Skip to main content

Articles

Page 5 of 19

  1. Epigenetics research is progressing in basic, pre-clinical and clinical studies using various model systems. Hence, updating the knowledge and integration of biological data emerging from in silico, in vitro a...

    Authors: Sanket G. Shah, Tushar Mandloi, Pooja Kunte, Abhiram Natu, Mudasir Rashid, Divya Reddy, Nikhil Gadewal and Sanjay Gupta
    Citation: Epigenetics & Chromatin 2020 13:31
  2. Several thousand sex-differential distal enhancers have been identified in mouse liver; however, their links to sex-biased genes and the impact of any sex-differences in nuclear organization and chromatin inte...

    Authors: Bryan J. Matthews and David J. Waxman
    Citation: Epigenetics & Chromatin 2020 13:30
  3. H2A.B, the most divergent histone variant of H2A, can significantly modulate nucleosome and chromatin structures. However, the related structural details and the underlying mechanism remain elusive to date. In...

    Authors: Junhui Peng, Chuang Yuan, Xinfan Hua and Zhiyong Zhang
    Citation: Epigenetics & Chromatin 2020 13:28
  4. Chromatin physical interactions provide essential information for understanding the regulation of cis-elements like enhancers, promoters, and insulators in cell development and differentiation. The Hi-C assay is ...

    Authors: Yan Zhang, Zhaoqiang Li, Shasha Bian, Hao Zhao, Delong Feng, Yanhong Chen, Yuhe Hou, Qifa Liu and Bingtao Hao
    Citation: Epigenetics & Chromatin 2020 13:27
  5. Histone H1 is the most mobile histone in the cell nucleus. Defining the positions of H1 on chromatin in situ, therefore, represents a challenge. Immunoprecipitation of formaldehyde-fixed and sonicated chromati...

    Authors: Vladimir B. Teif, Travis J. Gould, Christopher T. Clarkson, Logan Boyd, Enoch B. Antwi, Naveed Ishaque, Ada L. Olins and Donald E. Olins
    Citation: Epigenetics & Chromatin 2020 13:26
  6. DNA methylation is a highly studied epigenetic signature that is associated with regulation of gene expression, whereby genes with high levels of promoter methylation are generally repressed. Genomic imprintin...

    Authors: Stephany Orjuela, Dania Machlab, Mirco Menigatti, Giancarlo Marra and Mark D. Robinson
    Citation: Epigenetics & Chromatin 2020 13:25
  7. The YEATS domain is a highly conserved protein structure that interacts with acetylated and crotonylated lysine residues in N-terminal tails of histones. The budding yeast genome encodes three YEATS domain pro...

    Authors: Kadri Peil, Henel Jürgens, Johanna Luige, Kersti Kristjuhan and Arnold Kristjuhan
    Citation: Epigenetics & Chromatin 2020 13:24
  8. DNA packaging into chromatin regulates all DNA-related processes and at chromosomal ends could affect both essential functions of telomeres: protection against DNA damage response and telomere replication. Des...

    Authors: Emeline Pasquier and Raymund J. Wellinger
    Citation: Epigenetics & Chromatin 2020 13:23
  9. Chromatin dysregulation is associated with developmental disorders and cancer. Numerous methods for measuring genome-wide chromatin accessibility have been developed in the genomic era to interrogate the funct...

    Authors: Jake J. Reske, Mike R. Wilson and Ronald L. Chandler
    Citation: Epigenetics & Chromatin 2020 13:22
  10. Next-generation sequencing allows genome-wide analysis of changes in chromatin states and gene expression. Data analysis of these increasingly used methods either requires multiple analysis steps, or extensive...

    Authors: Lorinc S. Pongor, Jacob M. Gross, Roberto Vera Alvarez, Junko Murai, Sang-Min Jang, Hongliang Zhang, Christophe Redon, Haiqing Fu, Shar-Yin Huang, Bhushan Thakur, Adrian Baris, Leonardo Marino-Ramirez, David Landsman, Mirit I. Aladjem and Yves Pommier
    Citation: Epigenetics & Chromatin 2020 13:21
  11. Understanding the transcriptome is critical for explaining the functional as well as regulatory roles of genomic regions. Current methods for the identification of transcription units (TUs) use RNA-seq that, h...

