Ulianov SV, Gavrilov AA, Razin SV. Nuclear compartments, genome folding, and enhancer–promoter communication. Int Rev Cell Mol Biol. 2015;315:183–244.
Article
PubMed
Google Scholar
Vernimmen D, Bickmore WA. The hierarchy of transcriptional activation: from enhancer to promoter. Trends Genet. 2015;31:696–708.
Article
CAS
PubMed
Google Scholar
Dekker J, Mirny L. The 3D genome as moderator of chromosomal communication. Cell. 2016;164:1110–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.
Article
CAS
PubMed
Google Scholar
Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47:598–606.
Article
CAS
PubMed
Google Scholar
Remeseiro S, Hornblad A, Spitz F. Gene regulation during development in the light of topologically associating domains. Wiley Interdiscip Rev Dev Biol. 2015;5:169–85.
Article
PubMed
Google Scholar
Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell. 2015;161:1012–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valton AL, Dekker J. TAD disruption as oncogenic driver. Curr Opin Genet Dev. 2016;36:34–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W, et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 2014;24:390–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Razin SV, Ulianov SV, Ioudinkova ES, Gushchanskaya ES, Gavrilov AA, Iarovaia OV. Domains of alpha- and beta-globin genes in the context of the structural-functional organization of the eukaryotic genome. Biochemistry (Mosc). 2012;77:1409–23.
Article
CAS
Google Scholar
Vernimmen D. Uncovering enhancer functions using the alpha-globin locus. PLoS Genet. 2014;10:e1004668.
Article
PubMed
PubMed Central
Google Scholar
Hughes JR, Cheng JF, Ventress N, Prabhakar S, Clark K, Anguita E, et al. Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences. Proc Natl Acad Sci USA. 2005;102:9830–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higgs DR, Wood WG, Jarman AP, Sharpe J, Lida J, Pretorius I-M, et al. A major positive regulatory region located far upstream of the human α-globin gene locus. Genes Dev. 1990;4:1588–601.
Article
CAS
PubMed
Google Scholar
Higgs DR, Vernimmen D, Wood B. Long-range regulation of alpha-globin gene expression. Adv Genet. 2008;61:143–73.
CAS
PubMed
Google Scholar
Craddock CF, Vyas P, Sharpe JA, Ayyub H, Wood WG, Higgs DR. Contrasting effects of alpha and beta globin regulatory elements on chromatin structure may be related to their different chromosomal environments. EMBO J. 1995;14:1718–26.
CAS
PubMed
PubMed Central
Google Scholar
Mahajan MC, Karmakar S, Newburger PE, Krause DS, Weissman SM. Dynamics of alpha-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34(+) cells in culture. Exp Hematol. 2009;37:1143–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anguita E, Johnson CA, Wood WG, Turner BM, Higgs DR. Identification of a conserved erythroid specific domain of histone acetylation across the alpha-globin gene cluster. Proc Natl Acad Sci USA. 2001;98:12114–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vernimmen D, Marques-Kranc F, Sharpe JA, Sloane-Stanley JA, Wood WG, Wallace HA, et al. Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS -40). Blood. 2009;114:4253–60.
Article
CAS
PubMed
Google Scholar
Vernimmen D, De Gobbi M, Sloane-Stanley JA, Wood WG, Higgs DR. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 2007;26:2041–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lower KM, Hughes JR, De Gobbi M, Henderson S, Viprakasit V, Fisher C, et al. Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition. Proc Natl Acad Sci USA. 2009;106:21771–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bau D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB, et al. The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol. 2011;18:107–14.
Article
CAS
PubMed
Google Scholar
Zhou GL, Xin L, Song W, Di LJ, Liu G, Wu XS, et al. Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol. 2006;26:5096–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Therwath A, Mengod G, Scherrer K. Altered globin gene transcription pattern and the presence of a 7–8 kb alpha A globin gene transcript in avian erythroblastosis virus-transformed cells. EMBO J. 1984;3:491–5.
CAS
PubMed
PubMed Central
Google Scholar
Razin SV, Petrov P, Hancock R. Precise localization of the alpha-globin gene cluster within one of the 20- to 300-kilobase DNA fragment released by cleavage of chicken chromosomal DNA at topoisomerase II sites in vivo: evidence that the fragments are DNA loops or domains. Proc Natl Acad Sci USA. 1991;88:8515–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valdes-Quezada C, Arriaga-Canon C, Fonseca-Guzman Y, Guerrero G, Recillas-Targa F. CTCF demarcates chicken embryonic alpha-globin gene autonomous silencing and contributes to adult stage-specific gene expression. Epigenetics. 2013;8:827–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gavrilov AA, Razin SV. Spatial configuration of the chicken α-globin gene domain: immature and active chromatin hubs. Nucleic Acids Res. 2008;36:4629–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gasaryan KG. Genome activity and gene expression in avian erythroid cells. Int Rev Cytol. 1982;74:95–126.
Article
CAS
PubMed
Google Scholar
Philonenko ES, Klochkov DB, Borunova VV, Gavrilov AA, Razin SV, Iarovaia OV. TMEM8—a non-globin gene entrapped in the globin web. Nucleic Acids Res. 2009;37:7394–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broders F, Zahraoui A, Scherrer K. The chicken alpha-globin gene domain is transcribed into a 17-kilobase polycistronic RNA. Proc Natl Acad Sci USA. 1990;87:503–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Razin SV, Rynditch A, Borunova V, Ioudinkova E, Smalko V, Scherrer K. The 33 kb transcript of the chicken alpha-globin gene domain is part of the nuclear matrix. J Cell Biochem. 2004;92:445–57.
