Bharath MM, Chandra NR, Rao MR. Molecular modeling of the chromatosome particle. Nucleic Acids Res. 2003;31(14):4264–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simpson RT. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry. 1978;17(25):5524–31.
Article
CAS
PubMed
Google Scholar
Bradbury EM, Chapman GE, Danby SE, Hartman PG, Riches PL. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The properties of the N-terminal and C-terminal halves of histone H1. Eur J Biochem. 1975;57(2):521–8.
Article
CAS
PubMed
Google Scholar
Hartman PG, Chapman GE, Moss T, Bradbury EM. Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The three structural regions of the histone H1 molecule. Eur J Biochem. 1977;77(1):45–51.
Article
CAS
PubMed
Google Scholar
Aviles FJ, Danby SE, Chapman GE, Crane-Robinson C, Bradbury EM. The conformation of histone H5 bound to DNA. Maintenance of the globular structure after binding. Biochim Biophys Acta. 1979;578(2):290–6.
Article
CAS
PubMed
Google Scholar
Rattle HW, Langan TA, Danby SE, Bradbury EM. Studies on the role and mode of operation of the very-lysine-rich histones in eukaryote chromatin. Effect of A and B site phosphorylation on the conformation and interaction of histone H1. Eur J Biochem. 1977;81(3):499–505.
Article
CAS
PubMed
Google Scholar
Roque A, Ponte I, Suau P. Interplay between histone H1 structure and function. Biochim Biophys Acta. 2016;1859(3):444–54.
Article
CAS
PubMed
Google Scholar
Hendzel MJ, Lever MA, Crawford E, Th’ng JP. The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. J Biol Chem. 2004;279(19):20028–34.
Article
CAS
PubMed
Google Scholar
Lennox RW, Cohen LH. The alterations in H1 histone complement during mouse spermatogenesis and their significance for H1 subtype function. Dev Biol. 1984;103(1):80–4.
Article
CAS
PubMed
Google Scholar
Steger K, Klonisch T, Gavenis K, Drabent B, Doenecke D, Bergmann M. Expression of mRNA and protein of nucleoproteins during human spermiogenesis. Mol Hum Reprod. 1998;4(10):939–45.
Article
CAS
PubMed
Google Scholar
Drabent B, Bode C, Bramlage B, Doenecke D. Expression of the mouse testicular histone gene H1t during spermatogenesis. Histochem Cell Biol. 1996;106(2):247–51.
Article
CAS
PubMed
Google Scholar
Drabent B, Bode C, Miosge N, Herken R, Doenecke D. Expression of the mouse histone gene H1t begins at premeiotic stages of spermatogenesis. Cell Tissue Res. 1998;291(1):127–32.
Article
CAS
PubMed
Google Scholar
Bucci LR, Brock WA, Meistrich ML. Distribution and synthesis of histone 1 subfractions during spermatogenesis in the rat. Exp Cell Res. 1982;140(1):111–8.
Article
CAS
PubMed
Google Scholar
Grimes SR, Wilkerson DC, Noss KR, Wolfe SA. Transcriptional control of the testis-specific histone H1t gene. Gene. 2003;304:13–21.
Article
CAS
PubMed
Google Scholar
Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem. 2004;271(17):3459–69.
Article
CAS
PubMed
Google Scholar
Lin Q, Sirotkin A, Skoultchi AI. Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol Cell Biol. 2000;20(6):2122–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drabent B, Benavente R, Hoyer-Fender S. Histone H1t is not replaced by H1.1 or H1.2 in pachytene spermatocytes or spermatids of H1t-deficient mice. Cytogenet Genome Res. 2003;103(3–4):307–13.
CAS
PubMed
Google Scholar
Fantz DA, Hatfield WR, Horvath G, Kistler MK, Kistler WS. Mice with a targeted disruption of the H1t gene are fertile and undergo normal changes in structural chromosomal proteins during spermiogenesis. Biol Reprod. 2001;64(2):425–31.
Article
CAS
PubMed
Google Scholar
Khadake JR, Rao MR. DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin. Biochemistry. 1995;34(48):15792–801.
Article
CAS
PubMed
Google Scholar
De Lucia F, Faraone-Mennella MR, D’Erme M, Quesada P, Caiafa P, Farina B. Histone-induced condensation of rat testis chromatin: testis-specific H1t versus somatic H1 variants. Biochem Biophys Res Commun. 1994;198(1):32–9.
Article
PubMed
Google Scholar
Suzuki M. SPKK, a new nucleic acid-binding unit of protein found in histone. EMBO J. 1989;8(3):797–804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drabent B, Kardalinou E, Doenecke D. Structure and expression of the human gene encoding testicular H1 histone (H1t). Gene. 1991;103(2):263–8.
Article
CAS
PubMed
Google Scholar
Bharath MM, Chandra NR, Rao MR. Prediction of an HMG-box fold in the C-terminal domain of histone H1: insights into its role in DNA condensation. Proteins. 2002;49(1):71–81.
Article
CAS
PubMed
Google Scholar
Khadake JR, Rao MR. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1. Biochemistry. 1997;36(5):1041–51.
