Schachter J, Storz J, Tarizzo ML, Bögel K. Chlamydiae as agents of human and animal diseases. Bull World Health Organ. 1973;49(5):443–9.
CAS
Google Scholar
Reyburn H. WHO Guidelines for the treatment of Chlamydia trachomatis. WHO. 2016;340(1):c2637.
Google Scholar
Menon S, Timms P, Allan JA, Alexander K, Rombauts L, Horner P, Keltz M, Hocking J, Huston WM. Human and pathogen factors associated with Chlamydia trachomatis-related infertility in women. Clin Microbiol Rev. 2015;28(4):969–85.
Article
CAS
Google Scholar
Burton MJ. Trachoma: an overview. Br Med Bull. 2007;84(1):99–116.
Article
Google Scholar
Fields KA, Hackstadt T. The chlamydial inclusion: escape from the endocytic pathway. Annu Rev Cell Dev Biol. 2002;18(1):221–45.
Article
CAS
Google Scholar
Dautry-Varsat A, Balana ME, Wyplosz B. Chlamydia–host cell interactions: recent advances on bacterial entry and intracellular development. Traffic. 2004;5(8):561–70.
Article
CAS
Google Scholar
Betts-Hampikian HJ, Fields KA. The chlamydial type III secretion mechanism: revealing cracks in a tough nut. Front Microbiol. 2010;1:114.
Article
Google Scholar
Hybiske K, Stephens RS. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci USA. 2007;104(27):11430–5.
Article
CAS
Google Scholar
Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol. 2005;5(2):149–61.
Article
CAS
Google Scholar
Alonso A, Garcia-del Portillo F. Hijacking of eukaryotic functions by intracellular bacterial pathogens. Int Microbiol. 2004;7(3):181–91.
Google Scholar
Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015;17(3):173–83.
Article
CAS
Google Scholar
Bierne H, Cossart P. When bacteria target the nucleus: the emerging family of nucleomodulins. Cell Microbiol. 2012;14(5):622–33.
Article
CAS
Google Scholar
Bierne H, Hamon M, Cossart P. Epigenetics and bacterial infections. Cold Spring Harb Perspect Med. 2012;2(12):a010272.
Article
CAS
Google Scholar
Hamon MA, Cossart P. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe. 2008;4(2):100–9.
Article
CAS
Google Scholar
Grabiec AM, Potempa J. Epigenetic regulation in bacterial infections: targeting histone deacetylases. Crit Rev Microbiol. 2018;44(3):336–50.
Article
CAS
Google Scholar
Humphrys MS, Creasy T, Sun Y, Shetty AC, Chibucos MC, Drabek EF, Fraser CM, Farooq U, Sengamalay N, Ott S, et al. Simultaneous transcriptional profiling of bacteria and their host cells. PLoS ONE. 2013;8(12):e80597.
Article
CAS
Google Scholar
Pennini ME, Perrinet S, Dautry-Varsat A, Subtil A. Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLOS Pathogens. 2010;6(7):e1000995.
Article
CAS
Google Scholar
Reyes A, Huber W. Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic acids Res. 2018;46(2):582–92.
Article
CAS
Google Scholar
Simon JM, Giresi PG, Davis IJ, Lieb JD. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc. 2012;7(2):256–67.
Article
CAS
Google Scholar
Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 2007;17(6):877–85.
Article
CAS
Google Scholar
Tan C, Hsia R-C, Shou H, Haggerty CL, Ness RB, Gaydos CA, Dean D, Scurlock AM, Wilson DP, Bavoil PM. Chlamydia trachomatis-infected patients display variable antibody profiles against the nine-member polymorphic membrane protein family. Infect Immunity. 2009;77(8):3218–26.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
Google Scholar
FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9.
Wysoker A, Tibbetts K, Fennell T: Picard tools. http://picardsourceforge.net 2017.
Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic acids research. 2014;42(Web Server issue):W187–91.
Article
CAS
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
Article
CAS
Google Scholar
Tsompana M, Buck MJ. Chromatin accessibility: a window into the genome. Epigenet Chromat. 2014;7(1):33.
Article
Google Scholar
A comprehensive collection of signal artifact blacklist regions in the human genome. ENCODE. hg19-blacklist-README.pdf. http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/.
Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature. 2012;481(7381):389–93.
Article
CAS
Google Scholar
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.