Article
CAS
PubMed
Google Scholar
Arriaga-Canon C, Fonseca-Guzman Y, Valdes-Quezada C, Arzate-Mejia R, Guerrero G, Recillas-Targa F. A long non-coding RNA promotes full activation of adult gene expression in the chicken alpha-globin domain. Epigenetics. 2014;9:173–81.
Article
CAS
PubMed
Google Scholar
Razin SV, Vassetzky JYS, Kvartskhava AI, Grinenko NF, Georgiev GP. Transcriptional enhancer in the vicinity of replication origin within the 5′ region of the chicken alpha-globin gene domain. J Mol Biol. 1991;217:595–8.
Article
CAS
PubMed
Google Scholar
Razin SV, De Moura Gallo CV, Scherrer K. Characterization of the chromatin structure in the upstream area of the chicken alpha-globin gene domain. Mol Gen Genet. 1994;242:649–52.
Article
CAS
PubMed
Google Scholar
Knezetic J, Felsenfeld G. Identification and characterization of a chicken alpha-globin enhancer. Mol Cell Biol. 1989;9:893–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higgs DR, Vernimmen D, De Gobbi M, Anguita E, Hughes J, Buckle V, et al. How transcriptional and epigenetic programmes are played out on an individual mammalian gene cluster during lineage commitment and differentiation. Biochemical Society Symposia. 2006. pp. 11–22
Dostie J, Dekker J. Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc. 2007;2:988–1002.
Article
CAS
PubMed
Google Scholar
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods. 2012;9:999–1003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gushchanskaya ES, Artemov AV, Ulyanov SV, Logacheva MD, Penin AA, Kotova ES, et al. The clustering of CpG islands may constitute an important determinant of the 3D organization of interphase chromosomes. Epigenetics. 2014;9:951–63.
Article
PubMed
PubMed Central
Google Scholar
Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, et al. Determining the architectures of macromolecular assemblies. Nature. 2007;450:683–94.
Article
CAS
PubMed
Google Scholar
Filippova D, Patro R, Duggal G, Kingsford C. Identification of alternative topological domains in chromatin. Algorithms Mol Biol. 2014;9:14.
Article
PubMed
PubMed Central
Google Scholar
Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett A. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS. 2015;112(47):E6456–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res. 2014;24(11):1854–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flint J, Tufarelli C, Peden J, Clark K, Daniels RJ, Hardison R, et al. Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster. Hum Mol Genet. 2001;10:371–82.
Article
CAS
PubMed
Google Scholar
Vyas P, Vickers MA, Simmons DL, Ayyub H, Craddock CF, Higgs DR. Cis-acting sequences regulating expression of the human alpha-globin cluster lie within constitutively open chromatin. Cell. 1992;69:781–93.
Article
CAS
PubMed
Google Scholar
Addya S, Keller MA, Delgrosso K, Ponte CM, Vadigepalli R, Gonye GE, et al. Erythroid-induced commitment of K562 cells results in clusters of differentially expressed genes enriched for specific transcription regulatory elements. Physiol Genomics. 2004;19:117–30.
Article
CAS
PubMed
Google Scholar
Kowalczyk MS, Hughes JR, Babbs C, Sanchez-Pulido L, Szumska D, Sharpe JA, et al. Nprl3 is required for normal development of the cardiovascular system. Mamm Genome. 2012;23:404–15.
Article
CAS
PubMed
Google Scholar
Dutchak PA, Laxman S, Estill SJ, Wang C, Wang Y, Wang Y, et al. Regulation of hematopoiesis and methionine homeostasis by mTORC1 inhibitor NPRL2. Cell Rep. 2015;12:371–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA, Sloane-Stanley JA, et al. Intragenic enhancers act as alternative promoters. Mol Cell. 2012;45:447–58.
Article
CAS
PubMed
Google Scholar
Hardison RC. Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med. 2012;2:a011627.
Article
PubMed
PubMed Central
Google Scholar
Travers A. Chromatin modification by DNA tracking. Proc Natl Acad Sci USA. 1999;96:13634–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ea V, Baudement MO, Lesne A, Forne T. Contribution of topological domains and loop formation to 3D chromatin organization. Genes (Basel). 2015;6:734–50.
CAS
Google Scholar
de Wit E, Vos ES, Holwerda SJ, Valdes-Quezada C, Verstegen MJ, Teunissen H, et al. CTCF binding polarity determines chromatin looping. Mol Cell. 2015;60:676–84.
Article
PubMed
Google Scholar
Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 2015;10:1297–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubo N, Ishii H, Gorkin D, Meitinger F, Xiong X, Fang R, et al. Preservation of chromatin organization after acute loss of CTCF in mouse embryonic stem cells. bioRxiv. 2016. doi:10.1101/118737.
Google Scholar
Ulianov SV, Khrameeva EE, Gavrilov AA, Flyamer IM, Kos P, Mikhaleva EA, et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res. 2016;26:70–84.
Article
PubMed
PubMed Central
Google Scholar
Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, et al. Chromatin architecture reorganization during stem cell differentiation. Nature. 2015;518:331–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagege H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc. 2007;2:1722–33.
Article
CAS
PubMed
Google Scholar
Braem C, Recolin B, Rancourt RC, Angiolini C, Barthes P, Branchu P, et al. Genomic matrix attachment region and chromosome conformation capture quantitative real time PCR assays identify novel putative regulatory elements at the imprinted Dlk1/Gtl2 locus. J Biol Chem. 2008;283:18612–20.
Article
CAS
PubMed
Google Scholar
Lajoie BR, van Berkum NL, Sanyal A, Dekker J. My5C: web tools for chromosome conformation capture studies. Nat Methods. 2009;6:690–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2004;32:D91–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.
Article
CAS
PubMed
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
Article
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.
Article
CAS
PubMed
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar