Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703–8.
CAS
PubMed
Google Scholar
Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 2016;32:42–56.
CAS
PubMed
Google Scholar
Kebede AF, Nieborak A, Shahidian LZ, Le Gras S, Richter F, Gómez DA, et al. Histone propionylation is a mark of active chromatin. Nat Struct Mol Biol. 2017;24(12):1048–56.
CAS
PubMed
Google Scholar
Farrelly LA, Thompson RE, Zhao S, Lepack AE, Lyu Y, Bhanu NV, et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature. 2019;567(7749):535–9.
CAS
PubMed
PubMed Central
Google Scholar
Bao X, Liu Z, Zhang W, Gladysz K, Fung YME, Tian G, et al. Glutarylation of histone H4 lysine 91 regulates chromatin dynamics. Mol Cell. 2019;76(4):660–75.
CAS
PubMed
Google Scholar
Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2017;18:90–101.
CAS
PubMed
Google Scholar
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.
CAS
PubMed
PubMed Central
Google Scholar
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.
CAS
PubMed
Google Scholar
Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 2013;20:259–66.
CAS
PubMed
Google Scholar
Woo H, Ha SD, Lee SB, Buratowski S, Kim TS. Modulation of gene expression dynamics by co-transcriptional histone methylations. Exp Mol Med. 2017;49:e326.
CAS
PubMed
PubMed Central
Google Scholar
Hershko A, Heller H, Eytan E, Kaklij G, Rose IA. Role of the α-amino group of protein in ubiquitin-mediated protein breakdown. Proc Natl Acad Sci USA. 1984;81(22):7021–5.
CAS
PubMed
Google Scholar
Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA. 1964;51:786–94.
CAS
PubMed
Google Scholar
Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 2015;16:258–64.
CAS
PubMed
Google Scholar
Tessarz P, Santos-Rosa H, Robson SC, Sylvestersen KB, Nelson CJ, Nielsen ML, et al. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature. 2014;505(7484):564–8.
CAS
PubMed
Google Scholar
Blanc RS, Richard S. Arginine methylation: the coming of age. Mol Cell. 2017;65(1):8–24.
CAS
PubMed
Google Scholar
Guccione E, Richard S. The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol. 2019;20(10):642–57.
CAS
PubMed
Google Scholar
Hole K, van Damme P, Dalva M, Aksnes H, Glomnes N, Varhaug JE, et al. The human N-Alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PLoS ONE. 2011;6(9):e24713.
CAS
PubMed
PubMed Central
Google Scholar
Tweedie-Cullen RY, Brunner AM, Grossmann J, Mohanna S, Sichau D, Nanni P, et al. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS ONE. 2012;7(5):e36980.
CAS
PubMed
PubMed Central
Google Scholar
Wang T, Holt MV, Young NL. Early butyrate induced acetylation of histone H4 is proteoform specific and linked to methylation state. Epigenetics. 2018;13(5):519–35.
PubMed
PubMed Central
Google Scholar
Wang T, Holt MV, Young NL. The histone H4 proteoform dynamics in response to SUV4-20 inhibition reveals single molecule mechanisms of inhibitor resistance. Epigenet Chromatin. 2018;11(1):29.
Google Scholar
Aksnes H, Ree R, Arnesen T. Co-translational, post-translational, and non-catalytic roles of N-terminal acetyltransferases. Mol Cell. 2019;73:1097–114.
CAS
PubMed
PubMed Central
Google Scholar
Drazic A, Aksnes H, Marie M, Boczkowska M, Varland S, Timmerman E, et al. NAA80 is actin’s N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility. Proc Natl Acad Sci USA. 2018;115(17):4399–404.
CAS
PubMed
Google Scholar
Magin RS, Liszczak GP, Marmorstein R. The molecular basis for Histone H4- and H2A-specific amino-terminal acetylation by NatD. Structure. 2015;23(2):332–41.
CAS
PubMed
PubMed Central
Google Scholar
Dinh TV, Bienvenut WV, Linster E, Feldman-Salit A, Jung VA, Meinnel T, et al. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling. Proteomics. 2015;15(14):2426–35.
CAS
PubMed
PubMed Central
Google Scholar
Schiza V, Molina-Serrano D, Kyriakou D, Hadjiantoniou A, Kirmizis A. N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genet. 2013;9(9):e1003805.
CAS
PubMed
PubMed Central
Google Scholar
Molina-Serrano D, Schiza V, Demosthenous C, Stavrou E, Oppelt J, Kyriakou D, et al. Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity. EMBO Rep. 2016;17(12):1829–43.
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Zhou D, Zhang F, Tu Y, Xia Y, Wang H, et al. Liver Patt1 deficiency protects male mice from age-associated but not high-fat diet-induced hepatic steatosis. J Lipid Res. 2012;53(3):358–67.
CAS
PubMed
PubMed Central
Google Scholar
Ju J, Chen A, Deng Y, Liu M, Wang Y, Wang Y, et al. NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate Slug expression. Nat Commun. 2017;8(1):1–4.
Google Scholar
Pavlou D, Kirmizis A. Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway. Apoptosis. 2016;21(3):298–311.
CAS
PubMed
Google Scholar
Demetriadou C, Pavlou D, Mpekris F, Achilleos C, Stylianopoulos T, Zaravinos A, et al. NAA40 contributes to colorectal cancer growth by controlling PRMT5 expression. Cell Death Dis. 2019;10(3):1–4.
CAS
Google Scholar
Liu Z, Liu Y, Wang H, Ge X, Jin Q, Ding G, et al. Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells. Int J Biochem Cell Biol. 2009;41(12):2528–37.
CAS
PubMed
Google Scholar
Ye C, Tu BP. Sink into the epigenome: histones as repositories that influence cellular metabolism. Trends Endocrinol Metab. 2018;29:626–37.
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Pastor B, Cosentino C, Mostoslavsky R. A tale of metabolites: the cross-talk between chromatin and energy metabolism. Cancer Discov. 2013;3(5):497–501.
CAS
PubMed
PubMed Central
Google Scholar
Shurubor YI, Aurelio M, Clark-Matott J, Isakova EP, Deryabina YI, Beal MF, et al. Determination of coenzyme A and acetyl-coenzyme A in biological samples using HPLC with UV detection. Molecules. 2017;22(9):1388.
PubMed Central
Google Scholar
Rall SC, Cole RD. Amino acid sequence and sequence variability of the amino-terminal regions of lysine-rich histones. J Biol Chem. 1971;246(23):7175–90.
CAS
PubMed
Google Scholar
Garcia BA, Busby SA, Barber CM, Shabanowitz J, Allis CD, Hunt DF. Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry. J Proteome Res. 2004;3(6):1219–27.
CAS
PubMed
Google Scholar
Wisniewski JR, Zougman A, Krüger S, Mann M. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol Cell Proteomics. 2007;6(1):72–87.
CAS
PubMed
Google Scholar
Lindner H, Sarg B, Hoertnagl B, Helliger W. The microheterogeneity of the mammalian H10 histone. Evidence for an age-dependent deamidation. J Biol Chem. 1998;273(21):13324–30.
CAS
PubMed
Google Scholar
Lindner H, Sarg B, Grunicke H, Helliger W. Age-dependent deamidation of H1°histones in chromatin of mammalian tissues. J Cancer Res Clin Oncol. 1999;125(3–4):182–6.
CAS
PubMed
Google Scholar
Song OK, Wang X, Waterborg JH, Sternglanz R. An Nα-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J Biol Chem. 2003;278(40):38109–12.
CAS
PubMed
Google Scholar
Mullen JR, Kayne PS, Moerschell RP, Tsunasawa S, Gribskov M, Colavito-Shepanski M, et al. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 1989;8(7):2067–75.
CAS
PubMed
PubMed Central
Google Scholar
Webb KJ, Lipson RS, Al-Hadid Q, Whitelegge JP, Clarke SG. Identification of protein n-terminal methyltransferases in yeast and humans. Biochemistry. 2010;49(25):5225–35.
CAS
PubMed
PubMed Central
Google Scholar
Petkowski JJ, Schaner Tooley CE, Anderson LC, Shumilin IA, Balsbaugh JL, Shabanowitz J, et al. Substrate specificity of mammalian N-terminal α-amino methyltransferase NRMT. Biochemistry. 2012;51(30):5942–50.
CAS
PubMed
PubMed Central
Google Scholar
Sathyan KM, Fachinetti D, Foltz DR. α-amino trimethylation of CENP-A by NRMT is required for full recruitment of the centromere. Nat Commun. 2017;7:8.
Google Scholar
Wu R, Yue Y, Zheng X, Li H. Molecular basis for histone N-terminal methylation by NRMT1. Genes Dev. 2015;29(22):2337–42.
CAS
PubMed
PubMed Central
Google Scholar
Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–57.
CAS
PubMed
PubMed Central
Google Scholar
Stellfox ME, Bailey AO, Foltz DR. Putting CENP-A in its place. Cell Mol Life Sci. 2013;70:387–406.
CAS
PubMed
Google Scholar
Foltz DR, Jansen LET, Black BE, Bailey AO, Yates JR, Cleveland DW. The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol. 2006;8(5):458–69.
