Kadota K, Suzuki K, Colovos C, Sima CS, Rusch VW, Travis WD, et al. A nuclear grading system is a strong predictor of survival in epitheloid diffuse malignant pleural mesothelioma. Mod Pathol. 2012;25(2):260–71. https://doi.org/10.1038/modpathol.2011.146.
Article
CAS
PubMed
Google Scholar
Chi YH, Chen ZJ, Jeang KT. The nuclear envelopathies and human diseases. J Biomed Sci. 2009;16:96. https://doi.org/10.1186/1423-0127-16-96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seaman L, Meixner W, Snyder J, Rajapakse I. Periodicity of nuclear morphology in human fibroblasts. Nucleus. 2015;6(5):408–16. https://doi.org/10.1080/19491034.2015.1095432.
Article
CAS
PubMed
Google Scholar
Chow KH, Factor RE, Ullman KS. The nuclear envelope environment and its cancer connections. Nat Rev Cancer. 2012;12(3):196–209. https://doi.org/10.1038/nrc3219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Webster M, Witkin KL, Cohen-Fix O. Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci. 2009;122(Pt 10):1477–86. https://doi.org/10.1242/jcs.037333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skinner BM, Johnson EE. Nuclear morphologies: their diversity and functional relevance. Chromosoma. 2017;126(2):195–212. https://doi.org/10.1007/s00412-016-0614-5.
Article
PubMed
Google Scholar
Paonessa F, Evans LD, Solanki R, Larrieu D, Wray S, Hardy J, et al. Microtubules deform the nuclear membrane and disrupt nucleocytoplasmic transport in tau-mediated frontotemporal dementia. Cell Rep. 2019;26(3):582-93.e5. https://doi.org/10.1016/j.celrep.2018.12.085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karoutas A, Szymanski W, Rausch T, Guhathakurta S, Rog-Zielinska EA, Peyronnet R, et al. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nat Cell Biol. 2019;21(10):1248–60. https://doi.org/10.1038/s41556-019-0397-z.
Article
CAS
PubMed
Google Scholar
Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. The nuclear lamina comes of age. Nat Rev Mol Cell Biol. 2005;6(1):21–31.
Article
CAS
PubMed
Google Scholar
Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104. https://doi.org/10.1126/science.1240104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet. 2006;7:369–405.
Article
CAS
PubMed
Google Scholar
van Tienen FHJ, Lindsey PJ, Kamps MAF, Krapels IP, Ramaekers FCS, Brunner HG, et al. Assessment of fibroblast nuclear morphology aids interpretation of LMNA variants. Eur J Hum Genet. 2019;27(3):389–99. https://doi.org/10.1038/s41431-018-0294-0.
Article
CAS
PubMed
Google Scholar
Burke B. CELL BIOLOGY. When cells push the envelope. Science. 2016;352(6283):295–6. https://doi.org/10.1126/science.aaf7735.
Article
CAS
PubMed
Google Scholar
van Steensel B, Belmont AS. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell. 2017;169(5):780–91. https://doi.org/10.1016/j.cell.2017.04.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet. 2006;38(9):1005–14. https://doi.org/10.1038/ng1852.
Article
CAS
PubMed
Google Scholar
Shaklai S, Somech R, Gal-Yam EN, Deshet-Unger N, Moshitch-Moshkovitz S, Hirschberg K, et al. LAP2zeta binds BAF and suppresses LAP2beta-mediated transcriptional repression. Eur J Cell Biol. 2008;87(5):267–78. https://doi.org/10.1016/j.ejcb.2008.01.014.
Article
CAS
PubMed
Google Scholar
Ye Q, Worman HJ. Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem. 1996;271(25):14653–6. https://doi.org/10.1074/jbc.271.25.14653.
Article
CAS
PubMed
Google Scholar
Pascual-Reguant L, Blanco E, Galan S, Le Dily F, Cuartero Y, Serra-Bardenys G, et al. Lamin B1 mapping reveals the existence of dynamic and functional euchromatin lamin B1 domains. Nat Commun. 2018;9(1):3420. https://doi.org/10.1038/s41467-018-05912-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang F, Chen YG. Regulation of TGF-beta receptor activity. Cell Biosci. 2012;2:9. https://doi.org/10.1186/2045-3701-2-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heldin CH, Moustakas A. Signaling receptors for TGF-beta family members. Cold Spring Harb Perspect Biol. 2016;8(8):a022053. https://doi.org/10.1101/cshperspect.a022053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horie M, Saito A, Noguchi S, Yamaguchi Y, Ohshima M, Morishita Y, et al. Differential knockdown of TGF-beta ligands in a three-dimensional co-culture tumor- stromal interaction model of lung cancer. BMC Cancer. 2014;14:580. https://doi.org/10.1186/1471-2407-14-580.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rangamani P, Lipshtat A, Azeloglu EU, Calizo RC, Hu M, Ghassemi S, et al. Decoding information in cell shape. Cell. 2013;154(6):1356–69. https://doi.org/10.1016/j.cell.2013.08.026.
