Pepenella S, Murphy KJ, Hayes JJ. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma. 2014;123(1–2):3–13.
Article
CAS
PubMed
Google Scholar
Grigoryev SA, Bascom G, Buckwalter JM, Schubert MB, Woodcock CL, Schlick T. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes. Proc Natl Acad Sci USA. 2016;113(5):1238–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeshima K, Rogge R, Tamura S, Joti Y, Hikima T, Szerlong H, et al. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J. 2016;35(10):1115–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Saez I, Menoni H, Boopathi R, Shukla MS, Soueidan L, Noirclerc-Savoye M, et al. Structure of an H1-bound 6-nucleosome array reveals an untwisted two-start chromatin fiber conformation. Mol Cell. 2018;72(5):902.e7-915.e7.
Article
CAS
Google Scholar
Baldi S, Korber P, Becker PB. Beads on a string-nucleosome array arrangements and folding of the chromatin fiber. Nat Struct Mol Biol. 2020;27(2):109–18.
Article
CAS
PubMed
Google Scholar
Livolant F, Mangenot S, Leforestier A, Bertin A, Frutos M, Raspaud E, et al. Are liquid crystalline properties of nucleosomes involved in chromosome structure and dynamics? Philos Trans A Math Phys Eng Sci. 1847;2006(364):2615–33.
Google Scholar
Allahverdi A, Chen Q, Korolev N, Nordenskiold L. Chromatin compaction under mixed salt conditions: opposite effects of sodium and potassium ions on nucleosome array folding. Sci Rep. 2015;5:8512.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korolev N, Allahverdi A, Yang Y, Fan Y, Lyubartsev AP, Nordenskiold L. Electrostatic origin of salt-induced nucleosome array compaction. Biophys J. 2010;99(6):1896–905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korolev N, Lyubartsev AP, Nordenskiold L. A systematic analysis of nucleosome core particle and nucleosome–nucleosome stacking structure. Sci Rep. 2018;8(1):1543.
Article
PubMed
PubMed Central
CAS
Google Scholar
Korolev N, Zhao Y, Allahverdi A, Eom KD, Tam JP, Nordenskiold L. The effect of salt on oligocation-induced chromatin condensation. Biochem Biophys Res Commun. 2012;418(2):205–10.
Article
CAS
PubMed
Google Scholar
Zinchenko A, Berezhnoy NV, Chen Q, Nordenskiold L. Compaction of single-molecule megabase-long chromatin under the influence of macromolecular crowding. Biophys J. 2018;114(10):2326–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zinchenko A, Chen Q, Berezhnoy NV, Wang S, Nordenskiold L. Compaction and self-association of megabase-sized chromatin are induced by anionic protein crowding. Soft Matter. 2020;16(18):4366–72.
Article
CAS
PubMed
Google Scholar
Chen C, Lim HH, Shi J, Tamura S, Maeshima K, Surana U, et al. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Mol Biol Cell. 2016;27(21):3357–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell. 2000;103(2):263–71.
Article
CAS
PubMed
Google Scholar
Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.
Article
CAS
PubMed
Google Scholar
Tse C, Sera T, Wolffe AP, Hansen JC. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol. 1998;18(8):4629–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311(5762):844–7.
Article
CAS
PubMed
Google Scholar
Allahverdi A, Yang R, Korolev N, Fan Y, Davey CA, Liu CF, et al. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res. 2011;39(5):1680–91.
Article
CAS
PubMed
Google Scholar
Shogren-Knaak M, Peterson CL. Switching on chromatin: mechanistic role of histone H4–K16 acetylation. Cell Cycle. 2006;5(13):1361–5.
Article
CAS
PubMed
Google Scholar
North JA, Simon M, Ferdinand MB, Shoffner MA, Picking JW, Howard CJ, et al. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res. 2014;42(8):4922–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol Cell. 2004;14(5):667–73.
Article
CAS
PubMed
Google Scholar
Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC, Dunlap D, et al. Direct observation of DNA distortion by the RSC complex. Mol Cell. 2006;21(3):417–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S, Smith SB, et al. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol Cell. 2006;24(4):559–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu X, Liu B, Carlsten JO, Beve J, Nystrom T, Myers LC, et al. Mediator influences telomeric silencing and cellular life span. Mol Cell Biol. 2011;31(12):2413–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature. 1980;286(5776):854–60.
Article
CAS
PubMed
Google Scholar
Wu C, Bingham PM, Livak KJ, Holmgren R, Elgin SC. The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence. Cell. 1979;16(4):797–806.
Article
CAS
PubMed
Google Scholar
Wu C, Wong YC, Elgin SC. The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell. 1979;16(4):807–14.
Article
CAS
PubMed
Google Scholar
Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 2007;17(6):877–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:21–9.