Article
CAS
Google Scholar
Wang J, Dai X, Berry LD, Cogan JD, Liu Q, Shyr Y. HACER: an atlas of human active enhancers to interpret regulatory variants. Nucleic Acids Res. 2018;47(D1):D106–12.
Article
CAS
Google Scholar
Gao T, He B, Liu S, Zhu H, Tan K, Qian J. EnhancerAtlas: a resource for enhancer annotation and analysis in 105 human cell/tissue types. Bioinformatics. 2016;32(23):3543–51.
CAS
Google Scholar
Khan A, Zhang X. dbSUPER: a database of super-enhancers in mouse and human genome. Nucleic Acids Res. 2016;44(D1):D164–71.
Article
CAS
Google Scholar
Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, Diekhans M, Furey TS, Harte RA, Hsu F, et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006;34(Database issue):D590–8.
Article
CAS
Google Scholar
Deevi S. R-package: modes. https://www.rdocumentationorg/packages/modes/versions/070. 2016.
Liu Y, Cao Z, Wang Y, Guo Y, Xu P, Yuan P, Liu Z, He Y, Wei W. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat Biotechnol. 2018;36(12):1203–10.
Article
CAS
Google Scholar
Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Cheneby J, Kulkarni SR, Tan G, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46(D1):D260–d266.
Article
CAS
Google Scholar
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome Biol. 2007;8(2):R24–R24.
Article
CAS
Google Scholar
Xiang M, Zhang W, Wen H, Mo L, Zhao Y, Zhan Y. Comparative transcriptome analysis of human conjunctiva between normal and conjunctivochalasis persons by RNA sequencing. Exp Eye Res. 2019;184:38–47.
Article
CAS
Google Scholar
Zadora PK, Chumduri C, Imami K, Berger H, Mi Y, Selbach M, Meyer TF, Gurumurthy RK. Integrated phosphoproteome and transcriptome analysis reveals chlamydia-induced epithelial-to-mesenchymal transition in host cells. Cell Rep. 2019;26(5):1286–302.
Article
CAS
Google Scholar
Ohmer M, Tzivelekidis T, Niedenfuhr N, Volceanov-Hahn L, Barth S, Vier J, Borries M, Busch H, Kook L, Biniossek ML, et al. Infection of HeLa cells with Chlamydia trachomatis inhibits protein synthesis and causes multiple changes to host cell pathways. Cell Microbiol. 2019;21(4):e12993.
Article
CAS
Google Scholar
Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic acids Res. 2016;44(D1):D7–19.
Article
CAS
Google Scholar
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2016;45(D1):D158–69.
Article
CAS
Google Scholar
Hoffmann R. A wiki for the life sciences where authorship matters. Nat Genet. 2008;40(9):1047–51.
Article
CAS
Google Scholar
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinform. 2016;54(1):1.30.31–31.30.33.
Article
Google Scholar
Consortium GO. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32(1):D258–61.
Article
CAS
Google Scholar
Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP, Panhuis TM, Mieczkowski P, Secchi A, Bosco D, et al. A map of open chromatin in human pancreatic islets. Nat Genet. 2010;42(3):255–9.
Article
CAS
Google Scholar
He Y, Carrillo JA, Luo J, Ding Y, Tian F, Davidson I, Song J. Genome-wide mapping of DNase I hypersensitive sites and association analysis with gene expression in MSB1 cells. Front Genet. 2014;5:308.
Google Scholar
Gregory TR. Synergy between sequence and size in large-scale genomics. Nat Rev Genet. 2005;6(9):699–708.
Article
CAS
Google Scholar
Ladomersky E, Khan A, Shanbhag V, Cavet JS, Chan J, Weisman GA, Petris MJ. Host and pathogen copper-transporting P-Type ATPases function antagonistically during salmonella infection. Infect Immunity. 2017;85(9):e00317–51.
Article
Google Scholar
Hodgkinson V, Petris MJ. Copper homeostasis at the host-pathogen interface. J Biol Chem. 2012;287(17):13549–55.
Article
CAS
Google Scholar
Parnas O, Jovanovic M, Eisenhaure Thomas M, Herbst Rebecca H, Dixit A, Ye Chun J, Przybylski D, Platt Randall J, Tirosh I, Sanjana Neville E, et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell. 2015;162(3):675–86.
Article
CAS
Google Scholar
Seaman MNJ. The retromer complex—endosomal protein recycling and beyond. J Cell Sci. 2012;125(20):4693–702.
