata K, Hamada M, Nakamura M, Kito K, Abe Y, Ueda N, Yamamoto M, Engel JD, Takahashi S. Neither MafA/L-Maf nor MafB is essential for lens development in mice. Genes Cells. 2009;14:941–7.
Article
CAS
PubMed
Google Scholar
Agrawal SA, Anand D, Siddam AD, Kakrana A, Dash S, Scheiblin DA, Dang CA, Terrell AM, Waters SM, Singh A, Motohashi H, Yamamoto M, Lachke SA. Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract. Hum Genet. 2015;134:717–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cvekl A, McGreal R, Liu W. Lens development and crystallin gene expression. Prog Mol Biol Transl Sci. 2015;134:129–67. https://doi.org/10.1016/BS.PMBTS.2015.05.001.
Article
PubMed
Google Scholar
Hoshino H, Igarashi K. Expression of the oxidative stress-regulated transcription factor Bach2 in differentiating neuronal cells. J Biochem. 2002;132:427–31. https://doi.org/10.1093/oxfordjournals.jbchem.a003239.
Article
CAS
PubMed
Google Scholar
Cvekl A, Kashanchi F, Brady JN, Piatigorsky J. Pax-6 interactions with TATA-box-binding protein and retinoblastoma protein. Investig Ophthalmol Vis Sci. 1999;40:1343–50.
CAS
Google Scholar
Kim GN, Hah YS, Seong H, Yoo WS, Choi MY, Cho HY, Yun SP, Kim SJ. The role of nuclear factor of activated t cells 5 in hyperosmotic stress-exposed human lens epithelial cells. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22126296.
Article
PubMed
PubMed Central
Google Scholar
Cavalheiro GR, Matos-Rodrigues GE, Gomes AL, Rodrigues PMG, Martins RAP. c-myc regulates cell proliferation during lens development. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0087182.
Article
PubMed
PubMed Central
Google Scholar
Le TT, Conley KW, Mead TJ, Rowan S, Yutzey KE, Brown NL. Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens development. Dev Dyn. 2012;241:493–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun J, Rockowitz S, Chauss D, Wang P, Kantorow M, Zheng D, Cvekl A. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators. Mol Vis. 2015;21:955–73.
CAS
PubMed
PubMed Central
Google Scholar
Potts JD, Kornacker S, Beebe DC. Activation of the Jak-STAT-signaling pathway in embryonic lens cells. Dev Biol. 1998;204:277–92. https://doi.org/10.1006/dbio.1998.9077.
Article
CAS
PubMed
Google Scholar
Cvekl A, McGreal R, Liu W. Lens development and crystallin gene expression. Prog Mol Biol Transl Sci. 2015. https://doi.org/10.1016/bs.pmbts.2015.05.001.
Article
PubMed
PubMed Central
Google Scholar
Gillespie MA, Palii CG, Sanchez-Taltavull D, Shannon P, Longabaugh WJR, Downes DJ, Sivaraman K, Espinoza HM, Hughes JR, Price ND, Perkins TJ, Ranish JA, Brand M. Absolute quantification of transcription factors reveals principles of gene regulation in erythropoiesis. Mol Cell. 2020;78:960-974.e11. https://doi.org/10.1016/J.MOLCEL.2020.03.031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brennan L, Disatham J, Kantorow M. Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a. Exp Eye Res. 2020. https://doi.org/10.1016/J.EXER.2020.108129.
Article
PubMed
PubMed Central
Google Scholar
Chauss D, Basu S, Rajakaruna S, Ma Z, Gau V, Anastas S, Brennan LA, Hejtmancik JF, Menko AS, Kantorow M. Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens. G3. 2014;4:1515–27. https://doi.org/10.1534/g3.114.012120.
Article
PubMed
PubMed Central
Google Scholar
Suzuki-Kerr H, Baba Y, Tsuhako A, Koso H, Dekker JD, Tucker HO, Kuribayashi H, Watanabe S. Forkhead box protein P1 is dispensable for retina but essential for lens development. Investig Ophthalmol Vis Sci. 2017;58:1916–29. https://doi.org/10.1167/IOVS.16-20085.
Article
CAS
Google Scholar
Cui X, Wang L, Zhang J, Du R, Liao S, Li D, Li C, Ke T, Li DWC, Huang H, Yin Z, Tang Z, Liu M. HSF4 regulates DLAD expression and promotes lens de-nucleation. Biochim Biophys Acta. 1832;2013:1167–72. https://doi.org/10.1016/J.BBADIS.2013.03.007.
Article
Google Scholar
Zhao G, Bailey CG, Feng Y, Rasko J, Lovicu FJ. Negative regulation of lens fiber cell differentiation by RTK antagonists Spry and Spred. Exp Eye Res. 2018;170:148–59. https://doi.org/10.1016/J.EXER.2018.02.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Underbjerg L, Sikjaer T, Mosekilde L, Rejnmark L. Pseudohypoparathyroidism—epidemiology, mortality and risk of complications. Clin Endocrinol. 2016;84:904–11. https://doi.org/10.1111/CEN.12948.
Article
CAS
Google Scholar
Burnett JB, Lupu FI, Eggenschwiler JT. Proper ciliary assembly is critical for restricting Hedgehog signaling during early eye development in mice. Dev Biol. 2017;430:32–40. https://doi.org/10.1016/J.YDBIO.2017.07.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karnam S, Skiba NP, Rao PV. Biochemical and biomechanical characteristics of dystrophin-deficient mdx3cv mouse lens. Biochim Biophys Acta Mol Basis Dis. 2021. https://doi.org/10.1016/J.BBADIS.2020.165998.
Article
PubMed
Google Scholar
Zhou Y, Bennett TM, Shiels A. Lens ER-stress response during cataract development in Mip-mutant mice. Biochim Biophys Acta Mol Basis Dis. 1862;2016:1433–42. https://doi.org/10.1016/J.BBADIS.2016.05.003.