PubMed
PubMed Central
Google Scholar
Wal M, Pugh BF. Genome-wide mapping of nucleosome positions in yeast using high-resolution MNase ChIP-Seq. Methods Enzymol. 2012;513:233–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorzadeh A, Bilenky M, Hammond C, Knapp D, Li L, Miller PH, et al. Nucleosome density ChIP-Seq identifies distinct chromatin modification signatures associated with MNase accessibility. Cell Rep. 2016;17(8):2112–24.
Article
CAS
PubMed
Google Scholar
Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, et al. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat Commun. 2016;7:11485.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mueller B, Mieczkowski J, Kundu S, Wang P, Sadreyev R, Tolstorukov MY, et al. Widespread changes in nucleosome accessibility without changes in nucleosome occupancy during a rapid transcriptional induction. Genes Dev. 2017;31(5):451–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chereji RV, Bryson TD, Henikoff S. Quantitative MNase-seq accurately maps nucleosome occupancy levels. Genome Biol. 2019;20(1):198.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marr LT, Clark DJ, Hayes JJ. A method for assessing histone surface accessibility genome-wide. Methods. 2019;184:61–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dhillon N, Kamakaka RT. A histone variant, Htz1p, and a Sir1p-like protein, Esc2p, mediate silencing at HMR. Mol Cell. 2000;6(4):769–80.
Article
CAS
PubMed
Google Scholar
Clark-Adams CD, Norris D, Osley MA, Fassler JS, Winston F. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 1988;2(2):150–9.
Article
CAS
PubMed
Google Scholar
Eriksson P, Thomas LR, Thorburn A, Stillman DJ. pRS yeast vectors with a LYS2 marker. Biotechniques. 2004;36(2):212–3.
Article
CAS
PubMed
Google Scholar
Clonetech. Yeast protocols handbook. 2009. http://www.takara.co.kr/file/manual/pdf/PT3024-1.pdf.
Cole HA, Howard BH, Clark DJ. Genome-wide mapping of nucleosomes in yeast using paired-end sequencing. Methods Enzymol. 2012;513:145–68.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42(Web Server issue):W187–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song F, Chen P, Sun D, Wang M, Dong L, Liang D, et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science. 2014;344(6182):376–80.
Article
CAS
PubMed
Google Scholar
Takizawa Y, Ho CH, Tachiwana H, Matsunami H, Kobayashi W, Suzuki M, et al. Cryo-EM structures of centromeric tri-nucleosomes containing a central CENP-A nucleosome. Structure. 2020;28(1):44.e4-53.e4.
Article
CAS
Google Scholar
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature. 1997;389(6648):251–60.
Article
CAS
PubMed
Google Scholar
Cole HA, Ocampo J, Iben JR, Chereji RV, Clark DJ. Heavy transcription of yeast genes correlates with differential loss of histone H2B relative to H4 and queued RNA polymerases. Nucleic Acids Res. 2014;42(20):12512–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Churchman LS, Weissman JS. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature. 2011;469(7330):368–73.
Article
CAS
PubMed
Google Scholar
Kireeva ML, Walter W, Tchernajenko V, Bondarenko V, Kashlev M, Studitsky VM. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol Cell. 2002;9(3):541–52.
Article
CAS
PubMed
Google Scholar
Ocampo J, Chereji RV, Eriksson PR, Clark DJ. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res. 2016;44(10):4625–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rawal Y, Chereji RV, Qiu H, Ananthakrishnan S, Govind CK, Clark DJ, et al. SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev. 2018;32(9–10):695–710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parnell TJ, Schlichter A, Wilson BG, Cairns BR. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. Elife. 2015;4:e06073.
Article
PubMed
PubMed Central
Google Scholar
Ocampo J, Chereji RV, Eriksson PR, Clark DJ. Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination. Genome Res. 2019;29(3):407–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubik S, Bruzzone MJ, Challal D, Dreos R, Mattarocci S, Bucher P, et al. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat Struct Mol Biol. 2019;26(8):744–54.
Article
CAS
PubMed
Google Scholar
Ng HH, Robert F, Young RA, Struhl K. Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev. 2002;16(7):806–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitehouse I, Rando OJ, Delrow J, Tsukiyama T. Chromatin remodelling at promoters suppresses antisense transcription. Nature. 2007;450(7172):1031–5.
Article
CAS
PubMed
Google Scholar
Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell. 2012;149(7):1461–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganguli D, Chereji RV, Iben JR, Cole HA, Clark DJ. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast. Genome Res. 2014;24(10):1637–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wyrick JJ, Holstege FC, Jennings EG, Causton HC, Shore D, Grunstein M, et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature. 1999;402(6760):418–21.
