Lewis EB: A gene complex controlling segmentation in Drosophila. Nature. 1978, 276: 565-570. 10.1038/276565a0.
CAS
PubMed
Google Scholar
Orlando V: Polycomb, epigenomes, and control of cell identity. Cell. 2003, 112: 599-606. 10.1016/S0092-8674(03)00157-0.
CAS
PubMed
Google Scholar
van Lohuizen M: Functional analysis of mouse polycomb group genes. Cell Mol Life Sci. 1998, 54: 71-79. 10.1007/s000180050126.
CAS
PubMed
Google Scholar
Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K: Genome-wide mapping of polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006, 20: 1123-1136. 10.1101/gad.381706.
PubMed Central
CAS
PubMed
Google Scholar
Otte AP, Kwaks THJ: Gene repression by polycomb group protein complexes: a distinct complex for every occasion?. Curr Opin Genet Dev. 2003, 13: 448-454. 10.1016/S0959-437X(03)00108-4.
CAS
PubMed
Google Scholar
Jason LJ, Moore SC, Lewis JD, Lindsey G, Ausio J: Histone ubiquitination: a tagging tail unfolds?. Bioessays. 2002, 24: 166-174. 10.1002/bies.10038.
CAS
PubMed
Google Scholar
Buchwald G, Stoop van der P, Weichenrieder O, Perrakis A, van Lohuizen M, Sixma TK: Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J. 2006, 25: 2465-2474. 10.1038/sj.emboj.7601144.
PubMed Central
CAS
PubMed
Google Scholar
de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M, Koseki H, Brockdorff N: Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell. 2004, 7: 663-676. 10.1016/j.devcel.2004.10.005.
CAS
PubMed
Google Scholar
Fang J, Chen T, Chadwick B, Li E, Zhang Y: Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem. 2004, 279: 52812-52815. 10.1074/jbc.C400493200.
CAS
PubMed
Google Scholar
Leeb M, Wutz A: Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells. J Cell Biol. 2007, 178: 219-229. 10.1083/jcb.200612127.
PubMed Central
CAS
PubMed
Google Scholar
Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L, Koseki H, Jenuwein T, Wutz A: Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 2006, 10.1038/sj.emboj.7601187.
Google Scholar
Sarcinella E, Zuzarte PC, Lau PN, Draker R, Cheung P: Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol. 2007, 27: 6457-6468. 10.1128/MCB.00241-07.
PubMed Central
CAS
PubMed
Google Scholar
Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y: Role of histone H2A ubiquitination in polycomb silencing. Nature. 2004, 431: 873-878. 10.1038/nature02985.
CAS
PubMed
Google Scholar
Lagarou A, Mohd-Sarip A, Moshkin YM, Chalkley GE, Bezstarosti K, Demmers JA, Verrijzer CP: dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during polycomb group silencing. Genes Dev. 2008, 22: 2799-2810. 10.1101/gad.484208.
PubMed Central
CAS
PubMed
Google Scholar
Cao R, Tsukada Y, Zhang Y: Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell. 2005, 20: 845-854. 10.1016/j.molcel.2005.12.002.
CAS
PubMed
Google Scholar
Elderkin S, Maertens GN, Endoh M, Mallery DL, Morrice N, Koseki H, Peters G, Brockdorff N, Hiom K: A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin. Mol Cell. 2007, 28: 107-120. 10.1016/j.molcel.2007.08.009.
CAS
PubMed
Google Scholar
Gearhart MD, Corcoran CM, Wamstad JA, Bardwell VJ: Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol. 2006, 26: 6880-6889. 10.1128/MCB.00630-06.
PubMed Central
CAS
PubMed
Google Scholar
Wu X, Gong Y, Yue J, Qiang B, Yuan J, Peng X: Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing. Nucleic Acids Res. 2008, 36: 3590-3599. 10.1093/nar/gkn243.