Article
CAS
Google Scholar
Elwell C, Engel J. Emerging Role of Retromer in Modulating Pathogen Growth. Trends in microbiology. 2018;26(9):769–80.
Article
CAS
Google Scholar
Paul B, Kim HS, Kerr MC, Huston WM, Teasdale RD, Collins BM. Structural basis for the hijacking of endosomal sorting nexin proteins by Chlamydia trachomatis. eLife. 2017;6.
Xu J, Zhang L, Ye Y, Shan Y, Wan C, Wang J, Pei D, Shu X, Liu J. SNX16 Regulates the recycling of E-cadherin through a unique mechanism of coordinated membrane and cargo binding. Structure. 2017;25(8):1251–63.
Article
CAS
Google Scholar
Schneider MR, Kolligs FT. E-cadherin’s role in development, tissue homeostasis and disease: insights from mouse models: tissue-specific inactivation of the adhesion protein E-cadherin in mice reveals its functions in health and disease. BioEssays. 2015;37(3):294–304.
Article
CAS
Google Scholar
Rajic J, Inic-Kanada A, Stein E, Dinic S, Schuerer N, Uskokovic A, Ghasemian E, Mihailovic M, Vidakovic M, Grdovic N, et al. Chlamydia trachomatis infection is associated with E-cadherin promoter methylation, downregulation of E-cadherin expression, and increased expression of fibronectin and alpha-SMA-implications for epithelial-mesenchymal transition. Front Cell Infect Microbiol. 2017;7:253.
Article
CAS
Google Scholar
Boehm M, Simson D, Escher U, Schmidt AM, Bereswill S, Tegtmeyer N, Backert S, Heimesaat MM. Function of serine protease HtrA in the lifecycle of the foodborne pathogen Campylobacter jejuni. Eur J Microbiol Immunol. 2018;8(3):70–7.
CAS
Google Scholar
Backert S, Schmidt TP, Harrer A, Wessler S. Exploiting the gastric epithelial barrier: helicobacter pylori’s attack on tight and adherens junctions. Curr Topics Microbiol Immunol. 2017;400:195–226.
CAS
Google Scholar
Wu X, Lei L, Gong S, Chen D, Flores R, Zhong G. The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol. BMC Microbiol. 2011;11:87.
Article
CAS
Google Scholar
Gloeckl S, Ong VA, Patel P, Tyndall JDA, Timms P, Beagley KW, Allan JA, Armitage CW, Turnbull L, Whitchurch CB, et al. Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to Chlamydia trachomatis. Mol Microbiol. 2013;89(4):676–89.
Article
CAS
Google Scholar
Topham MK, Prescott SM. Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem. 1999;274(17):11447–50.
Article
CAS
Google Scholar
Yao J, Cherian PT, Frank MW, Rock CO. Chlamydia trachomatis relies on autonomous phospholipid synthesis for membrane biogenesis. J Biol Chem. 2015;290(31):18874–88.
Article
CAS
Google Scholar
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA. Super-enhancers in the control of cell identity and disease. Cell. 2013;155(4):934–47.
Article
CAS
Google Scholar
Bianchi M, Crinelli R, Arbore V, Magnani M. Induction of ubiquitin C (UBC) gene transcription is mediated by HSF1: role of proteotoxic and oxidative stress. FEBS Open Biol. 2018;8(9):1471–85.
Article
CAS
Google Scholar
Lou Y, Hu M, Mao L, Zheng Y, Jin F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success. FASEB J. 2017;31(2):447–56.
Article
CAS
Google Scholar
Bergsson G, Arnfinnsson J, Karlsson SM, Steingrímsson Ó, Thormar H. In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1998;42(9):2290–4.
Article
CAS
Google Scholar
Yao J, Dodson VJ, Frank MW, Rock CO. Chlamydia trachomatis scavenges host fatty acids for phospholipid synthesis via an acyl-acyl carrier protein synthetase. J Biol Chem. 2015;290(36):22163–73.
Article
CAS
Google Scholar
Duval M, Cossart P, Lebreton A. Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk. Semin Cell Dev Biol. 2017;65:11–9.
Article
CAS
Google Scholar
Ortega ÁD, Quereda JJ, Pucciarelli MG, García-del Portillo F. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells. Front Cell Infect Microbiol. 2014;4(162).
Cocchiaro JL, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci. 2008;105(27):9379–84.
Article
CAS
Google Scholar
Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962–71.
Article
CAS
Google Scholar
Shao W, Halachmi S, Brown M. ERAP140, a conserved tissue-specific nuclear receptor coactivator. Mol Cell Biol. 2002;22(10):3358–72.