    Authors: Anshupa Sahu, Na Li, Ilona Dunkel and Ho-Ryun Chung
    Citation: Epigenetics & Chromatin 2020 13:20
  12. Mature sperm carry thousands of RNAs, including mRNAs, lncRNAs, tRNAs, rRNAs and sncRNAs, though their functional significance is still a matter of debate. Growing evidence suggests that sperm RNAs, especially...

    Authors: Eli Sellem, Sylvain Marthey, Andrea Rau, Luc Jouneau, Aurelie Bonnet, Jean-Philippe Perrier, Sébastien Fritz, Chrystelle Le Danvic, Mekki Boussaha, Hélène Kiefer, Hélène Jammes and Laurent Schibler
    Citation: Epigenetics & Chromatin 2020 13:19
  13. MeCP2 and MBD2 are members of a family of proteins that possess a domain that selectively binds 5-methylcytosine in a CpG context. Members of the family interact with other proteins to modulate DNA packing. St...

    Authors: Ming Liu, Saeid Movahed, Saroj Dangi, Hai Pan, Parminder Kaur, Stephanie M. Bilinovich, Edgar M. Faison, Gage O. Leighton, Hong Wang, David C. Williams Jr. and Robert Riehn
    Citation: Epigenetics & Chromatin 2020 13:18
  14. Allele-specific DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of the...

    Authors: Dana M. Freeman, Dan Lou, Yanqiang Li, Suzanne N. Martos and Zhibin Wang
    Citation: Epigenetics & Chromatin 2020 13:17
  15. SETD8 is the sole methyltransferase capable of mono-methylating histone H4, lysine 20. SETD8 and H4K20me1 play a role in a number of essential biologic processes, including cell cycle progression, establishmen...

    Authors: Jacquelyn A. Myers, Tyler Couch, Zachary Murphy, Jeffrey Malik, Michael Getman and Laurie A. Steiner
    Citation: Epigenetics & Chromatin 2020 13:16
  16. Transcriptional repression of Nanog is an important hallmark of stem cell differentiation. Chromatin modifications have been linked to the epigenetic profile of the Nanog gene, but whether chromatin organizati...

    Authors: Francisco J. González-Rico, Cristina Vicente-García, Almudena Fernández, Diego Muñoz-Santos, Lluís Montoliu, Antonio Morales-Hernández, Jaime M. Merino, Angel-Carlos Román and Pedro M. Fernández-Salguero
    Citation: Epigenetics & Chromatin 2020 13:15
  17. Pharmacologic inhibition of bromodomain and extra-terminal (BET) proteins is currently being explored as a new therapeutic approach in cancer. Some studies have also implicated BET proteins as regulators of ce...

    Authors: Archit Trivedi, Aanchal Mehrotra, Caitlin E. Baum, Brandon Lewis, Tupa Basuroy, Thomas Blomquist, Robert Trumbly, Fabian V. Filipp, Vijayasaradhi Setaluri and Ivana L. de la Serna
    Citation: Epigenetics & Chromatin 2020 13:14
  18. Maternal smoking of traditional or electronic cigarettes during pregnancy, which constitutes developmental nicotine exposure (DNE), heightens the risk of neurodevelopmental disorders including ADHD, autism, an...

    Authors: Jordan M. Buck, Heidi C. O’Neill and Jerry A. Stitzel
    Citation: Epigenetics & Chromatin 2020 13:13
  19. A large number of in vitro experiments have confirmed that DNA molecules can form i-motif advanced structure when multiple cytosines exist in the sequence. However, whether these structures are present in vivo...

    Authors: Wenhuan Tang, Kangkang Niu, Guoxing Yu, Ying Jin, Xian Zhang, Yuling Peng, Shuna Chen, Huimin Deng, Sheng Li, Jian Wang, Qisheng Song and Qili Feng
    Citation: Epigenetics & Chromatin 2020 13:12
  20. H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mou...