PubMed Central
CAS
PubMed
Google Scholar
Li Z, Cao R, Wang M, Myers MP, Zhang Y, Xu RM: Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase complex. J Biol Chem. 2006, 281: 20643-20649. 10.1074/jbc.M602461200.
CAS
PubMed
Google Scholar
Kentsis A, Borden KL: Construction of macromolecular assemblages in eukaryotic processes and their role in human disease: linking RINGs together. Curr Protein Pept Sci. 2000, 1: 49-73. 10.2174/1389203003381478.
CAS
PubMed
Google Scholar
Laney JD, Hochstrasser M: Substrate targeting in the ubiquitin system. Cell. 1999, 97: 427-430. 10.1016/S0092-8674(00)80752-7.
CAS
PubMed
Google Scholar
Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A: The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol Cell. 2006, 24: 701-711. 10.1016/j.molcel.2006.10.022.
CAS
PubMed
Google Scholar
Hernandez-Munoz I, Lund AH, Stoop van der P, Boutsma E, Muijrers I, Verhoeven E, Nusinow DA, Panning B, Marahrens Y, van Lohuizen M: Stable X chromosome inactivation involves the PRC1 polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci USA. 2005, 102: 7635-7640. 10.1073/pnas.0408918102.
PubMed Central
CAS
PubMed
Google Scholar
Zhang J, Sarge KD: Identification of a polymorphism in the RING finger of human Bmi-1 that causes its degradation by the ubiquitin-proteasome system. FEBS Lett. 2009, 583: 960-964. 10.1016/j.febslet.2009.02.023.
PubMed Central
CAS
PubMed
Google Scholar
Arrigoni R, Alam SL, Wamstad JA, Bardwell VJ, Sundquist WI, Schreiber-Agus N: The polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett. 2006, 580: 6233-6241. 10.1016/j.febslet.2006.10.027.
CAS
PubMed
Google Scholar
Trimarchi JM, Fairchild B, Wen J, Lees JA: The E2F6 transcription factor is a component of the mammalian Bmi1- containing polycomb complex. Proc Natl Acad Sci USA. 2001, 98: 1519-1524. 10.1073/pnas.041597698.
PubMed Central
CAS
PubMed
Google Scholar
Gill G: Something about SUMO inhibits transcription. Curr Opin Genet Dev. 2005, 15: 536-541. 10.1016/j.gde.2005.07.004.
CAS
PubMed
Google Scholar
Stielow B, Sapetschnig A, Kruger I, Kunert N, Brehm A, Boutros M, Suske G: Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen. Mol Cell. 2008, 29: 742-754. 10.1016/j.molcel.2007.12.032.
CAS
PubMed
Google Scholar
Kehle J, Beuchle D, Treuheit S, Christen B, Kennison JA, Bienz M, Muller J: dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science. 1998, 282: 1897-1900. 10.1126/science.282.5395.1897.
CAS
PubMed
Google Scholar
Zhang H, Smolen GA, Palmer R, Christoforou A, Heuvel van den S, Haber DA: SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans polycomb group protein SOP-2. Nat Genet. 2004, 36: 507-511. 10.1038/ng1336.
CAS
PubMed
Google Scholar
Sewalt RG, Gunster MJ, Vlag van der J, Satijn DP, Otte AP: C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate polycomb proteins. Mol Cell Biol. 1999, 19: 777-787. [http://mcb.asm.org/cgi/content/full/19/1/777?view=long%26;pmid=9858600]
PubMed Central
CAS
PubMed
Google Scholar
Kagey MH, Melhuish TA, Wotton D: The polycomb protein Pc2 is a SUMO E3. Cell. 2003, 113: 127-137. 10.1016/S0092-8674(03)00159-4.
CAS
PubMed
Google Scholar
Wotton D, Merrill JC: Pc2 and SUMOylation. Biochem Soc Trans. 2007, 35: 1401-1404. 10.1042/BST0351401.