CAS
PubMed
Google Scholar
Bailey AO, Panchenko T, Sathyan KM, Petkowski JJ, Pai PJ, Bai DL, et al. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci USA. 2013;110(29):11827–32.
CAS
PubMed
Google Scholar
Srivastava S, Foltz DR. Posttranslational modifications of CENP-A: marks of distinction. Chromosoma. 2018;127:279–90.
CAS
PubMed
PubMed Central
Google Scholar
Desrosiers R, Tanguay RM. Methylation of Drosophila histones at proline, lysine, and arginine residues during heat shock. J Biol Chem. 1988;263(10):4686–92.
CAS
PubMed
Google Scholar
Villar-Garea A, Forne I, Vetter I, Kremmer E, Thomae A, Imhof A. Developmental regulation of N-terminal H2B methylation in Drosophila melanogaster. Nucleic Acids Res. 2012;40(4):1536–49.
CAS
PubMed
Google Scholar
Nomoto M, Kyogoku Y, Iwai K. N-trimethylalanine, a novel blocked N-terminal residue of Tetrahymena histone H2B. J Biochem. 1982;92(5):1675–8.
CAS
PubMed
Google Scholar
Bergmüller E, Gehrig PM, Gruissem W. Characterization of post-translational modifications of histone H2B-variants isolated from Arabidopsis thaliana. J Proteome Res. 2007;6(9):3655–68.
PubMed
Google Scholar
Dawson MA. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science. 2017;355:1147–52.
CAS
PubMed
Google Scholar
Demetriadou C, Kirmizis A. Histone acetyltransferases in cancer: guardians or hazards? Crit Rev Oncog. 2017;22(3–4):195–218.
PubMed
Google Scholar
Nacev BA, Feng L, Bagert JD, Lemiesz AE, Gao JJ, Soshnev AA, et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature. 2019;567(7749):473–8.
CAS
PubMed
PubMed Central
Google Scholar
Foyn H, Jones JE, Lewallen D, Narawane R, Varhaug JE, Thompson PR, et al. Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors. ACS Chem Biol. 2013;8(6):1121–7.
CAS
PubMed
Google Scholar
Shields KM, Tooley JG, Petkowski JJ, Wilkey DW, Garbett NC, Merchant ML, et al. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation. Protein Sci. 2017;26(8):1639–52.
CAS
PubMed
PubMed Central
Google Scholar
Schaner Tooley CE, Petkowski JJ, Muratore-Schroeder TL, Balsbaugh JL, Shabanowitz J, Sabat M, et al. NRMT is an α-N-methyltransferase that methylates RCC1 and retinoblastoma protein. Nature. 2010;466(7310):1125–8.
CAS
Google Scholar
Bonsignore LA, Tooley JG, Van Hoose PM, Wang E, Cheng A, Cole MP, et al. NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging. Mech Ageing Dev. 2015;1(146–148):42–52.
Google Scholar
Zhang G, Richardson SL, Mao Y, Huang R. Design, synthesis, and kinetic analysis of potent protein N-terminal methyltransferase 1 inhibitors. Org Biomol Chem. 2015;13(14):4149–54.
CAS
PubMed
PubMed Central
Google Scholar
Chen D, Dong G, Noinaj N, Huang R. Discovery of disubstrate inhibitors for protein N-terminal methyltransferase 1. J Med Chem. 2019;62(7):3773–9.
CAS
PubMed
PubMed Central
Google Scholar
Huang R. Chemical biology of protein N-terminal methyltransferases. ChemBioChem. 2019;20:976–84.
CAS
PubMed
PubMed Central
Google Scholar
Molina-Serrano D, Schiza V, Kirmizis A. Cross-talk among epigenetic modifications: lessons from histone arginine methylation. Biochem Soc Trans. 2013;41:751–9.
CAS
PubMed
Google Scholar
Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.
CAS
Google Scholar
Marino G, Eckhard U, Overall CM. Protein termini and their modifications revealed by positional proteomics. ACS Chem Biol. 2015;10(8):1754–64.
CAS
PubMed
Google Scholar
Sarg B, Faserl K, Kremser L, Halfinger B, Sebastiano R, Lindner HH. Comparing and combining capillary electrophoresis electrospray ionization mass spectrometry and nano-liquid chromatography electrospray ionization mass spectrometry for the characterization of post-translationally modified histones. Mol Cell Proteomics. 2013;12(9):2640–56.
CAS
PubMed
PubMed Central
Google Scholar
Sarg B, Lopez R, Lindner H, Ponte I, Suau P, Roque A. Identification of novel post-translational modifications in linker histones from chicken erythrocytes. J Proteomics. 2015;113:162–77.
CAS
PubMed
Google Scholar