Article
Google Scholar
Li H, Yang L, Sun Z, Yuan Z, Wu S, Sui R. A novel small deletion in the NHS gene associated with Nance-Horan syndrome. Sci Rep. 2018. https://doi.org/10.1038/S41598-018-20787-2.
Article
PubMed
PubMed Central
Google Scholar
Wenzel PL, Chong JL, Sáenz-Robles MT, Ferrey A, Hagan JP, Gomez YM, Rajmohan R, Sharma N, Chen HZ, Pipas JM, Robinson ML, Leone G. Cell proliferation in the absence of E2F1-3. Dev Biol. 2011;351:35–45. https://doi.org/10.1016/J.YDBIO.2010.12.025.
Article
CAS
PubMed
Google Scholar
Smigiel R, Cabala M, Jakubiak A, Kodera H, Sasiadek MJ, Matsumoto N, Sasiadek MM, Saitsu H. Novel COL4A1 mutation in an infant with severe dysmorphic syndrome with schizencephaly, periventricular calcifications, and cataract resembling congenital infection. Birth Defects Res A Clin Mol Teratol. 2016;106:304–7. https://doi.org/10.1002/BDRA.23488.
Article
CAS
PubMed
Google Scholar
Kannan R, Stolz A, Ji Q, Prasad PD, Ganapathy V. Vitamin C transport in human lens epithelial cells: evidence for the presence of SVCT2. Exp Eye Res. 2001;73:159–65. https://doi.org/10.1006/EXER.2001.1024.
Article
CAS
PubMed
Google Scholar
Kanada F, Takamura Y, Miyake S, Kamata K, Inami M, Inatani M, Oki M. Histone acetyltransferase and Polo-like kinase 3 inhibitors prevent rat galactose-induced cataract. Sci Rep. 2019. https://doi.org/10.1038/S41598-019-56414-X.
Article
PubMed
PubMed Central
Google Scholar
Garcia CM, Yu K, Zhao H, Ashery-Padan R, Ornitz DM, Robinson ML, Beebe DC. Signaling through FGF receptor-2 Is required for lens cell survival and for withdrawal from the cell cycle during lens fiber cell differentiation. Dev Dyn. 2005;233:516–27. https://doi.org/10.1002/DVDY.20356.
Article
CAS
PubMed
Google Scholar
Zhang Y, Fan J, Ho JWK, Hu T, Kneeland SC, Fan X, Xi Q, Sellarole MA, de Vries WN, Lu W, Lachke SA, Lang RA, John SWM, Maas RL. Crim1 regulates integrin signaling in murine lens development. Dev. 2016;143:356–66. https://doi.org/10.1242/DEV.125591.
Article
CAS
Google Scholar
Zhou Y, Shiels A. Epha2 and Efna5 participate in lens cell pattern-formation. Differentiation. 2018;102:1–9. https://doi.org/10.1016/J.DIFF.2018.05.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shui YB, Wang X, Hu JS, Wang SP, Garcia CM, Potts JD, Sharma Y, Beebe DC. Vascular endothelial growth factor expression and signaling in the lens. Investig Ophthalmol Vis Sci. 2003;44:3911–9. https://doi.org/10.1167/IOVS.02-1226.
Article
Google Scholar
Lu B, Christensen IT, Yu T, Wang C, Yan Q, Wang X. SUMOylation evoked by oxidative stress reduced lens epithelial cell antioxidant functions by increasing the stability and transcription of TP53INP1 in age-related cataracts. Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/7898069.
Article
PubMed
PubMed Central
Google Scholar
Ang SJ, Stump RJW, Lovicu FJ, McAvoy JW. Spatial and temporal expression of Wnt and Dickkopf genes during murine lens development. Gene Expr Patterns. 2004;4:289–95. https://doi.org/10.1016/J.MODGEP.2003.11.002.
Article
CAS
PubMed
Google Scholar
Anand D, Lachke SA. Systems biology of lens development: a paradigm for disease gene discovery in the eye. Exp Eye Res. 2017;156:22–33. https://doi.org/10.1016/J.EXER.2016.03.010.
Article
CAS
PubMed
Google Scholar
Islam F, Htun S, Lai LW, Krall M, Poranki M, Martin PM, Sobreira N, Wohler ES, Yu J, Moore AT, Slavotinek AM. Exome sequencing in patients with microphthalmia, anophthalmia, and coloboma (MAC) from a consanguineous population. Clin Genet. 2020;98:499–506. https://doi.org/10.1111/CGE.13830.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palsamy P, Bidasee KR, Shinohara T. Selenite cataracts: activation of endoplasmic reticulum stress and loss of Nrf2/Keap1-dependent stress protection. Biochim Biophys Acta Mol Basis Dis. 1842;2014:1794–805. https://doi.org/10.1016/J.BBADIS.2014.06.028.
Article
Google Scholar
Jing R, Ma B, Qi T, Hu C, Liao C, Wen C, Shao Y, Pei C. Long noncoding RNA OIP5-AS1 inhibits cell apoptosis and cataract formation by blocking POLG expression under oxidative stress. Investig Ophthalmol Vis Sci. 2020. https://doi.org/10.1167/IOVS.61.12.3.
Article
Google Scholar
Wederell ED, de Iongh RU. Extracellular matrix and integrin signaling in lens development and cataract. Semin Cell Dev Biol. 2006;17:759–76. https://doi.org/10.1016/J.SEMCDB.2006.10.006.
Article
CAS
PubMed
Google Scholar
Simirskii VN, Wang Y, Duncan MK. Conditional deletion of β1-integrin from the developing lens leads to loss of the lens epithelial phenotype. Dev Biol. 2007;306:658–68. https://doi.org/10.1016/J.YDBIO.2007.04.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taiyab A, Holms J, West-Mays JA. β-Catenin/Smad3 interaction regulates transforming growth factor-β-induced epithelial to mesenchymal transition in the lens. Int J Mol Sci. 2019. https://doi.org/10.3390/IJMS20092078.