Article
CAS
PubMed
Google Scholar
Diaz G, Zuccarelli A, Pelligra I, Ghiani A. Elliptic fourier analysis of cell and nuclear shapes. Comput Biomed Res. 1989;22(5):405–14. https://doi.org/10.1016/0010-4809(89)90034-7.
Article
CAS
PubMed
Google Scholar
Burke B, Stewart CL. Life at the edge: the nuclear envelope and human disease. Nat Rev Mol Cell Biol. 2002;3(8):575–85.
Article
CAS
PubMed
Google Scholar
Burke B. The nuclear envelope: filling in gaps. NatCell Biol. 2001;3(12):E273–4.
CAS
Google Scholar
De Vos WH, Houben F, Kamps M, Malhas A, Verheyen F, Cox J, et al. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum Mol Genet. 2011;20(21):4175–86. https://doi.org/10.1093/hmg/ddr344.
Article
CAS
PubMed
Google Scholar
Bensaude O. Inhibiting eukaryotic transcription: which compound to choose? How to evaluate its activity? Transcription. 2011;2(3):103–8. https://doi.org/10.4161/trns.2.3.16172.
Article
PubMed
PubMed Central
Google Scholar
Shimamoto Y, Tamura S, Masumoto H, Maeshima K. Nucleosome-nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity. Mol Biol Cell. 2017;28(11):1580–9. https://doi.org/10.1091/mbc.E16-11-0783.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nava MM, Miroshnikova YA, Biggs LC, Whitefield DB, Metge F, Boucas J, et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell. 2020. https://doi.org/10.1016/j.cell.2020.03.052.
Article
PubMed
PubMed Central
Google Scholar
Bianchi A, Mozzetta C, Pegoli G, Lucini F, Valsoni S, Rosti V, et al. Dysfunctional polycomb transcriptional repression contributes to lamin A/C-dependent muscular dystrophy. J Clin Invest. 2020;130(5):2408–21. https://doi.org/10.1172/JCI128161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cesarini E, Mozzetta C, Marullo F, Gregoretti F, Gargiulo A, Columbaro M, et al. Lamin A/C sustains PcG protein architecture, maintaining transcriptional repression at target genes. J Cell Biol. 2015;211(3):533–51. https://doi.org/10.1083/jcb.201504035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, et al. Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol. 2002;20(5):473–7. https://doi.org/10.1038/nbt0502-473.
Article
CAS
PubMed
Google Scholar
Uhler C, Shivashankar GV. Nuclear mechanopathology and cancer diagnosis. Trends Cancer. 2018;4(4):320–31. https://doi.org/10.1016/j.trecan.2018.02.009.
Article
CAS
PubMed
Google Scholar
Dreger M, Madrazo E, Hurlstone A, Redondo-Munoz J. Novel contribution of epigenetic changes to nuclear dynamics. Nucleus. 2019;10(1):42–7. https://doi.org/10.1080/19491034.2019.1580100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lomakin AJ, Cattin CJ, Cuvelier D, Alraies Z, Molina M, Nader GPF, et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science. 2020;370(6514):eaba2894. https://doi.org/10.1126/science.aba2894.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venturini V, Pezzano F, Catala Castro F, Hakkinen HM, Jimenez-Delgado S, Colomer-Rosell M, et al. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science. 2020;370(6514):eaba2644. https://doi.org/10.1126/science.aba2644.
Article
CAS
PubMed
Google Scholar
Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B, et al. Nuclear envelope rupture and repair during cancer cell migration. Science. 2016;352(6283):353–8. https://doi.org/10.1126/science.aad7297.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raab M, Gentili M, de Belly H, Thiam HR, Vargas P, Jimenez AJ, et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science. 2016;352(6283):359–62. https://doi.org/10.1126/science.aad7611.
Article
CAS
PubMed
Google Scholar
Shimi T, Pfleghaar K, Kojima S, Pack CG, Solovei I, Goldman AE, et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 2008;22(24):3409–21. https://doi.org/10.1101/gad.1735208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CY, Chi YH, Mutalif RA, Starost MF, Myers TG, Anderson SA, et al. Accumulation of the inner nuclear envelope protein sun1 is pathogenic in progeric and dystrophic laminopathies. Cell. 2012;149(3):565–77. https://doi.org/10.1016/j.cell.2012.01.059.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA, Shanahan CM, et al. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem. 2010;285(5):3487–98. https://doi.org/10.1074/jbc.M109.071910.