Article
CAS
Google Scholar
Gabler S, Schutt H, Groitl P, Wolf H, Shenk T, Dobner T. E1B 55-kilodalton-associated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol. 1998;72(10):7960–71.
Article
CAS
Google Scholar
Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science. 2009;325(5945):1254–7.
Article
CAS
Google Scholar
Hu YF, Luscher B, Admon A, Mermod N, Tjian R. Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes Dev. 1990;4(10):1741–52.
Article
CAS
Google Scholar
Yordy JS, Li R, Sementchenko VI, Pei H, Muise-Helmericks RC, Watson DK. SP100 expression modulates ETS1 transcriptional activity and inhibits cell invasion. Oncogene. 2004;23(39):6654–65.
Article
CAS
Google Scholar
Wasylyk C, Schlumberger SE, Criqui-Filipe P, Wasylyk B. Sp100 interacts with ETS-1 and stimulates its transcriptional activity. Mol Cell Biol. 2002;22(8):2687–702.
Article
CAS
Google Scholar
Guo B, Godzik A, Reed JC. Bcl-G, a novel pro-apoptotic member of the Bcl-2 family. J Biol Chem. 2001;276(4):2780–5.
Article
CAS
Google Scholar
Baer M, Nilsen TW, Costigan C, Altman S. Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P. Nucleic Acids Res. 1990;18(1):97–103.
Article
CAS
Google Scholar
Egloff S, Studniarek C, Kiss T. 7SK small nuclear RNA, a multifunctional transcriptional regulatory RNA with gene-specific features. Transcription. 2018;9(2):95–101.
Article
CAS
Google Scholar
Ullu E, Weiner AM. Human genes and pseudogenes for the 7SL RNA component of signal recognition particle. The EMBO journal. 1984;3(13):3303–10.
Article
CAS
Google Scholar
Hermanns P, Bertuch AA, Bertin TK, Dawson B, Schmitt ME, Shaw C, Zabel B, Lee B. Consequences of mutations in the non-coding RMRP RNA in cartilage-hair hypoplasia. Hum Mol Genet. 2005;14(23):3723–40.
Article
CAS
Google Scholar
Ho J, Moyes DL, Tavassoli M, Naglik JR. The role of ErbB receptors in infection. Trends Microbiol. 2017;25(11):942–52.
Article
CAS
Google Scholar
Mölleken K, Becker E, Hegemann JH. The Chlamydia pneumoniae invasin protein Pmp21 recruits the EGF receptor for host cell entry. PLOS Pathogens. 2013;9(4):e1003325.
Article
CAS
Google Scholar
Paes W, Dowle A, Coldwell J, Leech A, Ganderton T, Brzozowski A. The Chlamydia trachomatis PmpD adhesin forms higher order structures through disulphide-mediated covalent interactions. PLoS ONE. 2018;13(6):e0198662.
Article
CAS
Google Scholar
Patel AL, Chen X, Wood ST, Stuart ES, Arcaro KF, Molina DP, Petrovic S, Furdui CM, Tsang AW. Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development. BMC Microbiol. 2014;14:277.
Article
CAS
Google Scholar
Wallis J, Moore R, Smith P, Walsh FS. Cadherins: a review of structure and function. In: Biomembranes: a Multi-volume treatise. Lee AG, editor. vol. 3: JAI; 1996; p. 127–157.
Igietseme JU, Omosun Y, Nagy T, Stuchlik O, Reed MS, He Q, Partin J, Joseph K, Ellerson D, George Z et al. Molecular pathogenesis of chlamydia disease complications: epithelial-mesenchymal transition and fibrosis. Infect Immun. 2018;86(1).
van Ooij C, Kalman L, Van I, Nishijima M, Hanada K, Mostov K, Engel JN. Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis. Cell Microbiol. 2000;2(6):627–37.
Article
Google Scholar
Elwell CA, Engel JN. Lipid acquisition by intracellular Chlamydiae. Cell Microbiol. 2012;14(7):1010–8.
Article
CAS
Google Scholar
Miyazawa K, Miyazono K. Regulation of TGF-beta family signaling by inhibitory smads. Cold Spring Harb Perspect Biol. 2017;9(3).
Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R, Ichiyama K, Takahashi R, Asakawa M, Muto G, Mori T, et al. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J Immunol. 2010;185(2):842–55.