Article
PubMed
PubMed Central
Google Scholar
Swarup A, Bell BA, Du J, Han JYS, Soto J, Abel ED, Bravo-Nuevo A, FitzGerald PG, Peachey NS, Philp NJ. Deletion of GLUT1 in mouse lens epithelium leads to cataract formation. Exp Eye Res. 2018;172:45–53. https://doi.org/10.1016/J.EXER.2018.03.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Senthilkumari S, Talwar B, Dharmalingam K, Ravindran RD, Jayanthi R, Sundaresan P, Saravanan C, Young IS, Dangour AD, Fletcher AE. Polymorphisms in sodium-dependent vitamin C transporter genes and plasma, aqueous humor and lens nucleus ascorbate concentrations in an ascorbate depleted setting. Exp Eye Res. 2014;124:24–30. https://doi.org/10.1016/J.EXER.2014.04.022.
Article
CAS
PubMed
Google Scholar
McGannon P, Miyazaki Y, Gupta PC, Traboulsi EI, Colmenares C. Ocular abnormalities in mice lacking the Ski proto-oncogene. Investig Ophthalmol Vis Sci. 2006;47:4231–7. https://doi.org/10.1167/IOVS.05-1543.
Article
Google Scholar
Guo H, Tong P, Peng Y, Wang T, Liu Y, Chen J, Li Y, Tian Q, Hu Y, Zheng Y, Xiao L, Xiong W, Pan Q, Hu Z, Xia K. Homozygous loss-of-function mutation of the LEPREL1 gene causes severe non-syndromic high myopia with early-onset cataract. Clin Genet. 2014;86:575–9. https://doi.org/10.1111/CGE.12309.
Article
CAS
PubMed
Google Scholar
Sun M, Chen C, Hou S, Li X, Wang H, Zhou J, Chen X, Liu P, Kijlstra A, Lin S, Ye J. A novel mutation of PANK4 causes autosomal dominant congenital posterior cataract. Hum Mutat. 2019;40:380–91. https://doi.org/10.1002/HUMU.23696.
Article
CAS
PubMed
Google Scholar
Qin Y, Zhu Y, Luo F, Chen C, Chen X, Wu M. Killing two birds with one stone: dual blockade of integrin and FGF signaling through targeting syndecan-4 in postoperative capsular opacification. Cell Death Dis. 2017;8: e2920. https://doi.org/10.1038/CDDIS.2017.315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi JJY, Ting CT, Trogrlic L, Milevski SV, Familari M, Martinez G, De Iongh RU. A role for smoothened during murine lens and cornea development. PLoS ONE. 2014. https://doi.org/10.1371/JOURNAL.PONE.0108037.
Article
PubMed
PubMed Central
Google Scholar
Plageman TF, Chung MI, Lou M, Smith AN, Hildebrand JD, Wallingford JB, Lang RA. Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development. 2010;137:405–15. https://doi.org/10.1242/DEV.045369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manthey AL, Lachke SA, FitzGerald PG, Mason RW, Scheiblin DA, McDonald JH, Duncan MK. Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development. Mech Dev. 2014;131:86–110. https://doi.org/10.1016/J.MOD.2013.09.005.
Article
CAS
PubMed
Google Scholar
Pirity MK, Wang WL, Wolf LV, Tamm ER, Schreiber-Agus N, Cvekl A. Rybp, a polycomb complex-associated protein, is required for mouse eye development. BMC Dev Biol. 2007. https://doi.org/10.1186/1471-213X-7-39.
Article
PubMed
PubMed Central
Google Scholar
Baba Y, Watabe Y, Sagara H, Watanabe S. Sall1 plays pivotal roles for lens fiber cell differentiation in mouse. Biochem Biophys Res Commun. 2019;512:927–33. https://doi.org/10.1016/J.BBRC.2019.03.098.
Article
CAS
PubMed
Google Scholar
Donner AL, Episkopou V, Maas RL. Sox2 and Pou2f1 interact to control lens and olfactory placode development. Dev Biol. 2007;303:784–99. https://doi.org/10.1016/J.YDBIO.2006.10.047.
Article
CAS
PubMed
Google Scholar
Yoon KH, Fitzgerald PG. Periplakin interactions with lens intermediate and beaded filaments. Investig Ophthalmol Vis Sci. 2009;50:1283–9. https://doi.org/10.1167/IOVS.08-2894.
Article
Google Scholar
Wolf LV, Yang Y, Wang J, Xie Q, Braunger B, Tamm ER, Zavadil J, Cvekl A. Identification of Pax6-dependent gene regulatory networks in the mouse lens. PLoS ONE. 2009. https://doi.org/10.1371/JOURNAL.PONE.0004159.
Article
PubMed
PubMed Central
Google Scholar
Moré MI, Kirsch FP, Rathjen FG. Targeted ablation of NrCAM or ankyrin-B results in disorganized lens fibers leading to cataract formation. J Cell Biol. 2001;154:187–96. https://doi.org/10.1083/JCB.200104038.
Article
PubMed
PubMed Central
Google Scholar
Shao M, Lu T, Zhang C, Zhang YZ, Kong SH, Shi DL. Rbm24 controls poly(A) tail length and translation efficiency of crystallin mRNAs in the lens via cytoplasmic polyadenylation. Proc Natl Acad Sci USA. 2020;117:7245–54. https://doi.org/10.1073/PNAS.1917922117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahm R, Procter JE, Ireland ME, Lo WK, Mogensen MM, Quinlan RA, Prescott AR. Reorganization of centrosomal marker proteins coincides with epithelial cell differentiation in the vertebrate lens. Exp Eye Res. 2007;85:696–713. https://doi.org/10.1016/J.EXER.2007.07.022.
Article
CAS
PubMed
Google Scholar
Kellner U, Stöhr H, Weinitz S, Farmand G, Weber BHF. Mevalonate kinase deficiency associated with ataxia and retinitis pigmentosa in two brothers with MVK gene mutations. Ophthalmic Genet. 2017;38:340–4. https://doi.org/10.1080/13816810.2016.1227459.