Article
CAS
PubMed
Google Scholar
Wang JY, Yu IS, Huang CC, Chen CY, Wang WP, Lin SW, et al. Sun1 deficiency leads to cerebellar ataxia in mice. Dis Model Mech. 2015;8(8):957–67. https://doi.org/10.1242/dmm.019240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, et al. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron. 2009;64(2):173–87. https://doi.org/10.1016/j.neuron.2009.08.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broedersz CP, Brangwynne CP. Nuclear mechanics: lamin webs and pathological blebs. Nucleus. 2013;4(3):156–9. https://doi.org/10.4161/nucl.25019.
Article
PubMed
PubMed Central
Google Scholar
Funkhouser CM, Sknepnek R, Shimi T, Goldman AE, Goldman RD, Olvera de la Cruz M. Mechanical model of blebbing in nuclear lamin meshworks. Proc Natl Acad Sci USA. 2013;110(9):3248–53. https://doi.org/10.1073/pnas.1300215110.
Article
PubMed
PubMed Central
Google Scholar
Taimen P, Pfleghaar K, Shimi T, Moller D, Ben-Harush K, Erdos MR, et al. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc Natl Acad Sci USA. 2009;106(49):20788–93. https://doi.org/10.1073/pnas.0911895106.
Article
PubMed
PubMed Central
Google Scholar
Chen ZJ, Wang WP, Chen YC, Wang JY, Lin WH, Tai LA, et al. Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies. J Cell Sci. 2014;127(Pt 8):1792–804. https://doi.org/10.1242/jcs.139683.
Article
CAS
PubMed
Google Scholar
Chi YH, Chen CY, Jeang KT. Reversal of laminopathies: the curious case of SUN1. Nucleus. 2012;3(5):418–21. https://doi.org/10.4161/nucl.21714.
Article
PubMed
PubMed Central
Google Scholar
Pan X, Chen Z, Huang R, Yao Y, Ma G. Transforming growth factor beta1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts. PLoS ONE. 2013;8(4):e60335. https://doi.org/10.1371/journal.pone.0060335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Berlo JH, Voncken JW, Kubben N, Broers JL, Duisters R, van Leeuwen RE, et al. A-type lamins are essential for TGF-beta1 induced PP2A to dephosphorylate transcription factors. Hum Mol Genet. 2005;14(19):2839–49. https://doi.org/10.1093/hmg/ddi316.
Article
PubMed
Google Scholar
Henikoff S, Smith MM. Histone variants and epigenetics. Cold Spring Harb Perspect Biol. 2015;7(1):a019364. https://doi.org/10.1101/cshperspect.a019364.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomes AP, Ilter D, Low V, Rosenzweig A, Shen ZJ, Schild T, et al. Dynamic incorporation of histone H3 variants into chromatin is essential for acquisition of aggressive traits and metastatic colonization. Cancer Cell. 2019;36(4):402-17.e13. https://doi.org/10.1016/j.ccell.2019.08.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin CJ, Conti M, Ramalho-Santos M. Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development. 2013;140(17):3624–34. https://doi.org/10.1242/dev.095513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banaszynski LA, Wen D, Dewell S, Whitcomb SJ, Lin M, Diaz N, et al. Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell. 2013;155(1):107–20. https://doi.org/10.1016/j.cell.2013.08.061.
Article
CAS
PubMed
Google Scholar
Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ, Reddy KL. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol. 2015;208(1):33–52. https://doi.org/10.1083/jcb.201405110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez-Sandoval A, Gasser SM. On TADs and LADs: spatial control over gene expression. Trends Genet. 2016;32(8):485–95. https://doi.org/10.1016/j.tig.2016.05.004.
Article
CAS
PubMed
Google Scholar
Hergeth SP, Schneider R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 2015;16(11):1439–53. https://doi.org/10.15252/embr.201540749.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlissel MS, Brown DD. The transcriptional regulation of Xenopus 5s RNA genes in chromatin: the roles of active stable transcription complexes and histone H1. Cell. 1984;37(3):903–13. https://doi.org/10.1016/0092-8674(84)90425-2.
Article
CAS
PubMed
Google Scholar
Brockers K, Schneider R. Histone H1, the forgotten histone. Epigenomics. 2019;11(4):363–6. https://doi.org/10.2217/epi-2019-0018.
Article
CAS
PubMed
Google Scholar
Fan Y, Nikitina T, Zhao J, Fleury TJ, Bhattacharyya R, Bouhassira EE, et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell. 2005;123(7):1199–212. https://doi.org/10.1016/j.cell.2005.10.028.
Article
CAS
PubMed
Google Scholar
Alexandrow MG, Hamlin JL. Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J Cell Biol. 2005;168(6):875–86. https://doi.org/10.1083/jcb.200409055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell. 2002;108(1):83–96. https://doi.org/10.1016/s0092-8674(01)00627-4.
Article
CAS
PubMed
Google Scholar