Becker PB, Hörz W. ATP-dependent nucleosome remodeling. Annu Rev Biochem. 2002;71:247–73.
Article
CAS
PubMed
Google Scholar
Bentley GA, Anita LB, Finch JT. Crystal structure of the nucleosome core particle at 16 w resolution. J Mol Biol. 1984;176:55–75.
Article
CAS
PubMed
Google Scholar
Fan Y, Nikitina T, Zhao J, Fleury TJ, Bhattacharyya R, Bouhassira EE, et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell. 2005;123:1199–212.
Article
CAS
PubMed
Google Scholar
Li M, Fang Y. Histone variants: the artists of eukaryotic chromatin. Sci China Life Sci. 2015;58:232–9.
Article
CAS
PubMed
Google Scholar
Loyola A, Almouzni G. Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta. 2004;1677:3–11.
Article
CAS
PubMed
Google Scholar
Hansen JC, Nyborg JK, Luger K, Stargell LA. Histone chaperones, histone acetylation, and the fluidity of the chromogenome. J Cell Physiol. 2010;224:289–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Koning L, Corpet A, Haber JE, Almouzni G. Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol. 2007;14:997–1007.
Article
PubMed
CAS
Google Scholar
Kim HJ, Seol JH, Han JW, Youn HD, Cho EJ. Histone chaperones regulate histone exchange during transcription. EMBO J. 2007;26:4467–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park YJ, Luger K. Structure and function of nucleosome assembly proteins. Biochem Cell Biol. 2006;84:549–58.
Article
CAS
PubMed
Google Scholar
Eitoku M, Sato L, Senda T, Horikoshi M. Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cell Mol Life Sci. 2008;65:414–44.
Article
CAS
PubMed
Google Scholar
Nabeel-Shah S, Ashraf K, Pearlman RE, Fillingham J. Molecular evolution of NASP and conserved histone H3/H4 transport pathway. BMC Evol Biol. 2014;14:139.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ai X, Parthun MR. The nuclear Hat1p/Hat2p complex: A molecular link between type B histone acetyltransferases and chromatin assembly. Mol Cell. 2004;14:195–205.
Article
CAS
PubMed
Google Scholar
Dannah NS, Nabeel-Shah S, Kurat CF, Sabatinos SA, Fillingham J. Functional analysis of Hif1 histone chaperone in Saccharomyces cerevisiae. G3 (Bethesda). 2018;8:1993–2006.
Article
CAS
Google Scholar
Poveda A, Pamblanco M, Tafrov S, Tordera V, Sternglanz R, Sendra R. Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus. J Biol Chem. 2004;279:16033–43.
Article
CAS
PubMed
Google Scholar
Dunleavy EM, Pidoux AL, Monet M, Bonilla C, Richardson W, Hamilton GL, et al. A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast centromeres. Mol Cell. 2007;28:1029–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanae K, Horiuchi T, Yamakawa T, Matsuo Y, Kawamukai M. Sim3 shares some common roles with the histone chaperone Asf1 in fission yeast. FEBS Lett. 2012;586:4190–6.
Article
CAS
PubMed
Google Scholar
Grote P, Conradt B. The PLZF-like protein TRA-4 cooperates with the Gli-like transcription factor TRA-1 to promote female development in C. elegans. Dev Cell. 2006;11:561–73.
Article
CAS
PubMed
Google Scholar
Kleinschmidt JA, Dingwall C, Maier G, Franke WW. Molecular characterization of a karyophilic, histone-binding protein: cDNA cloning, amino acid sequence and expression of nuclear protein N1/N2 of Xenopus laevis. EMBO J. 1986;5:3547–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleinschmidt JA, Fortkamp E, Krohne G, Zentgraf H, Franke WW. Co-existence of two different types of soluble histone complexes in nuclei of Xenopus zuevis oocytes. J Biol Chem. 1985;260:1166–76.
Article
CAS
PubMed
Google Scholar
Richardson RT, Alekseev OM, Grossman G, Widgren EE, Thresher R, Wagner EJ, et al. Nuclear autoantigenic sperm protein (NASP), a linker histone chaperone that is required for cell proliferation. J Biol Chem. 2006;281:21526–34.
Article
CAS
PubMed
Google Scholar
Le Goff S, Keceli BN, Jerabkova H, Heckmann S, Rutten T, Cotterell S, et al. The H3 histone chaperone NASP(SIM3) escorts CenH3 in Arabidopsis. Plant J. 2020;101:71–86.
Article
PubMed
CAS
Google Scholar
Richardson RT, Batova IN, Widgren EE, Zheng LX, Whitfield M, Marzluff WF, et al. Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. J Biol Chem. 2000;275:30378–86.
Article
CAS
PubMed
Google Scholar
Welch JE, Zimmerman LJ, Joseph DR, O’Rand MG. Characterization of a sperm-specific nuclear autoantigenic protein. I. Complete sequence and homology with the Xenopus protein, N1/N2. Biol Reprod. 1990;43:559–68.
Article
CAS
PubMed
Google Scholar
Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WH, et al. The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol. 2010;17:1343–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004;116:51–61.