    Authors: Iyer Aditya Mahadevan, Sanjeev Kumar and Manchanahalli R. Satyanarayana Rao
    Citation: Epigenetics & Chromatin 2020 13:9
  21. Maintaining a proper supply of soluble histones throughout the cell cycle is important to ensure chromatin and genome stability. Following their synthesis, histones undergo a series of maturation steps to prep...

    Authors: Francisco Saavedra, Zachary A. Gurard-Levin, Camila Rojas-Villalobos, Isabelle Vassias, Raquel Quatrini, Geneviève Almouzni and Alejandra Loyola
    Citation: Epigenetics & Chromatin 2020 13:6
  22. Recent studies indicate that exposure to environmental chemicals may increase susceptibility to developing metabolic diseases. This susceptibility may in part be caused by changes to the epigenetic landscape w...

    Authors: Marjo J. den Broeder, Jarle Ballangby, Leonie M. Kamminga, Peter Aleström, Juliette Legler, Leif C. Lindeman and Jorke H. Kamstra
    Citation: Epigenetics & Chromatin 2020 13:5
  23. Plant homeodomain (PHD) fingers are central “readers” of histone post-translational modifications (PTMs) with > 100 PHD finger-containing proteins encoded by the human genome. Many of the PHDs studied to date ...

    Authors: Kanishk Jain, Caroline S. Fraser, Matthew R. Marunde, Madison M. Parker, Cari Sagum, Jonathan M. Burg, Nathan Hall, Irina K. Popova, Keli L. Rodriguez, Anup Vaidya, Krzysztof Krajewski, Michael-Christopher Keogh, Mark T. Bedford and Brian D. Strahl
    Citation: Epigenetics & Chromatin 2020 13:3
  24. Paternal allele-specific DNA methylation of the H19 imprinting control region (ICR) regulates imprinted expression of the Igf2/H19 genes. The molecular mechanism by which differential methylation of the H19 ICR i...

    Authors: Hitomi Matsuzaki, Daichi Kuramochi, Eiichi Okamura, Katsuhiko Hirakawa, Aki Ushiki and Keiji Tanimoto
    Citation: Epigenetics & Chromatin 2020 13:2
  25. Chromatin organization is central to precise control of gene expression. In various eukaryotic species, domains of pervasive cis-chromatin interactions demarcate functional domains of the genomes. In nematode Cae...

    Authors: Alexis V. Stutzman, April S. Liang, Vera Beilinson and Kohta Ikegami
    Citation: Epigenetics & Chromatin 2020 13:1
  26. Current array-based methods for the measurement of DNA methylation rely on the process of sodium bisulfite conversion to differentiate between methylated and unmethylated cytosine bases in DNA. In the absence ...

    Authors: Brenna A. LaBarre, Alexander Goncearenco, Hanna M. Petrykowska, Weerachai Jaratlerdsiri, M. S. Riana Bornman, Vanessa M. Hayes and Laura Elnitski
    Citation: Epigenetics & Chromatin 2019 12:79
  27. While the role of Polycomb group protein-mediated “cell memory” is well established in developmental contexts, little is known about their role in adult tissues and in particular in post-mitotic cells. Emergin...

    Authors: Peng Liu, Muhammad Shuaib, Huoming Zhang, Seba Nadeef and Valerio Orlando
    Citation: Epigenetics & Chromatin 2019 12:78
  28. Endothelial cells (ECs) make up the innermost layer throughout the entire vasculature. Their phenotypes and physiological functions are initially regulated by developmental signals and extracellular stimuli. T...

    Authors: Ryuichiro Nakato, Youichiro Wada, Ryo Nakaki, Genta Nagae, Yuki Katou, Shuichi Tsutsumi, Natsu Nakajima, Hiroshi Fukuhara, Atsushi Iguchi, Takahide Kohro, Yasuharu Kanki, Yutaka Saito, Mika Kobayashi, Akashi Izumi-Taguchi, Naoki Osato, Kenji Tatsuno…
    Citation: Epigenetics & Chromatin 2019 12:77
  29. Neural tube defects (NTDs) are severe, common birth defects that result from failure of normal neural tube closure during early embryogenesis. Accumulating strong evidence indicates that genetic factors contri...