Article
CAS
PubMed
Google Scholar
Antosova B, Smolikova J, Klimova L, Lachova J, Bendova M, Kozmikova I, Machon O, Kozmik Z. The gene regulatory network of lens induction is wired through Meis-dependent shadow enhancers of Pax6. PLoS Genet. 2016. https://doi.org/10.1371/JOURNAL.PGEN.1006441.
Article
PubMed
PubMed Central
Google Scholar
Kantorow M, Hawse JR, Cowell TL, Benhamed S, Pizarro GO, Reddy VN, Hejtmancik JF. Methione sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proc Natl Acad Sci USA. 2004;101:9654–9. https://doi.org/10.1073/PNAS.0403532101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saravanamuthu SS, Gao CY, Zelenka PS. Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation. Dev Biol. 2009;332:166–76. https://doi.org/10.1016/J.YDBIO.2009.05.566.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matteson PG, Desai J, Korstanje R, Lazar G, Borsuk TE, Rollins J, Kadambi S, Joseph J, Rahman T, Wink J, Benayed R, Paigen B, Millonig JH. The orphan G protein-coupled receptor, Gpr161, encodes the vacuolated lens locus and controls neurulation and lens development. Proc Natl Acad Sci USA. 2008;105:2088–93. https://doi.org/10.1073/PNAS.0705657105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rumping L, Tessadori F, Pouwels PJW, Vringer E, Wijnen JP, Bhogal AA, Savelberg SMC, Duran KJ, Bakkers MJG, Ramos RJJ, Schellekens PAW, Kroes HY, Klomp DWJ, Black GCM, Taylor RL, Bakkers JPW, Prinsen HCMT, Van Der Knaap MS, Dansen TB, Rehmann H, Zwartkruis FJT, Houwen RHJ, Van Haaften G, Verhoeven-Duif NM, Jans JJM, Van Hasselt PM. GLS hyperactivity causes glutamate excess, infantile cataract and profound developmental delay. Hum Mol Genet. 2019;28:96–104. https://doi.org/10.1093/HMG/DDY330.
Article
CAS
PubMed
Google Scholar
Marchetti MA, Pizarro GO, Sagher D, DeAmicis C, Brot N, Hejtmancik JF, Weissbach H, Kantorow M. Methionine sulfoxide reductases B1, B2, and B3 are present in the human lens and confer oxidative stress resistance to lens cells. Investig Ophthalmol Vis Sci. 2005;46:2107–12. https://doi.org/10.1167/IOVS.05-0018.
Article
Google Scholar
Barnum CE, Al Saai S, Patel SD, Cheng C, Anand D, Xu X, Dash S, Siddam AD, Glazewski L, Paglione E, Polson SW, Chuma S, Mason RW, Wei S, Batish M, Fowler VM, Lachke SA. The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology. Hum Mol Genet. 2021;29:2076–97. https://doi.org/10.1093/HMG/DDAA096.
Article
Google Scholar
Morales J, Al-Sharif L, Khalil DS, Shinwari JMA, Bavi P, Al-Mahrouqi RA, Al-Rajhi A, Alkuraya FS, Meyer BF, Al Tassan N. Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Am J Hum Genet. 2009;85:558–68. https://doi.org/10.1016/J.AJHG.2009.09.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiggs JL, Pawlyk B, Connolly E, Adamian M, Miller JW, Pasquale LR, Haddadin RI, Grosskreutz CL, Rhee DJ, Li T. Disruption of the blood-aqueous barrier and lens abnormalities in mice lacking Lysyl Oxidase-Like 1 (LOXL1). Investig Ophthalmol Vis Sci. 2014;55:856–64. https://doi.org/10.1167/IOVS.13-13033.
Article
CAS
Google Scholar
Inoue T, Kagawa T, Inoue-Mochita M, Isono K, Ohtsu N, Nobuhisa I, Fukushima M, Tanihara H, Taga T. Involvement of the Hipk family in regulation of eyeball size, lens formation and retinal morphogenesis. FEBS Lett. 2010;584:3233–8. https://doi.org/10.1016/J.FEBSLET.2010.06.020.
Article
CAS
PubMed
Google Scholar
Gao N, Li J, Qin Y, Wang Y, Kang Q, Pei C. SNAI1 interacts with HDAC1 to control TGF-β2-induced epithelial-mesenchymal transition in human lens epithelial cells. Int J Mol Med. 2020;45:265–73. https://doi.org/10.3892/IJMM.2019.4405.
Article
CAS
PubMed
Google Scholar
Meyer LM, Löfgren S, Ho YS, Lou M, Wegener A, Holz F, Söderberg P. Absence of glutaredoxin1 increases lens susceptibility to oxidative stress induced by UVR-B. Exp Eye Res. 2009;89:833–9. https://doi.org/10.1016/J.EXER.2009.07.020.
Article
CAS
PubMed
Google Scholar
Zhao H, Yang T, Madakashira BP, Thiels CA, Bechtle CA, Garcia CM, Zhang H, Yu K, Ornitz DM, Beebe DC, Robinson ML. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev Biol. 2008;318:276–88. https://doi.org/10.1016/J.YDBIO.2008.03.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf N, Penn P, Pendergrass W, Van Remmen H, Bartke A, Rabinovitch P, Martin GM. Age-related cataract progression in five mouse models for anti-oxidant protection or hormonal influence. Exp Eye Res. 2005;81:276–85. https://doi.org/10.1016/J.EXER.2005.01.024.
Article
CAS
PubMed
Google Scholar
Chaffee BR, Hoang TV, Leonard MR, Bruney DG, Wagner BD, Dowd JR, Leone G, Ostrowski MC, Robinson ML. FGFR and PTEN signaling interact during lens development to regulate cell survival. Dev Biol. 2016;410:150–63. https://doi.org/10.1016/J.YDBIO.2015.12.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothe M, Kanwal N, Dietmann P, Seigfried FA, Hempel A, Schütz D, Reim D, Engels R, Linnemann A, Schmeisser MJ, Bockmann J, Kühl M, Boeckers TM, Kühl SJ. An Epha4/Sipa1l3/Wnt pathway regulates eye development and lens maturation. Dev. 2017;144:321–33. https://doi.org/10.1242/DEV.147462.