Article
PubMed
Google Scholar
Ramesh S, Bharath MM, Chandra NR, Rao MR. A K52Q substitution in the globular domain of histone H1t modulates its nucleosome binding properties. FEBS Lett. 2006;580(25):5999–6006.
Article
CAS
PubMed
Google Scholar
Nagamori I, Kobayashi H, Shiromoto Y, Nishimura T, Kuramochi-Miyagawa S, Kono T, et al. Comprehensive DNA methylation analysis of retrotransposons in male germ cells. Cell Rep. 2015;12(10):1541–7.
Article
CAS
PubMed
Google Scholar
Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, Kato Y, et al. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell. 2009;17(6):775–87.
Article
CAS
PubMed
Google Scholar
Ma L, Buchold GM, Greenbaum MP, Roy A, Burns KH, Zhu H, et al. GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet. 2009;5(9):e1000635.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kojima K, Kuramochi-Miyagawa S, Chuma S, Tanaka T, Nakatsuji N, Kimura T, et al. Associations between PIWI proteins and TDRD1/MTR-1 are critical for integrated subcellular localization in murine male germ cells. Genes Cells. 2009;14(10):1155–65.
Article
CAS
PubMed
Google Scholar
Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol. 2009;16(6):639–46.
Article
CAS
PubMed
Google Scholar
Tani R, Hayakawa K, Tanaka S, Shiota K. Linker histone variant H1T targets rDNA repeats. Epigenetics. 2016;11(4):288–302.
Article
PubMed
PubMed Central
Google Scholar
Hu J, Sun F, Handel MA. Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice. Biol Reprod. 2018;98(1):102–14.
Article
PubMed
Google Scholar
Izzo A, Kamieniarz-Gdula K, Ramirez F, Noureen N, Kind J, Manke T, et al. The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep. 2013;3(6):2142–54.
Article
CAS
PubMed
Google Scholar
Shen L, Shao N, Liu X, Nestler E. ngs.plot: quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics. 2014;15:284.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maezawa S, Yukawa M, Alavattam KG, Barski A, Namekawa SH. Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis. Nucleic Acids Res. 2018;46(2):593–608.
Article
CAS
PubMed
Google Scholar
Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004;431(7004):96–9.
Article
PubMed
CAS
Google Scholar
Molaro A, Falciatori I, Hodges E, Aravin AA, Marran K, Rafii S, et al. Two waves of de novo methylation during mouse germ cell development. Genes Dev. 2014;28(14):1544–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pezic D, Manakov SA, Sachidanandam R, Aravin AA. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev. 2014;28(13):1410–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delaval K, Govin J, Cerqueira F, Rousseaux S, Khochbin S, Feil R. Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J. 2007;26(3):720–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grewal SI, Jia S. Heterochromatin revisited. Nat Rev Genet. 2007;8(1):35–46.
Article
CAS
PubMed
Google Scholar
Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107(3):323–37.
Article
CAS
PubMed
Google Scholar
Peters AH, Schubeler D. Methylation of histones: playing memory with DNA. Curr Opin Cell Biol. 2005;17(2):230–8.
Article
CAS
PubMed
Google Scholar
Grozdanov P, Georgiev O, Karagyozov L. Complete sequence of the 45-kb mouse ribosomal DNA repeat: analysis of the intergenic spacer. Genomics. 2003;82(6):637–43.
Article
CAS
PubMed
Google Scholar
Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature. 2011;480(7376):264–7.
Article
CAS
PubMed
Google Scholar
Saxe JP, Chen M, Zhao H, Lin H. Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J. 2013;32(13):1869–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guthmann M, Burton A, Torres-Padilla ME. Expression and phase separation potential of heterochromatin proteins during early mouse development. EMBO Rep. 2019;20:e47952.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong J, Wang X, Cao C, Wen Y, Sakashita A, Chen S, et al. UHRF1 suppresses retrotransposons and cooperates with PRMT5 and PIWI proteins in male germ cells. Nat Commun. 2019;10(1):4705.
Article
PubMed
PubMed Central
CAS
Google Scholar
Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, et al. A LINE1-nucleolin partnership regulates early development and ESC identity. Cell. 2018;174(2):391–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu JY, Chang L, Li T, Wang T, Yin Y, Zhan G, Zhang K, Percharde M, Wang L, Peng Q, Yan P, Zhang H, Han X, Bi X, Shao W, Hong Y, Wu Z, Wang P, Li W, Zhang J, Chang Z, Hou Y, Li Y, Ramalho-Santos M, Na J, Xie W, Sun Y, Shen X. L1 and B1 repeats blueprint the spatial organization of chromatin. BioRxiv. 2019. https://doi.org/10.1101/802173.
Article
Google Scholar
Zamudio N, Barau J, Teissandier A, Walter M, Borsos M, Servant N, et al. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev. 2015;29(12):1256–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan Y, Nikitina T, Zhao J, Fleury TJ, Bhattacharyya R, Bouhassira EE, et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell. 2005;123(7):1199–212.