CAS
PubMed
Google Scholar
Agrawal N, Banerjee R: Human polycomb 2 protein is a SUMO E3 ligase and alleviates substrate-induced inhibition of cystathionine β-synthase sumoylation. PLoS ONE. 2008, 3: e4032-10.1371/journal.pone.0004032.
PubMed Central
PubMed
Google Scholar
Li B, Zhou J, Liu P, Hu J, Jin H, Shimono Y, Takahashi M, Xu G: Polycomb protein Cbx4 promotes SUMO modification of de novo DNA methyltransferase Dnmt3a. Biochem J. 2007, 405: 369-378. 10.1042/BJ20061873.
PubMed Central
CAS
PubMed
Google Scholar
Ling Y, Sankpal UT, Robertson AK, McNally JG, Karpova T, Robertson KD: Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucl Acids Res. 2004, 32: 598-610. 10.1093/nar/gkh195.
PubMed Central
CAS
PubMed
Google Scholar
Long J, Zuo D, Park M: Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J Biol Chem. 2005, 280: 35477-35489. 10.1074/jbc.M504477200.
CAS
PubMed
Google Scholar
Roscic A, Moller A, Calzado MA, Renner F, Wimmer VC, Gresko E, Ludi KS, Schmitz ML: Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol Cell. 2006, 24: 77-89. 10.1016/j.molcel.2006.08.004.
CAS
PubMed
Google Scholar
Fontecave M, Atta M, Mulliez E: S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci. 2004, 29: 243-249. 10.1016/j.tibs.2004.03.007.
CAS
PubMed
Google Scholar
Zhang J, Goodson ML, Hong Y, Sarge KD: MEL-18 interacts with HSF2 and the SUMO E2 UBC9 to inhibit HSF2 sumoylation. J Biol Chem. 2008, 283: 7464-7469. 10.1074/jbc.M707122200.
PubMed Central
CAS
PubMed
Google Scholar
Zhang J, Sarge KD: Mel-18 interacts with RanGAP1 and inhibits its sumoylation. Biochem Biophys Res Commun. 2008, 375: 252-255. 10.1016/j.bbrc.2008.08.012.
PubMed Central
CAS
PubMed
Google Scholar
Riising EM, Boggio R, Chiocca S, Helin K, Pasini D: The polycomb repressive complex 2 is a potential target of SUMO modifications. PLoS ONE. 2008, 3: e2704-10.1371/journal.pone.0002704.
PubMed Central
PubMed
Google Scholar
Voncken JW, Schweizer D, Aagaard L, Sattler L, Jantsch MF, van Lohuizen M: Chromatin-association of the polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status. J Cell Sci. 1999, 112: 4627-4639. [http://jcs.biologists.org/cgi/content/abstract/112/24/4627]
CAS
PubMed
Google Scholar
Akasaka T, Takahashi N, Suzuki M, Koseki H, Bodmer R, Koga H: MBLR, a new RING finger protein resembling mammalian polycomb gene products, is regulated by cell cycle-dependent phosphorylation. Genes Cells. 2002, 7: 835-850. 10.1046/j.1365-2443.2002.00565.x.
CAS
PubMed
Google Scholar
Muchardt C, Reyes JC, Bourachot B, Leguoy E, Yaniv M: The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 1996, 15: 3394-3402.
PubMed Central
CAS
PubMed
Google Scholar
Noguchi K, Shiurba R, Higashinakagawa T: Nuclear translocation of mouse polycomb m33 protein in regenerating liver. Biochem Biophys Res Comm. 2002, 291: 508-515. 10.1006/bbrc.2002.6480.
CAS
PubMed
Google Scholar
Fujisaki S, Ninomiya Y, Ishihara H, Miyazaki M, Kanno R, Asahara T, Kanno M: Dimerization of the polycomb-group protein Mel-18 is regulated by PKC phosphorylation. Biochem Biophys Res Commun. 2003, 300: 135-140. 10.1016/S0006-291X(02)02791-2.