Article
CAS
Google Scholar
Purcell P, Oliver G, Mardon G, Donner AL, Maas RL. Pax6-dependence of Six3, Eya1 and Dach1 expression during lens and nasal placode induction. Gene Expr Patterns. 2005;6:110–8. https://doi.org/10.1016/J.MODGEP.2005.04.010.
Article
CAS
PubMed
Google Scholar
Wormstone IM, Tamiya S, Eldred JA, Lazaridis K, Chantry A, Reddan JR, Anderson I, Duncan G. Characterisation of TGF-β2 signalling and function in a human lens cell line. Exp Eye Res. 2004;78:705–14. https://doi.org/10.1016/J.EXER.2003.08.006.
Article
CAS
PubMed
Google Scholar
Anand D, Al Saai S, Shrestha SK, Barnum CE, Chuma S, Lachke SA. Genome-wide analysis of differentially expressed miRNAs and their associated regulatory networks in lenses deficient for the congenital cataract-linked tudor domain containing protein TDRD7. Front Cell Dev Biol. 2021. https://doi.org/10.3389/FCELL.2021.615761.
Article
PubMed
PubMed Central
Google Scholar
Omi N, Kiyokawa E, Matsuda M, Kinoshita K, Yamada S, Yamada K, Matsushima Y, Wang Y, Kawai J, Suzuki M, Hayashizaki Y, Hiai H. Mutation of Dock5, a member of the guanine exchange factor Dock180 superfamily, in the rupture of lens cataract mouse. Exp Eye Res. 2008;86:828–34. https://doi.org/10.1016/J.EXER.2008.02.011.
Article
CAS
PubMed
Google Scholar
Lin Q, Zhou N, Zhang N, Qi Y. Mutational screening of EFNA5 in Chinese age-related cataract patients. Ophthalmic Res. 2014;52:124–9. https://doi.org/10.1159/000363139.
Article
CAS
PubMed
Google Scholar
Zhao W, Zhao W, Zhao J, Wang D, Li J. Screening of potential target genes for cataract by analyzing mRNA expression profile of mouse Hsf4-null lens. BMC Ophthalmol. 2015. https://doi.org/10.1186/S12886-015-0066-3.
Article
PubMed
PubMed Central
Google Scholar
Tam OH, Pennisi D, Wilkinson L, Little MH, Wazin F, Wan VL, Lovicu FJ. Crim1 is required for maintenance of the ocular lens epithelium. Exp Eye Res. 2018;170:58–66. https://doi.org/10.1016/J.EXER.2018.02.012.
Article
CAS
PubMed
Google Scholar
Fan J, Lerner J, Wyatt MK, Cai P, Peterson K, Dong L, Wistow G. The klotho-related protein KLPH (lctl) has preferred expression in lens and is essential for expression of clic5 and normal lens suture formation. Exp Eye Res. 2018;169:111–21. https://doi.org/10.1016/J.EXER.2018.02.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfirrmann T, Emmerich D, Ruokonen P, Quandt D, Buchen R, Fischer-Zirnsak B, Hecht J, Krawitz P, Meyer P, Klopocki E, Stricker S, Lausch E, Seliger B, Hollemann T, Reinhard T, Auw-Haedrich C, Zabel B, Hoffmann K, Villavicencio-Lorini P. Molecular mechanism of CHRDL1-mediated X-linked megalocornea in humans and in Xenopus model. Hum Mol Genet. 2014;24:3119–32. https://doi.org/10.1093/HMG/DDV063.
Article
Google Scholar
Ha TT, Sadleir LG, Mandelstam SA, Paterson SJ, Scheffer IE, Gecz J, Corbett MA. A mutation in COL4A2 causes autosomal dominant porencephaly with cataracts. Am J Med Genet Part A. 2016;170:1059–63. https://doi.org/10.1002/AJMG.A.37527.
Article
CAS
Google Scholar
Van Esch H, Jansen A, Bauters M, Froyen G, Fryns JP. Encephalopathy and bilateral cataract in a boy with an interstitial deletion of Xp22 comprising the CDKL5 and NHS genes. Am J Med Genet Part A. 2007;143:364–9. https://doi.org/10.1002/AJMG.A.31572.
Article
PubMed
Google Scholar
Clendenon SG, Sarmah S, Shah B, Liu Q, Marrs JA. Zebrafish cadherin-11 participates in retinal differentiation and retinotectal axon projection during visual system development. Dev Dyn. 2012;241:442–54. https://doi.org/10.1002/DVDY.23729.
Article
CAS
PubMed
Google Scholar
Martinez G, Wijesinghe M, Turner K, Abud HE, Taketo MM, Noda T, Robinson ML, de Iongh RU. Conditional mutations of β-Catenin and APC reveal roles for canonical Wnt signaling in lens differentiation. Investig Ophthalmol Vis Sci. 2009;50:4794–806. https://doi.org/10.1167/IOVS.09-3567.
Article
Google Scholar
Zhao Y, Wilmarth PA, Cheng C, Limi S, Fowler VM, Zheng D, David LL, Cvekl A. Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Exp Eye Res. 2019;179:32–46. https://doi.org/10.1016/J.EXER.2018.10.011.
Article
CAS
PubMed
Google Scholar
Lin HJ, Huang YC, Lin JM, Liao WL, Wu JY, Chen CH, Chou YC, Chen LA, Lin CJ, Tsai FJ. Novel susceptibility genes associated with diabetic cataract in a Taiwanese population. Ophthalmic Genet. 2013;34:35–42. https://doi.org/10.3109/13816810.2012.736590.