Article
CAS
PubMed
Google Scholar
Tham WH, Zakian VA. Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene. 2002;21(4):512–21.
Article
CAS
PubMed
Google Scholar
Ellahi A, Thurtle DM, Rine J. The chromatin and transcriptional landscape of native Saccharomyces cerevisiae telomeres and subtelomeric domains. Genetics. 2015;200(2):505–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Widom J. Mechanism of transcriptional silencing in yeast. Cell. 2005;120(1):37–48.
Article
CAS
PubMed
Google Scholar
Sekinger EA, Gross DS. Silenced chromatin is permissive to activator binding and PIC recruitment. Cell. 2001;105(3):403–14.
Article
CAS
PubMed
Google Scholar
Chereji RV, Eriksson PR, Ocampo J, Prajapati HK, Clark DJ. Accessibility of promoter DNA is not the primary determinant of chromatin-mediated gene regulation. Genome Res. 2019;29(12):1985–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hewish DR, Burgoyne LA. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun. 1973;52(2):504–10.
Article
CAS
PubMed
Google Scholar
Marion C, Roux B. Nucleosomes arrangement in chromatin. Nucleic Acids Res. 1978;5(11):4431–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tjerneld F, Norden B, Wallin H. Chromatin structure studied by linear dichroism at different salt concentrations. Biopolymers. 1982;21(2):343–58.
Article
CAS
PubMed
Google Scholar
Colson P, Houssier C. Polyamine addition to preparation media induces chromatin condensation, irreversibly at low ionic strength. FEBS Lett. 1989;257(1):141–4.
Article
CAS
PubMed
Google Scholar
Chen TA, Smith MM, Le SY, Sternglanz R, Allfrey VG. Nucleosome fractionation by mercury affinity chromatography. Contrasting distribution of transcriptionally active DNA sequences and acetylated histones in nucleosome fractions of wild-type yeast cells and cells expressing a histone H3 gene altered to encode a cysteine 110 residue. J Biol Chem. 1991;266(10):6489–98.
Article
CAS
PubMed
Google Scholar
Walker J, Chen TA, Sterner R, Berger M, Winston F, Allfrey VG. Affinity chromatography of mammalian and yeast nucleosomes. Two modes of binding of transcriptionally active mammalian nucleosomes to organomercurial-agarose columns, and contrasting behavior of the active nucleosomes of yeast. J Biol Chem. 1990;265(10):5736–46.
Article
CAS
PubMed
Google Scholar
Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D. FACT facilitates transcription-dependent nucleosome alteration. Science. 2003;301(5636):1090–3.
Article
CAS
PubMed
Google Scholar
Thiriet C, Hayes JJ. Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev. 2005;19(6):677–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lohr D. The salt dependence of chicken and yeast chromatin structure. Effects on internucleosomal organization and relation to active chromatin. J Biol Chem. 1986;261(21):9904–14.
Article
CAS
PubMed
Google Scholar
Hsieh TH, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell. 2015;162(1):108–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dekker J. Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J Biol Chem. 2008;283(50):34532–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swygert SG, Senapati S, Bolukbasi MF, Wolfe SA, Lindsay S, Peterson CL. SIR proteins create compact heterochromatin fibers. Proc Natl Acad Sci USA. 2018;115(49):12447–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lohr D, Hereford L. Yeast chromatin is uniformly digested by DNase-I. Proc Natl Acad Sci USA. 1979;76(9):4285–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeshima K, Imai R, Tamura S, Nozaki T. Chromatin as dynamic 10-nm fibers. Chromosoma. 2014;123(3):225–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai S, Song Y, Chen C, Shi J, Gan L. Natural chromatin is heterogeneous and self-associates in vitro. Mol Biol Cell. 2018;29(13):1652–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowary PT, Widom J. Higher-order structure of Saccharomyces cerevisiae chromatin. Proc Natl Acad Sci USA. 1989;86(21):8266–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Routh A, Sandin S, Rhodes D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci USA. 2008;105(26):8872–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas JO, Furber V. Yeast chromatin structure. FEBS Lett. 1976;66(2):274–80.
Article
CAS
PubMed
Google Scholar
Parnell TJ, Huff JT, Cairns BR. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 2008;27(1):100–10.
Article
CAS
PubMed
Google Scholar
Hartley PD, Madhani HD. Mechanisms that specify promoter nucleosome location and identity. Cell. 2009;137(3):445–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell. 2005;123(4):581–92.
Article
CAS
PubMed
Google Scholar
Joshi AA, Struhl K. Eaf3 chromodomain interaction with methylated H3–K36 links histone deacetylation to Pol II elongation. Mol Cell. 2005;20(6):971–8.
Article
CAS
PubMed
Google Scholar
Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell. 2005;123(4):593–605.