CAS
PubMed
Google Scholar
Gong Y, Wang X, Liu J, Shi L, Yin B, Peng X, Qiang B, Yuan J: NSPc1, a mainly nuclear localized protein of novel PcG family members, has a transcription repression activity related to its PKC phosphorylation site at S183. FEBS Lett. 2005, 579: 115-121. 10.1016/j.febslet.2004.11.056.
CAS
PubMed
Google Scholar
Ng J, Hart CM, Morgan K, Simon JA: A Drosophila ESC-E(Z) protein complex is distinct from other polycomb group complexes and contains covalently modified ESC. Mol Cell Biol. 2000, 20: 3069-3078. 10.1128/MCB.20.9.3069-3078.2000.
PubMed Central
CAS
PubMed
Google Scholar
Tie F, Siebold AP, Harte PJ: The N-terminus of Drosophila ESC mediates its phosphorylation and dimerization. Biochem Biophys Res Commun. 2005, 332: 622-632. 10.1016/j.bbrc.2005.04.157.
CAS
PubMed
Google Scholar
Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002, 16: 2893-2905. 10.1101/gad.1035902.
PubMed Central
CAS
PubMed
Google Scholar
Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, Ping B, Otte AP, Hung MC: Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science. 2005, 310: 306-310. 10.1126/science.1118947.
CAS
PubMed
Google Scholar
Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappsilber J, Lerdrup M, Helin K: A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol. 2008, 10: 1291-1300. 10.1038/ncb1787.
CAS
PubMed
Google Scholar
Hansen KH, Helin K: Epigenetic inheritance through self-recruitment of the polycomb repressive complex 2. Epigenetics. 2009, 4: [http://www.landesbioscience.com/journals/epigenetics/article/8483]
Google Scholar
Ogawa M, Hiraoka Y, Aiso S: The polycomb-group protein ENX-2 interacts with ZAP-70. Immunol Lett. 2003, 86: 57-61. 10.1016/S0165-2478(02)00293-6.
CAS
PubMed
Google Scholar
Amanchy R, Periaswamy B, Mathivanan S, Reddy R, Tattikota SG, Pandey A: A curated compendium of phosphorylation motifs. Nat Biotechnol. 2007, 25: 285-286. 10.1038/nbt0307-285.
CAS
PubMed
Google Scholar
Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N, Holzer B, Ludwig S, Rapp UR: MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J Biol Chem. 2005, 280: 5178-5187. 10.1074/jbc.M407155200.
CAS
PubMed
Google Scholar
Hodgson JW, Argiropoulos B, Brock HW: Site-specific recognition of a 70-base-pair element containing d(GA)(n) repeats mediates bithoraxoid polycomb group response element-dependent silencing. Mol Cell Biol. 2001, 21: 4528-4543. 10.1128/MCB.21.14.4528-4543.2001.
PubMed Central
CAS
PubMed
Google Scholar
Fischle W, Wang Y, Allis CD: Binary switches and modification cassettes in histone biology and beyond. Nature. 2003, 425: 475-479. 10.1038/nature02017.
CAS
PubMed
Google Scholar
Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A, Allis CD: Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science. 1999, 285: 886-891. 10.1126/science.285.5429.886.
CAS
PubMed
Google Scholar
Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR: HP1-β mobilization promotes chromatin changes that initiate the DNA damage response. Nature. 2008, 453: 682-686. 10.1038/nature06875.
CAS
PubMed
Google Scholar
Dietrich N, Bracken AP, Trinh E, Schjerling CK, Koseki H, Rappsilber J, Helin K, Hansen KH: Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J. 2007, 26: 1637-1648. 10.1038/sj.emboj.7601632.
PubMed Central
CAS
PubMed
Google Scholar
Sanchez C, Sanchez I, Demmers JA, Rodriguez P, Strouboulis J, Vidal M: Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol Cell Proteomics. 2007, 6: 820-834. 10.1074/mcp.M600275-MCP200.
CAS
PubMed
Google Scholar
Gambetta MC, Oktaba K, Muller J: Essential role of the glycosyltransferase Sxc/Ogt in polycomb repression. Science. 2009, 10.1126/science.1169727.
Google Scholar
Chalkley RJ, Thalhammer A, Schoepfer R, Burlingame AL: Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc Natl Acad Sci USA. 2009, 106: 8894-8899. 10.1073/pnas.0900288106.
PubMed Central
CAS
PubMed
Google Scholar
Fujiki R, Chikanishi T, Hashiba W, Ito H, Takada I, Roeder RG, Kitagawa H, Kato S: GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature. 2009, 459: 455-459. 10.1038/nature07954.
CAS
PubMed
Google Scholar
Taylor RC, Cullen SP, Martin SJ: Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008, 9: 231-241. 10.1038/nrm2312.
CAS
PubMed
Google Scholar
Wong CK, Chen Z, So KL, Li D, Li P: Polycomb group protein RING1B is a direct substrate of caspases-3 and -9. Biochim Biophys Acta. 2007, 1773: 844-852. 10.1016/j.bbamcr.2007.02.005.
CAS
PubMed
Google Scholar
Rao PS, Satelli A, Zhang S, Srivastava SK, Srivenugopal KS, Rao US: RNF2 is the target for phosphorylation by the p38 MAPK and ERK signaling pathways. Proteomics. 2009, 9: 2776-2787. 10.1002/pmic.200800847.
PubMed Central
CAS
PubMed
Google Scholar
Ohtsubo M, Yasunaga S, Ohno Y, Tsumura M, Okada S, Ishikawa N, Shirao K, Kikuchi A, Nishitani H, Kobayashi M, Takihara Y: Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc Natl Acad Sci USA. 2008, 105: 10396-10401. 10.1073/pnas.0800672105.
PubMed Central
CAS
PubMed
Google Scholar
Hart GW, Housley MP, Slawson C: Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007, 446: 1017-1022. 10.1038/nature05815.
CAS
PubMed
Google Scholar
He Z, Ma WY, Liu G, Zhang Y, Bode AM, Dong Z: Arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2, and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1. J Biol Chem. 2003, 278: 10588-10593. 10.1074/jbc.M208581200.
CAS
PubMed
Google Scholar
Zhong SP, Ma WY, Dong Z: ERKs and p38 kinases mediate ultraviolet B-induced phosphorylation of histone H3 at serine 10. J Biol Chem. 2000, 275: 20980-20984. 10.1074/jbc.M909934199.
CAS
PubMed
Google Scholar
Zhong S, Jansen C, She QB, Goto H, Inagaki M, Bode AM, Ma WY, Dong Z: Ultraviolet B-induced phosphorylation of histone H3 at serine 28 is mediated by MSK1. J Biol Chem. 2001, 276: 33213-33219. 10.1074/jbc.M103973200.
CAS
PubMed
Google Scholar
Zhong S, Zhang Y, Jansen C, Goto H, Inagaki M, Dong Z: MAP kinases mediate UVB-induced phosphorylation of histone H3 at serine 28. J Biol Chem. 2001, 276: 12932-12937. 10.1074/jbc.M010931200.
CAS
PubMed
Google Scholar
Soloaga A, Thomson S, Wiggin GR, Rampersaud N, Dyson MH, Hazzalin CA, Mahadevan LC, Arthur JS: MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 2003, 22: 2788-2797. 10.1093/emboj/cdg273.
PubMed Central
CAS
PubMed
Google Scholar
Dyson MH, Thomson S, Inagaki M, Goto H, Arthur SJ, Nightingale K, Iborra FJ, Mahadevan LC: MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. J Cell Sci. 2005, 118: 2247-2259. 10.1242/jcs.02373.