Article
CAS
PubMed
Google Scholar
Alekseev OM, Richardson RT, Pope MR, O’Rand MG. Mass spectrometry identification of NASP binding partners in HeLa cells. Proteins. 2005;61:1–5.
Article
CAS
PubMed
Google Scholar
Finn RM, Ellard K, Eirin-Lopez JM, Ausio J. Vertebrate nucleoplasmin and NASP: egg histone storage proteins with multiple chaperone activities. Faseb J. 2012;26:4788–804.
Article
CAS
PubMed
Google Scholar
Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.
Article
CAS
PubMed
Google Scholar
Orias E, Cervantes MD, Hamilton EP. Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. Res Microbiol. 2011;162:578–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldfarb DS, Gorovsky MA. Nuclear dimorphism: two peas in a pod. Curr Biol. 2009;19:449–52.
Article
CAS
Google Scholar
Schoeberl UE, Kurth HM, Noto T, Mochizuki K. Biased transcription and selective degradation of small RNAs shape the pattern of DNA elimination in Tetrahymena. Genes Dev. 2012;26:1729–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruehle MD, Orias E, Pearson CG. Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics. 2016;203:649–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao J, Xu J, Bo T, Wang W. Micronucleus-specific histone H1 is required for micronuclear chromosome integrity in Tetrahymena thermophila. PLoS ONE. 2017;12:e0187475.
Article
PubMed
PubMed Central
CAS
Google Scholar
Allis CD, Glover CV, Gorovsky MA. Micronuclei of Tetrahymena contain two types of histone H3. Proc Natl Acad Sci USA. 1979;76:4857–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medzihradszky KF, Zhang X, Chalkley RJ, Guan S, McFarland MA, Chalmers MJ, et al. Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS). Mol Cell Proteomics. 2004;3:872–86.
Article
CAS
PubMed
Google Scholar
Cui B, Liu Y, Gorovsky MA. Deposition and function of histone H3 variants in Tetrahymena thermophila. Mol Cell Biol. 2006;26:7719–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allis CD, Bowen JK, Abraham GN. Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell. 1980;20:55–64.
Article
CAS
PubMed
Google Scholar
D’Andrea LD, Regan L. TPR proteins: the versatile helix. Trends Biochem Sci. 2003;28:655–62.
Article
PubMed
CAS
Google Scholar
Liu H, Zhang M, He W, Zhu Z, Teng M, Gao Y, et al. Structural insights into yeast histone chaperone Hif1: a scaffold protein recruiting protein complexes to core histones. Biochem J. 2014;462:465–73.
Article
CAS
PubMed
Google Scholar
Doerder FP, Debault LE. Cytofluorimetric analysis of nuclear DNA during meiosis, fertilization and macronuclear development in the ciliate Tetrahymena pyriformis, syngen 1. J Cell Sci. 1975;17:471–93.
Article
CAS
PubMed
Google Scholar
Woodard J, Kaneshiro E, Gorovsky MA. Cytochemical studies on the problem of macronuclear subnuclei in Tetrahymena. Genetics. 1972;70:251–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Welch JE, O’Rand MG. Characterization of a sperm-specific nuclear autoantigenic protein. II. Expression and localization in the testis. Biol Reprod. 1990;43:569–78.
Article
CAS
PubMed
Google Scholar
Howard-Till RA, Lukaszewicz A, Novatchkova M, Loidl J. A single cohesin complex performs mitotic and meiotic functions in the protist Tetrahymena. PLoS Genet. 2013;9:e1003418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali EI, Loidl J, Howard-Till RA. A streamlined cohesin apparatus is sufficient for mitosis and meiosis in the protist Tetrahymena. Chromosoma. 2018;127:421–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng CY, Vogt A, Mochizuki K, Yao MC. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell. 2010;21:1753–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bednenko J, Noto T, DeSouza LV, Siu KW, Pearlman RE, Mochizuki K, et al. Two GW repeat proteins interact with Tetrahymena thermophila argonaute and promote genome rearrangement. Mol Cell Biol. 2009;29:5020–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akematsu T, Fukuda Y, Garg J, Fillingham JS, Pearlman RE, Loidl J. Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11. Elife. 2017;6:e26176.
Article
PubMed
PubMed Central
Google Scholar
Groth A, Ray-Gallet D, Quivy JP, Lukas J, Bartek J, Almouzni G. Human Asf1 regulates the flow of S phase histones during replicational stress. Mol Cell. 2005;17:301–11.
Article
CAS
PubMed
Google Scholar
Cuervo AM. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab. 2010;21:142–50.
Article
CAS
PubMed
Google Scholar
Cook AJ, Gurard-Levin ZA, Vassias I, Almouzni G. A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3–H4 in the histone supply chain. Mol Cell. 2011;44:918–27.