Article
CAS
PubMed
Google Scholar
Maltby VE, Martin BJ, Schulze JM, Johnson I, Hentrich T, Sharma A, et al. Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol. 2012;32(17):3479–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smolle M, Workman JL, Venkatesh S. reSETting chromatin during transcription elongation. Epigenetics. 2013;8(1):10–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brahma S, Henikoff S. RSC-associated subnucleosomes define MNase-sensitive promoters in yeast. Mol Cell. 2019;73(2):238.e3-249.e3.
Article
CAS
Google Scholar
Ramachandran S, Zentner GE, Henikoff S. Asymmetric nucleosomes flank promoters in the budding yeast genome. Genome Res. 2015;25(3):381–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cote J, Peterson CL, Workman JL. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci USA. 1998;95(9):4947–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yudkovsky N, Logie C, Hahn S, Peterson CL. Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev. 1999;13(18):2369–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutierrez JL, Chandy M, Carrozza MJ, Workman JL. Activation domains drive nucleosome eviction by SWI/SNF. EMBO J. 2007;26(3):730–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deckert J, Struhl K. Targeted recruitment of Rpd3 histone deacetylase represses transcription by inhibiting recruitment of Swi/Snf, SAGA, and TATA binding protein. Mol Cell Biol. 2002;22(18):6458–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwabish MA, Struhl K. The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol. 2007;27(20):6987–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carey M, Li B, Workman JL. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell. 2006;24(3):481–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spain MM, Ansari SA, Pathak R, Palumbo MJ, Morse RH, Govind CK. The RSC complex localizes to coding sequences to regulate Pol II and histone occupancy. Mol Cell. 2014;56(5):653–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allegra P, Sterner R, Clayton DF, Allfrey VG. Affinity chromatographic purification of nucleosomes containing transcriptionally active DNA sequences. J Mol Biol. 1987;196(2):379–88.
Article
CAS
PubMed
Google Scholar
Chan S, Attisano L, Lewis PN. Histone H3 thiol reactivity and acetyltransferases in chicken erythrocyte nuclei. J Biol Chem. 1988;263(30):15643–51.
Article
CAS
PubMed
Google Scholar
Schwabish MA, Struhl K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol Cell Biol. 2004;24(23):10111–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulaeva OI, Hsieh FK, Studitsky VM. RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones. Proc Natl Acad Sci USA. 2010;107(25):11325–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhee HS, Bataille AR, Zhang L, Pugh BF. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell. 2014;159(6):1377–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimura H, Cook PR. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol. 2001;153(7):1341–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol. 2008;4(11):e1000216.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol. 2008;6(3):e65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zawadzki KA, Morozov AV, Broach JR. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae. Mol Biol Cell. 2009;20(15):3503–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 2010;20(1):90–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui F, Cole HA, Clark DJ, Zhurkin VB. Transcriptional activation of yeast genes disrupts intragenic nucleosome phasing. Nucleic Acids Res. 2012;40(21):10753–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mason PB, Struhl K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol Cell Biol. 2003;23(22):8323–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaplan CD, Laprade L, Winston F. Transcription elongation factors repress transcription initiation from cryptic sites. Science. 2003;301(5636):1096–9.
Article
CAS
PubMed
Google Scholar
Simic R, Lindstrom DL, Tran HG, Roinick KL, Costa PJ, Johnson AD, et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 2003;22(8):1846–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nourani A, Robert F, Winston F. Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae. Mol Cell Biol. 2006;26(4):1496–509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bohm V, Hieb AR, Andrews AJ, Gansen A, Rocker A, Toth K, et al. Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res. 2011;39(8):3093–102.
Article
PubMed
CAS
Google Scholar
Park YJ, Dyer PN, Tremethick DJ, Luger K. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem. 2004;279(23):24274–82.
Article
CAS
PubMed
Google Scholar
Oohara I, Wada A. Spectroscopic studies on histone-DNA interactions. II. Three transitions in nucleosomes resolved by salt-titration. J Mol Biol. 1987;196(2):399–411.
Article
CAS
PubMed
Google Scholar
Oohara I, Wada A. Spectroscopic studies on histone-DNA interactions. I. The interaction of histone (H2A, H2B) dimer with DNA: DNA sequence dependence. J Mol Biol. 1987;196(2):389–97.
Article
CAS
PubMed
Google Scholar
Chen Y, Tokuda JM, Topping T, Sutton JL, Meisburger SP, Pabit SA, et al. Revealing transient structures of nucleosomes as DNA unwinds. Nucleic Acids Res. 2014;42(13):8767–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoch DA, Stratton JJ, Gloss LM. Protein-protein Forster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A. Z. J Mol Biol. 2007;371(4):971–88.
Article
CAS
PubMed
PubMed Central
Google Scholar