CAS
PubMed
Google Scholar
Dunn KL, Davie JR: Stimulation of the Ras-MAPK pathway leads to independent phosphorylation of histone H3 on serine 10 and 28. Oncogene. 2005, 24: 3492-3502. 10.1038/sj.onc.1208521.
CAS
PubMed
Google Scholar
Li Y, Kirschmann DA, Wallrath LL: Does heterochromatin protein 1 always follow code?. Proc Natl Acad Sci USA. 2002, 99 (Suppl 4): 16462-16469. 10.1073/pnas.162371699.
PubMed Central
CAS
PubMed
Google Scholar
Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature. 2005, 438: 1116-1122. 10.1038/nature04219.
CAS
PubMed
Google Scholar
Dormann HL, Tseng BS, Allis CD, Funabiki H, Fischle W: Dynamic regulation of effector protein binding to histone modifications: the biology of HP1 switching. Cell Cycle. 2006, 5: 2842-2851. [http://www.landesbioscience.com/journals/cc/article/3540/]
CAS
PubMed
Google Scholar
Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, Inagaki M: Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem. 1999, 274: 25543-25549. 10.1074/jbc.274.36.25543.
CAS
PubMed
Google Scholar
Goto H, Yasui Y, Nigg EA, Inagaki M: Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells. 2002, 7: 11-17. 10.1046/j.1356-9597.2001.00498.x.
CAS
PubMed
Google Scholar
Hunter T: The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 2007, 28: 730-738. 10.1016/j.molcel.2007.11.019.
CAS
PubMed
Google Scholar
Spange S, Wagner T, Heinzel T, Kramer OH: Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 2009, 41: 185-198. 10.1016/j.biocel.2008.08.027.
CAS
PubMed
Google Scholar
Huang J, Berger SL: The emerging field of dynamic lysine methylation of non-histone proteins. Curr Opin Genet Dev. 2008, 18: 152-158. 10.1016/j.gde.2008.01.012.
CAS
PubMed
Google Scholar
Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Mönch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K: The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007, 21: 525-530. 10.1101/gad.415507.
PubMed Central
CAS
PubMed
Google Scholar
Sparmann A, van Lohuizen M: Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006, 6: 846-856. 10.1038/nrc1991.
CAS
PubMed
Google Scholar
Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M: Stem cells and cancer; the polycomb connection. Cell. 2004, 118: 409-418. 10.1016/j.cell.2004.08.005.
CAS
PubMed
Google Scholar
Welchman RL, Gordon C, Mayer RJ: Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol. 2005, 6: 599-609. 10.1038/nrm1700.
CAS
PubMed
Google Scholar
Pickart CM: Back to the future with ubiquitin. Cell. 2004, 116: 181-190. 10.1016/S0092-8674(03)01074-2.
CAS
PubMed
Google Scholar
Geiss-Friedlander R, Melchior F: Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007, 8: 947-956. 10.1038/nrm2293.
CAS
PubMed
Google Scholar
Ubersax JA, Ferrell JE: Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol. 2007, 8: 530-541. 10.1038/nrm2203.
CAS
PubMed
Google Scholar
Uniprot. [http://www.uniprot.org]
Phosphosite. [http://www.phosphosite.org]
Turner BM: Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol. 2005, 12: 110-112. 10.1038/nsmb0205-110.
CAS
PubMed
Google Scholar
Villen J, Beausoleil SA, Gerber SA, Gygi SP: Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA. 2007, 104: 1488-1493. 10.1073/pnas.0609836104.
PubMed Central
CAS
PubMed
Google Scholar
WebLogo. [http://weblogo.berkeley.edu]
Kagey MH, Melhuish TA, Powers SE, Wotton D: Multiple activities contribute to Pc2 E3 function. EMBO J. 2005, 24: 108-119. 10.1038/sj.emboj.7600506.