Article
CAS
PubMed
Google Scholar
Liu WH, Churchill ME. Histone transfer among chaperones. Biochem Soc Trans. 2012;40:357–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howard-Till RA, Lukaszewicz A, Loidl J. The recombinases Rad51 and Dmc1 play distinct roles in DNA break repair and recombination partner choice in the meiosis of Tetrahymena. PLoS Genet. 2011;7:e1001359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saavedra F, Gurard-Levin ZA, Rojas-Villalobos C, Vassias I, Quatrini R, Almouzni G, et al. JMJD1B, a novel player in histone H3 and H4 processing to ensure genome stability. Epigenetics Chromatin. 2020;13:6.
Article
PubMed
PubMed Central
Google Scholar
Garg J, Lambert JP, Karsou A, Marquez S, Nabeel-Shah S, Bertucci V, et al. Conserved Asf1-importin beta physical interaction in growth and sexual development in the ciliate Tetrahymena thermophila. J Proteomics. 2013;94:311–26.
Article
CAS
PubMed
Google Scholar
Batova I, O’Rand MG. Histone-binding domains in a human nuclear autoantigenic sperm protein. Biol Reprod. 1996;54:1238–44.
Article
CAS
PubMed
Google Scholar
Maksimov V, Nakamura M, Wildhaber T, Nanni P, Ramstrom M, Bergquist J, et al. The H3 chaperone function of NASP is conserved in Arabidopsis. Plant J. 2016;88:425–36.
Article
CAS
PubMed
Google Scholar
Wang H, Ge Z, Walsh ST, Parthun MR. The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms. Nucleic Acids Res. 2012;40:660–9.
Article
CAS
PubMed
Google Scholar
Alekseev OM, Bencic DC, Richardson RT, Widgren EE, O’Rand MG. Overexpression of the Linker histone-binding protein tNASP affects progression through the cell cycle. J Biol Chem. 2003;278:8846–52.
Article
CAS
PubMed
Google Scholar
Alekseev OM, Richardson RT, O’Rand MG. Linker histones stimulate HSPA2 ATPase activity through NASP binding and inhibit CDC2/Cyclin B1 complex formation during meiosis in the mouse. Biol Reprod. 2009;81:739–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwamoto M, Sugai T, Nakaoka Y. Cell division induced by mechanical stimulation in starved Tetrahymena thermophila: cell cycle without synthesis of macronuclear DNA. Cell Biol Int. 2004;28:503–9.
Article
CAS
PubMed
Google Scholar
Mochizuki K, Novatchkova M, Loidl J. DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena. J Cell Sci. 2008;121:2148–58.
Article
CAS
PubMed
Google Scholar
Mochizuki K. DNA rearrangements directed by non-coding RNAs in ciliates. Wiley Interdiscip Rev RNA. 2010;1:376–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu ML, Yao MC. Role of ATG8 and autophagy in programmed nuclear degradation in Tetrahymena thermophila. Eukaryot Cell. 2012;11:494–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang J, Wang H, Xi W, Cheng G, Wang S, Su S, et al. Downregulation of tNASP inhibits proliferation through regulating cell cycle-related proteins and inactive ERK/MAPK signal pathway in renal cell carcinoma cells. Tumor Biol. 2015;36:5209–14.
Article
CAS
Google Scholar
Kang X, Feng Y, Gan Z, Zeng S, Guo X, Chen X, et al. NASP antagonize chromatin accessibility through maintaining histone H3K9me1 in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis. 2018;1864:3438–48.
Article
CAS
PubMed
Google Scholar
Andersen H, Zeuthen E. DNA replication sequence in Tetrahymena is not repeated from generation to generation. Exp Cell Res. 1971;68:309–14.
Article
CAS
PubMed
Google Scholar
Cui B, Gorovsky MA. Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila. Mol Cell Biol. 2006;26:4499–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cervantes MD, Xi X, Vermaak D, Yao MC, Malik HS. The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus. Mol Biol Cell. 2006;17:485–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nabeel-Shah S, Ashraf K, Saettone A, Garg J, Derynck J, Lambert JP, et al. Nucleus-specific linker histones Hho1 and Mlh1 form distinct protein interactions during growth, starvation and development in Tetrahymena thermophila. Sci Rep. 2020;10:168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorovsky MA, Yao M-C, Keevert JB, Pleger GL. Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol. 1975;9:311–27.
Article
CAS
PubMed
Google Scholar
Bruns PJ, Brussard TB. Pair formation in Tetrahymena pyriformis, an inducible developmental system. J Exp Zool. 1974;188:337–44.
Article
CAS
PubMed
Google Scholar
Xu J, Li X, Song W, Wang W, Gao S. Cyclin Cyc2p is required for micronuclear bouquet formation in Tetrahymena thermophila. Sci China Life Sci. 2019;62:668–80.
Article
CAS
PubMed
Google Scholar
Wood CR, Hard R, Hennessey TM. Targeted gene disruption of dynein heavy chain 7 of Tetrahymena thermophila results in altered ciliary waveform and reduced swim speed. J Cell Sci. 2007;120:3075–85.
Article
CAS
PubMed
Google Scholar
Zhou H, Xu J, Wang W. Functional comparision between truncated MTT1 and truncated MTT2 from Tetrahyemna thermophila. Biosci Biotechnol Biochem. 2018;82:449–55.
Article
CAS
PubMed
Google Scholar