    Authors: Juan Yu, Lei Wang, Pei Pei, Xue Li, Jianxin Wu, Zhiyong Qiu, Juan Zhang, Ruifang Ao, Shan Wang, Ting Zhang and Jun Xie
    Citation: Epigenetics & Chromatin 2019 12:76
  30. Nickel is an occupational and environmental toxicant associated with a number of diseases in humans including pulmonary fibrosis, bronchitis and lung and nasal cancers. Our earlier studies showed that the nick...

    Authors: Cynthia C. Jose, Zhenjia Wang, Vinay Singh Tanwar, Xiaoru Zhang, Chongzhi Zang and Suresh Cuddapah
    Citation: Epigenetics & Chromatin 2019 12:75
  31. The impact of aging on the sperm methylome is well understood. However, the direct, subsequent impact on offspring and the role of altered sperm DNA methylation alterations in this process remain poorly unders...

    Authors: Timothy G. Jenkins, Emma R. James, Kenneth I. Aston, Albert Salas-Huetos, Alexander W. Pastuszak, Ken R. Smith, Heidi A. Hanson, James M. Hotaling and Douglas T. Carrell
    Citation: Epigenetics & Chromatin 2019 12:74
  32. Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of ...

    Authors: Sylvia Garza-Manero, Abdulmajeed Abdulghani A. Sindi, Gokula Mohan, Ohoud Rehbini, Valentine H. M. Jeantet, Mariarca Bailo, Faeezah Abdul Latif, Maureen P. West, Ross Gurden, Lauren Finlayson, Silvija Svambaryte, Adam G. West and Katherine L. West
    Citation: Epigenetics & Chromatin 2019 12:73
  33. Our understanding of the nuclear chromatin structure has increased hugely during the last years mainly as a consequence of the advances in chromatin conformation capture methods like Hi-C. The unprecedented re...

    Authors: Enrique M. Muro, Jonas Ibn-Salem and Miguel A. Andrade-Navarro
    Citation: Epigenetics & Chromatin 2019 12:72
  34. Chromatin-based transcriptional silencing is often described as a stochastic process, largely because of the mosaic expression observed in position effect variegation (PEV), where a euchromatic reporter gene i...

    Authors: Sidney H. Wang and Sarah C. R. Elgin
    Citation: Epigenetics & Chromatin 2019 12:70
  35. Neural tube defects (NTDs) are common congenital malformations resulting in failure of the neural tube closure during early embryonic development. Although it is known that maternal folate deficiency increases...

    Authors: Pei Pei, Xiyue cheng, Juan Yu, Jinying Shen, Xue Li, Jianxin Wu, Shan Wang and Ting Zhang
    Citation: Epigenetics & Chromatin 2019 12:69
  36. BRM (BRAHMA) is a core, SWI2/SNF2-type ATPase subunit of SWI/SNF chromatin-remodelling complex (CRC) involved in various important regulatory processes including development. Mutations in SMARCA2, a BRM-encoding ...

    Authors: Iga Jancewicz, Janusz A. Siedlecki, Tomasz J. Sarnowski and Elzbieta Sarnowska
    Citation: Epigenetics & Chromatin 2019 12:68
  37. Huntington’s Disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion, resulting in a mutant huntingtin protein. While it is now clear that astrocytes are affected by HD and signific...

    Authors: Alexandra V. Goodnight, Isaac Kremsky, Sujittra Khampang, Yoon Hee Jung, James M. Billingsley, Steven E. Bosinger, Victor G. Corces and Anthony W. S. Chan
    Citation: Epigenetics & Chromatin 2019 12:67
  38. Numerous cell types can be identified within plant tissues and animal organs, and the epigenetic modifications underlying such enormous cellular heterogeneity are just beginning to be understood. It remains a ...

    Authors: Liduo Yin, Yanting Luo, Xiguang Xu, Shiyu Wen, Xiaowei Wu, Xuemei Lu and Hehuang Xie
    Citation: Epigenetics & Chromatin 2019 12:66
  39. In mammals, the regulation of imprinted genes is controlled by differential methylation at imprinting control regions which acquire parent of origin-specific methylation patterns during gametogenesis and retai...