Article
CAS
Google Scholar
Attisano L, Tuen Lee-Hoeflich S. The Smads. Genome Biol. 2001;2(8):reviews3010.3011.
Grieshaber SS, Grieshaber NA, Hackstadt T. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. J Cell Sci. 2003;116(Pt 18):3793–802.
Article
CAS
Google Scholar
Zhou Y, Zhu Y. Diversity of bacterial manipulation of the host ubiquitin pathways. Cell Microbiol. 2015;17(1):26–34.
Article
CAS
Google Scholar
Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature. 2013;501:512.
Article
CAS
Google Scholar
Haldar AK, Piro AS, Finethy R, Espenschied ST, Brown HE, Giebel AM, Frickel E-M, Nelson DE, Coers J. Chlamydia trachomatis is resistant to inclusion ubiquitination and associated host defense in gamma interferon-primed human epithelial cells. mBio. 2016;7(6):e01416–7.
Article
Google Scholar
Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL, Starnbach MN. Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol. 2006;61(1):142–50.
Article
CAS
Google Scholar
Di Paolo Nelson C, Doronin K, Baldwin Lisa K, Papayannopoulou T, Shayakhmetov Dmitry M. The transcription factor IRF3 triggers “Defensive Suicide” necrosis in response to viral and bacterial pathogens. Cell Rep. 2013;3(6):1840–6.
Article
CAS
Google Scholar
Gyorke CE, Nagarajan U. Interferon-independent protection by interferon regulatory factor 3. J Immunol. 2018;200(1 Supplement):114.125.
Google Scholar
Sixt BS, Bastidas RJ, Finethy R, Baxter RM, Carpenter VK, Kroemer G, Coers J, Valdivia RH. The Chlamydia trachomatis inclusion membrane protein CpoS counteracts STING-mediated cellular surveillance and suicide programs. Cell Host Microbe. 2017;21(1):113–21.
Article
CAS
Google Scholar
Tan NY, Khachigian LM. Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol. 2009;29(10):2483–8.
Article
CAS
Google Scholar
Deniaud E, Baguet J, Chalard R, Blanquier B, Brinza L, Meunier J, Michallet M-C, Laugraud A, Ah-Soon C, Wierinckx A, et al. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLOS ONE. 2009;4(9):e7035.
Article
CAS
Google Scholar
Simmen RCM, Heard ME, Simmen AM, Montales MTM, Marji M, Scanlon S, Pabona JMP. The Krüppel-like factors in female reproductive system pathologies. J Mol Endocrinol. 2015;54(2):R89–101.
Article
CAS
Google Scholar
Dong JT, Chen C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci. 2009;66(16):2691–706.
Article
CAS
Google Scholar
Bieker JJ. Kruppel-like factors: three fingers in many pies. J Biol Chem. 2001;276(37):34355–8.
Article
CAS
Google Scholar
Chiambaretta F, Nakamura H, De Graeve F, Sakai H, Marceau G, Maruyama Y, Rigal D, Dastugue B, Sugar J, Yue BY, et al. Kruppel-like factor 6 (KLF6) affects the promoter activity of the alpha1-proteinase inhibitor gene. Investig Ophthalmol Visual Sci. 2006;47(2):582–90.
Article
Google Scholar
Pearson RC, Funnell AP, Crossley M. The mammalian zinc finger transcription factor Kruppel-like factor 3 (KLF3/BKLF). IUBMB Life. 2011;63(2):86–93.
CAS
Google Scholar
Swamynathan SK. Krüppel-like factors: three fingers in control. Hum Genomics. 2010;4(4):263–70.
Article
CAS
Google Scholar
Sun J, Wang B, Liu Y, Zhang L, Ma A, Yang Z, Ji Y, Liu Y. Transcription factor KLF9 suppresses the growth of hepatocellular carcinoma cells in vivo and positively regulates p53 expression. Cancer Lett. 2014;355(1):25–33.
Article
CAS
Google Scholar
Subramaniam M, Hawse JR, Rajamannan NM, Ingle JN, Spelsberg TC. Functional role of KLF10 in multiple disease processes. BioFactors. 2010;36(1):8–18.
CAS
Google Scholar
de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(Pt 3):737–49.
Article
Google Scholar
Cowley SM, Iritani BM, Mendrysa SM, Xu T, Cheng PF, Yada J, Liggitt HD, Eisenman RN. The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol Cell Biol. 2005;25(16):6990–7004.
Article
CAS
Google Scholar