PubMed Central
CAS
PubMed
Google Scholar
Vertegaal AC, Ogg SC, Jaffray E, Rodriguez MS, Hay RT, Andersen JS, Mann M, Lamond AI: A proteomic study of SUMO-2 target proteins. J Biol Chem. 2004, 279: 33791-33798. 10.1074/jbc.M404201200.
CAS
PubMed
Google Scholar
Deng Z, Wan M, Sui G: PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger. Mol Cell Biol. 2007, 27: 3780-3792. 10.1128/MCB.01761-06.
PubMed Central
CAS
PubMed
Google Scholar
Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA. 2008, 105: 10762-10767. 10.1073/pnas.0805139105.
PubMed Central
CAS
PubMed
Google Scholar
Chen RQ, Yang QK, Lu BW, Yi W, Cantin G, Chen YL, Fearns C, Yates JR, Lee JD: CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res. 2009, 69: 2663-2668. 10.1158/0008-5472.CAN-08-3222.
PubMed Central
CAS
PubMed
Google Scholar
Molina H, Horn DM, Tang N, Mathivanan S, Pandey A: Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA. 2007, 104: 2199-2204. 10.1073/pnas.0611217104.
PubMed Central
CAS
PubMed
Google Scholar
Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP: Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA. 2004, 101: 12130-12135. 10.1073/pnas.0404720101.
PubMed Central
CAS
PubMed
Google Scholar
Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP: A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006, 24: 1285-1292. 10.1038/nbt1240.
CAS
PubMed
Google Scholar
Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, Yates JR: Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res. 2008, 7: 1346-1351. 10.1021/pr0705441.
CAS
PubMed
Google Scholar
Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008, 31: 438-448. 10.1016/j.molcel.2008.07.007.
CAS
PubMed
Google Scholar
Nousiainen M, Sillje HH, Sauer G, Nigg EA, Korner R: Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci USA. 2006, 103: 5391-5396. 10.1073/pnas.0507066103.
PubMed Central
CAS
PubMed
Google Scholar
Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006, 127: 635-648. 10.1016/j.cell.2006.09.026.
CAS
PubMed
Google Scholar
Yang F, Stenoien DL, Strittmatter EF, Wang J, Ding L, Lipton MS, Monroe ME, Nicora CD, Gristenko MA, Tang K, Fang R, Adkins JN, Camp DG, Chen DJ, Smith RD: Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. J Proteome Res. 2006, 5: 1252-1260. 10.1021/pr060028v.
CAS
PubMed
Google Scholar
Tang LY, Deng N, Wang LS, Dai J, Wang ZL, Jiang XS, Li SJ, Li L, Sheng QH, Wu DQ, Li L, Zeng R: Quantitative phosphoproteome profiling of Wnt3a-mediated signaling network: indicating the involvement of ribonucleoside-diphosphate reductase M2 subunit phosphorylation at residue serine 20 in canonical Wnt signal transduction. Mol Cell Proteomics. 2007, 6: 1952-1967. 10.1074/mcp.M700120-MCP200.
CAS
PubMed
Google Scholar
Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ: Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007, 131: 1190-1203. 10.1016/j.cell.2007.11.025.
CAS
PubMed
Google Scholar
Sui S, Wang J, Yang B, Song L, Zhang J, Chen M, Liu J, Lu Z, Cai Y, Chen S, Bi W, Zhu Y, He F, Qian X: Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy. Proteomics. 2008, 8: 2024-2034. 10.1002/pmic.200700896.
CAS
PubMed
Google Scholar
Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007, 316: 1160-1166. 10.1126/science.1140321.
CAS
PubMed
Google Scholar
Yu LR, Zhu Z, Chan KC, Issaq HJ, Dimitrov DS, Veenstra TD: Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res. 2007, 6: 4150-4162. 10.1021/pr070152u.
CAS
PubMed
Google Scholar