Article
CAS
PubMed
Google Scholar
Zha C, Farah CA, Holt RJ, Ceroni F, Al-Abdi L, Thuriot F, Khan AO, Helaby R, Lévesque S, Alkuraya FS, Kraus A, Ragge NK, Sossin WS. Biallelic variants in the small optic lobe calpain CAPN15 are associated with congenital eye anomalies, deafness and other neurodevelopmental deficits. Hum Mol Genet. 2020;29:3054–63. https://doi.org/10.1093/HMG/DDAA198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin L, Lin Q, Li J, Han Y, Chang P, Lu F, Zhao YE. ROCK inhibitor modified intraocular lens as an approach for inhibiting the proliferation and migration of lens epithelial cells and posterior capsule opacification. Biomater Sci. 2019;7:4208–17. https://doi.org/10.1039/C9BM00787C.
Article
CAS
PubMed
Google Scholar
Ragge N, Isidor B, Bitoun P, Odent S, Giurgea I, Cogné B, Deb W, Vincent M, Le Gall J, Morton J, Lim D, Le Meur G, Zazo Seco C, Zafeiropoulou D, Bax D, Zwijnenburg P, Arteche A, Swafiri ST, Cleaver R, McEntagart M, Kini U, Newman W, Ayuso C, Corton M, Herenger Y, Jeanne M, Calvas P, Chassaing N. Expanding the phenotype of the X-linked BCOR microphthalmia syndromes. Hum Genet. 2019;138:1051–69. https://doi.org/10.1007/S00439-018-1896-X.
Article
CAS
PubMed
Google Scholar
Chang C, Zhang K, Veluchamy A, Hébert HL, Looker HC, Colhoun HM, Palmer CNA, Meng W. A genome-wide association study provides new evidence that CACNA1C gene is associated with diabetic cataract. Investig Ophthalmol Vis Sci. 2016;57:2246–50. https://doi.org/10.1167/IOVS.16-19332.
Article
CAS
Google Scholar
Cantù C, Zimmerli D, Hausmann G, Valenta T, Moor A, Aguet M, Basler K. Pax6-dependent, but β-catenin-independent, function of Bcl9 proteins in mouse lens development. Genes Dev. 2014;28:1879–84. https://doi.org/10.1101/GAD.246140.114.
Article
PubMed
PubMed Central
Google Scholar
de Maria A, Shi Y, Luo X, van der Weyden L, Bassnett S. Cadm1 expression and function in the mouse lens. Investig Ophthalmol Vis Sci. 2011;52:2293–9. https://doi.org/10.1167/IOVS.10-6677.
Article
Google Scholar
Choquet H, Melles RB, Anand D, Yin J, Cuellar-Partida G, Wang W, Hoffmann TJ, Nair KS, Hysi PG, Lachke SA, Jorgenson E. A large multiethnic GWAS meta-analysis of cataract identifies new risk loci and sex-specific effects. Nat Commun. 2021. https://doi.org/10.1038/S41467-021-23873-8.
Article
PubMed
PubMed Central
Google Scholar
Xiang J, Kang L, Gao H, Wu J, Qin B, Zhou T, Zhang G, Guan H. BLM can regulate cataract progression by influencing cell vitality and apoptosis. Exp Eye Res. 2019;178:99–107. https://doi.org/10.1016/J.EXER.2018.08.022.
Article
CAS
PubMed
Google Scholar
Sugiyama Y, Shelley EJ, Yoder BK, Kozmik Z, May-Simera HL, Beales PL, Lovicu FJ, McAvoy JW. Non-essential role for cilia in coordinating precise alignment of lens fibres. Mech Dev. 2016;139:10–7. https://doi.org/10.1016/J.MOD.2016.01.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song S, Landsbury A, Dahm R, Liu Y, Zhang Q, Quinlan RA. Functions of the intermediate filament cytoskeleton in the eye lens. J Clin Invest. 2009;119:1837–48. https://doi.org/10.1172/JCI38277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wride MA. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc B Biol Sci. 2011;366:1219–33. https://doi.org/10.1098/RSTB.2010.0324.
Article
CAS
Google Scholar
Chauhan BK, Disanza A, Choi SY, Faber SC, Lou M, Beggs HE, Scita G, Zheng Y, Lang RA. Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination. Development. 2009;136:3657–67. https://doi.org/10.1242/DEV.042242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui X, Feng R, Wang J, Du C, Pi X, Chen D, Li J, Li H, Zhang J, Zhang J, Mu H, Zhang F, Liu M, Hu Y. Heat shock factor 4 regulates lysosome activity by modulating the αB-crystallin-ATP6V1A-mTOR complex in ocular lens. Biochim Biophys Acta Gen Subj. 2020. https://doi.org/10.1016/J.BBAGEN.2019.129496.
Article
PubMed
Google Scholar
Wenke JL, McDonald WH, Schey KL. Spatially directed proteomics of the human lens outer cortex reveals an intermediate filament switch associated with the remodeling zone. Investig Ophthalmol Vis Sci. 2016;57:4108–14. https://doi.org/10.1167/IOVS.16-19791.
Article
CAS
Google Scholar
Valverde P, Obin MS, Taylor A. Role of Gas6/Axl signaling in lens epithelial cell proliferation and survival. Exp Eye Res. 2004;78:27–37. https://doi.org/10.1016/J.EXER.2003.10.002.
Article
CAS
PubMed
Google Scholar
Takenouchi T, Yoshihashi H, Sakaguchi Y, Uehara T, Honda M, Takahashi T, Kosaki K, Miyama S. Hirschsprung disease as a yet undescribed phenotype in a patient with ARID1B mutation. Am J Med Genet Part A. 2016;170:3249–52. https://doi.org/10.1002/AJMG.A.37861.
Article
CAS
PubMed
Google Scholar
Firtina Z, Duncan MK. Unfolded protein response (UPR) is activated during normal lens development. Gene Expr Patterns. 2011;11:135–43. https://doi.org/10.1016/J.GEP.2010.10.005.
Article
CAS
PubMed
Google Scholar
Chauss D, Basu S, Rajakaruna S, Ma Z, Gau V, Anastas S, Brennan LA, Hejtmancik JF, Menko AS, Kantorow M. Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens. G3. 2014. https://doi.org/10.1534/g3.114.012120.