    Authors: Julianna Nechin, Emma Tunstall, Naideline Raymond, Nicole Hamagami, Chris Pathmanabhan, Samantha Forestier and Tamara L. Davis
    Citation: Epigenetics & Chromatin 2019 12:64
  40. MeCP2—a chromatin-binding protein associated with Rett syndrome—has two main isoforms, MeCP2-E1 and MeCP2-E2, differing in a few N-terminal amino acid residues. Previous studies have shown brain region-specifi...

    Authors: Alexia Martínez de Paz, Leila Khajavi, Hélène Martin, Rafael Claveria-Gimeno, Susanne Tom Dieck, Manjinder S. Cheema, Jose V. Sanchez-Mut, Malgorzata M. Moksa, Annaick Carles, Nick I. Brodie, Taimoor I. Sheikh, Melissa E. Freeman, Evgeniy V. Petrotchenko, Christoph H. Borchers, Erin M. Schuman, Matthias Zytnicki…
    Citation: Epigenetics & Chromatin 2019 12:63
  41. DNA methylation of active genes, also known as gene body methylation, is found in many animal and plant genomes. Despite this, the transcriptional and developmental role of such methylation remains poorly unde...

    Authors: Keith D. Harris, James P. B. Lloyd, Katherine Domb, Daniel Zilberman and Assaf Zemach
    Citation: Epigenetics & Chromatin 2019 12:62
  42. Comparisons of Hi–C data sets between cell types and conditions have revealed differences in topologically associated domains (TADs) and A/B compartmentalization, which are correlated with differences in gene ...

    Authors: Lila Rieber and Shaun Mahony
    Citation: Epigenetics & Chromatin 2019 12:61
  43. Allele-specific methylation (ASM) occurs when DNA methylation patterns exhibit asymmetry among alleles. ASM occurs at imprinted loci, but its presence elsewhere across the human genome is indicative of wider i...

    Authors: Miles C. Benton, Rodney A. Lea, Donia Macartney-Coxson, Heidi G. Sutherland, Nicole White, Daniel Kennedy, Kerry Mengersen, Larisa M. Haupt and Lyn R. Griffiths
    Citation: Epigenetics & Chromatin 2019 12:60
  44. The stability of p53 is mainly controlled by ubiquitin-dependent degradation, which is triggered by the E3 ubiquitin ligase MDM2. The chromatin modifier lymphoid-specific helicase (LSH) is essential for DNA me...

    Authors: Ling Chen, Ying Shi, Na Liu, Zuli Wang, Rui Yang, Bin Yan, Xiaoli Liu, Weiwei Lai, Yating Liu, Desheng Xiao, Hu Zhou, Yan Cheng, Ya Cao, Shuang Liu, Zanxian Xia and Yongguang Tao
    Citation: Epigenetics & Chromatin 2019 12:59
  45. Alterations to cellular and molecular programs with brain aging result in cognitive impairment and susceptibility to neurodegenerative disease. Changes in DNA methylation patterns, an epigenetic modification r...

    Authors: Niran Hadad, Dustin R. Masser, Laura Blanco-Berdugo, David R. Stanford and Willard M. Freeman
    Citation: Epigenetics & Chromatin 2019 12:58

Affiliated with

  • Epigenetics & Chromatin is affiliated with the International Society for Molecular and Clinical Epigenetics (isMOCLEP). isMOCLEP is open to all those interested in the wide spectrum of epigenetic research, from molecular to clinical aspects. isMOCLEP community welcomes academic researchers, early career scientists, companies, policy makers, and beyond.

Annual Journal Metrics

  • Citation Impact 2023
    Journal Impact Factor: 4.2
    5-year Journal Impact Factor: 4.9
    Source Normalized Impact per Paper (SNIP): 0.892
    SCImago Journal Rank (SJR): 2.062

    Speed 2023
    Submission to first editorial decision (median days): 1
    Submission to acceptance (median days): 76

    Usage 2023
    Downloads: 658,550
    Altmetric mentions: 307