Article
CAS
PubMed
Google Scholar
Choi J, Lyons DB, Kim MY, Moore JD, Zilberman D. DNA methylation and histone H1 jointly repress transposable elements and aberrant intragenic transcripts. Mol Cell. 2020;77(2):310–23.e7.
Article
PubMed
CAS
Google Scholar
Iwasaki YW, Murano K, Ishizu H, Shibuya A, Iyoda Y, Siomi MC, et al. Piwi modulates chromatin accessibility by regulating multiple factors including histone H1 to repress transposons. Mol Cell. 2016;63(3):408–19.
Article
CAS
PubMed
Google Scholar
Zentner GE, Balow SA, Scacheri PC. Genomic characterization of the mouse ribosomal DNA locus. G3. 2014;4(2):243–54.
Article
CAS
PubMed
Google Scholar
Ghosh AK, Hoff CM, Jacob ST. Characterization of the 130-bp repeat enhancer element of the rat ribosomal gene: functional interaction with transcription factor E1BF. Gene. 1993;125(2):217–22.
Article
CAS
PubMed
Google Scholar
Cong R, Das S, Douet J, Wong J, Buschbeck M, Mongelard F, et al. macroH2A1 histone variant represses rDNA transcription. Nucleic Acids Res. 2014;42(1):181–92.
Article
CAS
PubMed
Google Scholar
Bickmore WA, van Steensel B. Genome architecture: domain organization of interphase chromosomes. Cell. 2013;152(6):1270–84.
Article
CAS
PubMed
Google Scholar
Bickmore WA. The spatial organization of the human genome. Annu Rev Genomics Hum Genet. 2013;14:67–84.
Article
CAS
PubMed
Google Scholar
Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet. 2013;14(6):390–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belmont AS. Large-scale chromatin organization: the good, the surprising, and the still perplexing. Curr Opin Cell Biol. 2014;26:69–78.
Article
CAS
PubMed
Google Scholar
Pombo A, Dillon N. Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol. 2015;16(4):245–57.
Article
CAS
PubMed
Google Scholar
Sexton T, Cavalli G. The role of chromosome domains in shaping the functional genome. Cell. 2015;160(6):1049–59.
Article
CAS
PubMed
Google Scholar
Nemeth A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Peterfia B, et al. Initial genomics of the human nucleolus. PLoS Genet. 2010;6(3):e1000889.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton GJ, Ariyurek Y, et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell. 2010;21(21):3735–48.
Article
PubMed
PubMed Central
Google Scholar
Dillinger S, Straub T, Nemeth A. Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation. PLoS ONE. 2017;12(6):e0178821.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carone BR, Hung JH, Hainer SJ, Chou MT, Carone DM, Weng Z, et al. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell. 2014;30(1):11–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, et al. Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements. Dev Cell. 2014;30(1):23–35.
Article
CAS
PubMed
Google Scholar
Mishra LN, Shalini V, Gupta N, Ghosh K, Suthar N, Bhaduri U, et al. Spermatid-specific linker histone HILS1 is a poor condenser of DNA and chromatin and preferentially associates with LINE-1 elements. Epigenet Chromat. 2018;11:1–21.
Article
CAS
Google Scholar
Faraone-Mennella MR, De Lucia F, Gentile N, Quesada P, Farina B. In vitro poly(ADP-ribosyl)ated histones H1a and H1t modulate rat testis chromatin condensation differently. J Cell Biochem. 1999;76(1):20–9.
Article
CAS
PubMed
Google Scholar
Meyer-Ficca ML, Ihara M, Lonchar JD, Meistrich ML, Austin CA, Min W, et al. Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol Reprod. 2011;84(2):218–28.
Article
CAS
PubMed
Google Scholar
Luense LJ, Wang X, Schon SB, Weller AH, Lin Shiao E, Bryant JM, et al. Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells. Epigenet Chromat. 2016;9:24.
Article
CAS
Google Scholar
Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev. 2013;27(15):1680–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burston D, Tombs MP, Apsey ME, Maclagan NF. The perchloric acid soluble basic and acidic proteins of the cytoplasm: variation in cancer. Br J Cancer. 1963;17:162–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta N, Pentakota S, Mishra LN, Jones R, Rao MR. Identification of posttranslational modifications of endogenous chromatin proteins from testicular cells by mass spectrometry. Methods Enzymol. 2017;586:115–42.
Article
CAS
PubMed
Google Scholar
Shechter D, Dormann HL, Allis CD, Hake SB. Extraction, purification and analysis of histones. Nat Protoc. 2007;2(6):1445–57.
Article
CAS
PubMed
Google Scholar
Peters AH, Plug AW, van Vugt MJ, de Boer P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 1997;5(1):66–8.
Article
CAS
PubMed
Google Scholar
Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, Sardet C, et al. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol. 2010;12(11):1086–93.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006;34(Web Server issue):W369–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahadevan IA, Pentakota S, Roy R, Bhaduri U, Satyanarayana Rao MR. TH2BS11ph histone mark is enriched in the unsynapsed axes of the XY body and predominantly associates with H3K4me3-containing genomic regions in mammalian spermatocytes. EpigenetChromat. 2019;12(1):53.
Google Scholar