Article
PubMed
PubMed Central
Google Scholar
Parker DS, Wawrousek EF, Piatigorsky J. Expression of the delta-crystallin genes in the embryonic chicken lens. Dev Biol. 1988;126:375–81. https://doi.org/10.1016/0012-1606(88)90147-9.
Article
CAS
PubMed
Google Scholar
Gao M, Huang Y, Wang L, Huang M, Liu F, Liao S, Yu S, Lu Z, Han S, Hu X, Qu Z, Liu X, Assefa Yimer T, Yang L, Tang Z, Li DW-C, Liu M. HSF4 regulates lens fiber cell differentiation by activating p53 and its downstream regulators. Cell Death Dis. 2017;8:e3082. https://doi.org/10.1038/cddis.2017.478.
Article
PubMed
PubMed Central
Google Scholar
Shi X, Cui B, Wang Z, Weng L, Xu Z, Ma J, Xu G, Kong X, Hu L. Removal of Hsf4 leads to cataract development in mice through down-regulation of gamma S-crystallin and Bfsp expression. BMC Mol Biol. 2009. https://doi.org/10.1186/1471-2199-10-10.
Article
PubMed
PubMed Central
Google Scholar
Jia J, Lin M, Zhang L, York JP, Zhang P. The Notch signaling pathway controls the size of the ocular lens by directly suppressing p57Kip2 expression. Mol Cell Biol. 2007;27:7236–47. https://doi.org/10.1128/MCB.00780-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azimi M, Brown NL. Jagged1 protein processing in the developing mammalian lens. Biol Open. 2019. https://doi.org/10.1242/bio.041095.
Article
PubMed
PubMed Central
Google Scholar
Garcia CM, Shui YB, Kamath M, DeVillar J, Johnson RS, Gerber HP, Ferrara N, Robinson ML, Beebe DC. The function of VEGF-A in lens development: formation of the hyaloid capillary network and protection against transient nuclear cataracts. Exp Eye Res. 2009;88:270–6. https://doi.org/10.1016/j.exer.2008.07.017.
Article
CAS
PubMed
Google Scholar
Kerr CL, Huang J, Williams T, West-Mays JA. Activation of the hedgehog signaling pathway in the developing lens stimulates ectopic FoxE3 expression and disruption in fiber cell differentiation. Invest Ophthalmol Vis Sci. 2012;53:3316–30. https://doi.org/10.1167/IOVS.12-9595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsonis PA, Vergara MN, Spence JR, Madhavan M, Kramer EL, Call MK, Santiago WG, Vallance JE, Robbins DJ, Del Rio-Tsonis K. A novel role of the hedgehog pathway in lens regeneration. Dev Biol. 2004;267:450–61. https://doi.org/10.1016/J.YDBIO.2003.12.005.
Article
CAS
PubMed
Google Scholar
Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp Eye Res. 2016;142:92–101. https://doi.org/10.1016/J.EXER.2015.02.004.
Article
CAS
PubMed
Google Scholar
Shirai K, Tanaka S-I, Lovicu FJ, Saika S. The murine lens: a model to investigate in vivo epithelial-mesenchymal transition. Dev Dyn. 2018;247:340–5. https://doi.org/10.1002/DVDY.24518.
Article
CAS
PubMed
Google Scholar
Hejtmancik JF, Riazuddin SA, McGreal R, Liu W, Cvekl A, Shiels A. Lens biology and biochemistry. Prog Mol Biol Transl Sci. 2015;134:169–201. https://doi.org/10.1016/BS.PMBTS.2015.04.007.
Article
PubMed
PubMed Central
Google Scholar
Andley UP, Patel HC, Xi J-H, Bai F. Identification of genes responsive to UV-A radiation in human lens epithelial cells using complementary DNA microarrays. Photochem Photobiol. 2004;80:61. https://doi.org/10.1562/2004-02-03-RA-075.1.
Article
CAS
PubMed
Google Scholar
Shaham O, Smith AN, Robinson ML, Taketo MM, Lang RA, Ashery-Padan R. Pax6 is essential for lens fiber cell differentiation. Development. 2009;136:2567–78. https://doi.org/10.1242/dev.032888.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Zheng D, Cvekl A. A comprehensive spatial-temporal transcriptomic analysis of differentiating nascent mouse lens epithelial and fiber cells. Exp Eye Res. 2018;175:56–72. https://doi.org/10.1016/J.EXER.2018.06.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker JL, Zhang L, Menko AS. Transition between proliferation and differentiation for lens epithelial cells is regulated by Src family kinases. Dev Dyn. 2002;224:361–72. https://doi.org/10.1002/dvdy.10115.
Article
CAS
PubMed
Google Scholar
Awasthi N, Wagner BJ. Interferon-gamma induces apoptosis of lens alphaTN4-1 cells and proteasome inhibition has an antiapoptotic effect. Invest Ophthalmol Vis Sci. 2004;45:222–9. https://doi.org/10.1167/IOVS.03-0571.
Article
PubMed
Google Scholar
Awasthi N, Wagner BJ. Upregulation of heat shock protein expression by proteasome inhibition: an antiapoptotic mechanism in the lens. Invest Ophthalmol Vis Sci. 2005;46:2082–91. https://doi.org/10.1167/IOVS.05-0002.
Article
PubMed
Google Scholar
Kondoh H, Uchikawa M, Kamachi Y. Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. Int J Dev Biol. 2004;48:819–27. https://doi.org/10.1387/IJDB.041868HK.
Article
CAS
PubMed
Google Scholar
Ra L. Pathways regulating lens induction in the mouse. Int J Dev Biol. 2004;48:783–91. https://doi.org/10.1387/IJDB.041903RL.
Article
Google Scholar
Hervouet E, Vallette FM, Cartron PF. Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics. 2009;4:487–99. https://doi.org/10.4161/EPI.4.7.9883.
Article
CAS
PubMed
Google Scholar
Hoang TV, Horowitz ER, Chaffee BR, Qi P, Flake RE, Bruney DG, Rasor BJ, Rosalez SE, Wagner BD, Robinson ML. Lens development requires DNMT1 but takes place normally in the absence of both DNMT3A and DNMT3B activity. Epigenetics. 2017. https://doi.org/10.1080/15592294.2016.1253651.
Article
PubMed
Google Scholar
Loo SK, Suzina SS, Musa M, Wong KK. DNMT1 is associated with cell cycle and DNA replication gene sets in diffuse large B-cell lymphoma. Pathol Res Pract. 2018;214:134–43. https://doi.org/10.1016/J.PRP.2017.10.005.
Article
CAS
PubMed
Google Scholar
Ma HS, Wang EL, Xu WF, Yamada S, Yoshimoto K, Qian ZR, Shi L, Liu LL, Li XH. Overexpression of DNA (Cytosine-5)-methyltransferase 1 (DNMT1) and DNA (Cytosine-5)-methyltransferase 3A (DNMT3A) is associated with aggressive behavior and hypermethylation of tumor suppressor genes in human pituitary adenomas. Med Sci Monit. 2018;24:4841–50. https://doi.org/10.12659/MSM.910608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang P, Chu W, Zhang X, Li B, Wu J, Qi L, Yu Y, Zhang H. Kindlin-2 interacts with and stabilizes DNMT1 to promote breast cancer development. Int J Biochem Cell Biol. 2018;105:41–51. https://doi.org/10.1016/J.BIOCEL.2018.09.022.
Article
PubMed
Google Scholar
Jeong Y, Jun Y, Kim J, Park H, Choi K-S, Zhang H, Park JA, Kwon J-Y, Kim Y-M, Lee S, Kwon Y-G. Integrative analysis of DNA methylation and mRNA expression during differentiation of umbilical cord blood derived mononuclear cells to endothelial cells. Gene. 2017;635:48–60. https://doi.org/10.1016/J.GENE.2017.09.006.
Article
CAS
PubMed
Google Scholar
Mo A, Mukamel EA, Davis FP, Luo C, Henry GL, Picard S, Urich MA, Nery JR, Sejnowski TJ, Lister R, Eddy SR, Ecker JR, Nathans J. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron. 2015;86:1369–84. https://doi.org/10.1016/J.NEURON.2015.05.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rizzardi LF, Hickey PF, DiBlasi VR, Tryggvadóttir R, Callahan CM, Idrizi A, Hansen KD, Feinberg AP. Neuronal brain-region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability. Nat Neurosci. 2019;22:307–16. https://doi.org/10.1038/S41593-018-0297-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farlik M, Halbritter F, Müller F, Choudry FA, Ebert P, Klughammer J, Farrow S, Santoro A, Ciaurro V, Mathur A, Uppal R, Stunnenberg HG, Ouwehand WH, Laurenti E, Lengauer T, Frontini M, Bock C. DNA methylation dynamics of human hematopoietic stem cell differentiation. Cell Stem Cell. 2016;19:808–22. https://doi.org/10.1016/J.STEM.2016.10.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spainhour JCG, Lim HS, Yi SV, Qiu P. Correlation patterns between DNA methylation and gene expression in the Cancer Genome Atlas. Cancer Inform. 2019. https://doi.org/10.1177/1176935119828776.
Article
PubMed
PubMed Central
Google Scholar
Lim YC, Li J, Ni Y, Liang Q, Zhang J, Yeo GSH, Lyu J, Jin S, Ding C. A complex association between DNA methylation and gene expression in human placenta at first and third trimesters. PLoS ONE. 2017;12: e0181155. https://doi.org/10.1371/JOURNAL.PONE.0181155.
Article
PubMed
PubMed Central
Google Scholar
Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee B-K, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA. The accessible chromatin landscape of the human genome. Nature. 2012;489:75–82. https://doi.org/10.1038/NATURE11232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Disatham J, Chauss D, Gheyas R, Brennan L, Blanco D, Daley L, Menko AS, Kantorow M. Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression. Dev Biol. 2019;453:86–104. https://doi.org/10.1016/j.ydbio.2019.04.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong Z, Feng S, Duttke SH, Potok ME, Zhang Y, Gallego-Bartolomé J, Liu W, Jacobsen SE. DNA methylation-linked chromatin accessibility affects genomic architecture in Arabidopsis. Proc Natl Acad Sci USA. 2021;118:2022. https://doi.org/10.1073/PNAS.2023347118/-/DCSUPPLEMENTAL.
Article
Google Scholar
Robertson KD. DNA methylation and chromatin—unraveling the tangled web. Oncogene. 2002;21:5361–79. https://doi.org/10.1038/sj.onc.1205609.
Article
CAS
PubMed
Google Scholar
Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, Satpathy AT, Rubin AJ, Montine KS, Wu B, Kathiria A, Cho SW, Mumbach MR, Carter AC, Kasowski M, Orloff LA, Risca VI, Kundaje A, Khavari PA, Montine TJ, Greenleaf WJ, Chang HY. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods. 2017;14:959–62. https://doi.org/10.1038/nmeth.4396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2. https://doi.org/10.1093/BIOINFORMATICS/BTR167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014. https://doi.org/10.1093/NAR/GKU154.
Article
PubMed
PubMed Central
Google Scholar
Park Y, Wu H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics. 2016;32:1446–53. https://doi.org/10.1093/BIOINFORMATICS/BTW026.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10. https://doi.org/10.14806/ej.17.1.200.
Article
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5. https://doi.org/10.1038/nbt.3122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler AD. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. https://doi.org/10.1101/gr.229102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011. https://doi.org/10.1093/bioinformatics/btr260.
Article
PubMed
PubMed Central
Google Scholar
Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A. JASPAR 2018 update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46(2018):D260–6. https://doi.org/10.1093/nar/gkx1126.
Article
CAS
PubMed
Google Scholar
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–8. https://doi.org/10.1093/BIOINFORMATICS/BTR064.
Article
CAS
PubMed
PubMed Central
Google Scholar