Cramer P. Organization and regulation of gene transcription. Nature. 2019;573(7772):45–54.
Article
CAS
PubMed
Google Scholar
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389(6648):251–60.
Article
CAS
PubMed
Google Scholar
Loppin B, Berger F. Histone variants: the nexus of developmental decisions and epigenetic memory. Annu Rev Genet. 2020;54:121–49.
Article
CAS
PubMed
Google Scholar
Talbert PB, Henikoff S. Histone variants at a glance. J Cell Sci. 2021;134(6):jcs244749.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.
Article
CAS
PubMed
Google Scholar
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirosawa M, Hayakawa K, Shiota K, Tanaka S. Histone O-GlcNAcylation and potential biological functions. OBM Genet. 2018;2(3):1.
Article
Google Scholar
Gowans GJ, Bridgers JB, Zhang J, Dronamraju R, Burnetti A, King DA, et al. Recognition of histone crotonylation by Taf14 links metabolic state to gene expression. Mol Cell. 2019;76(6):909-21.e3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med. 2017;49(4):e324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho JWK, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, et al. Comparative analysis of metazoan chromatin organization. Nature. 2014;512(7515):449–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine MT, McCoy C, Vermaak D, Lee YCG, Hiatt MA, Matsen FA, et al. Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family. PLoS Genet. 2012;8(6): e1002729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vermaak D, Malik H. Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet. 2009;43:467–92.
Article
CAS
PubMed
Google Scholar
Eissenberg JC, Elgin SCR. HP1a: a structural chromosomal protein regulating transcription. Trends Genet. 2014;30(3):103–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature. 2002;416(6876):103–7.
Article
CAS
PubMed
Google Scholar
Smothers JF, Henikoff S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr Biol. 2000;10(1):27–30.
Article
CAS
PubMed
Google Scholar
Meehan RR. HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO J. 2003;22(12):3164–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helleu Q, Levine MT. Recurrent amplification of the heterochromatin protein 1 (HP1) gene family across Diptera. Mol Biol Evol. 2018;35(10):2375–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh J, Yeom S, Park J, Lee JS. The regional sequestration of heterochromatin structural proteins is critical to form and maintain silent chromatin. Epigenet Chromatin. 2022;15(1):5.
Article
CAS
Google Scholar
Zofall M, Grewal SI. RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb Symp Quant Biol. 2006;71:487–96.
Article
CAS
PubMed
Google Scholar
Bondarenko VA, Steele LM, Újvári A, Gaykalova DA, Kulaeva OI, Polikanov YS, et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol Cell. 2006;24(3):469–79.
Article
CAS
PubMed
Google Scholar
Fei J, Ishii H, Hoeksema MA, Meitinger F, Kassavetis GA, Glass CK, et al. NDF, a nucleosome-destabilizing factor that facilitates transcription through nucleosomes. Genes Dev. 2018;32(9–10):682–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orphanides G, Leroy G, Chang C-H, Luse DS, Reinberg D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell. 1998;92(1):105–16.
Article
CAS
PubMed
Google Scholar
Egel R, Beach DH, Klar AJ. Genes required for initiation and resolution steps of mating-type switching in fission yeast. Proc Natl Acad Sci. 1984;81(11):3481–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutz H, Schmidt H. Switching genes in Schizosaccharomyces pombe. Curr Genet. 1985;9(5):325–31.
Article
CAS
PubMed
Google Scholar
Klar AJ, Bonaduce MJ. swi6, a gene required for mating-type switching, prohibits meiotic recombination in the mat2-mat3 “cold spot” of fission yeast. Genetics. 1991;129(4):1033–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorentz A, Heim L, Schmidt H. The switching gene swi6 affects recombination and gene expression in the mating-type region of Schizosaccharomyces pombe. Mol Gen Genet. 1992;233(3):436–42.
Article
CAS
PubMed
Google Scholar
Lorentz A, Ostermann K, Fleck O, Schmidt H. Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. Gene. 1994;143(1):139–43.
Article
CAS
PubMed
Google Scholar
Thon G, Verhein-Hansen J. Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics. 2000;155(2):551–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isaac RS, Sanulli S, Tibble R, Hornsby M, Ravalin M, Craik CS, et al. Biochemical basis for distinct roles of the heterochromatin proteins Swi6 and Chp2. J Mol Biol. 2017;429(23):3666–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Motamedi MR, Hong EJ, Li X, Gerber S, Denison C, Gygi S, et al. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol Cell. 2008;32(6):778–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
James TC, Elgin SC. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol. 1986;6(11):3862–72.
CAS
PubMed
PubMed Central
Google Scholar
Smothers JF, Henikoff S. The Hinge and Chromo shadow domain impart distinct targeting of HP1-like proteins. Mol Cell Biol. 2001;21(7):2555–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volpe AM, Horowitz H, Grafer CM, Jackson SM, Berg CA. Drosophila rhino encodes a female-specific chromo-domain protein that affects chromosome structure and egg polarity. Genetics. 2001;159(3):1117–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vermaak D, Henikoff S, Malik HS. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLoS Genet. 2005;1(1): e9.
Article
PubMed Central
CAS
Google Scholar
Fang C, Schmitz L, Ferree PM. An unusually simple HP1 gene set in Hymenopteran insects. Biochem Cell Biol. 2015;93(6):596–603.
Article
CAS
PubMed
Google Scholar
Liu X-Y, Zhang X-B, Li M-H, Zheng S-Q, Liu Z-L, Cheng Y-Y, et al. Genome-wide identification, evolution of chromobox family genes and their expression in Nile tilapia. Comp Biochem Physiol B: Biochem Mol Biol. 2017;203:25–34.
Article
CAS
Google Scholar
Minc E, Allory Y, Worman HJ, Courvalin J-C, Buendia B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma. 1999;108(4):220–34.
Article
CAS
PubMed
Google Scholar
Grunstein M, Gasser SM. Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb Perspect Biol. 2013;5(7):a017491.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang H, Wiley EA, Lending CR, Allis CD. An HP1-like protein is missing from transcriptionally silent micronuclei of Tetrahymena. Proc Natl Acad Sci USA. 1998;95(23):13624–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yale K, Tackett AJ, Neuman M, Bulley E, Chait BT, Wiley E. Phosphorylation-dependent targeting of tetrahymena HP1 to condensed chromatin. mSphere. 2016;1(4):e00142.
Article
PubMed
PubMed Central
Google Scholar
Guan H, Zheng Z, Grey PH, Li Y, Oppenheimer DG. Conservation and divergence of plant LHP1 protein sequences and expression patterns in angiosperms and gymnosperms. Mol Genet Genomics. 2011;285(5):357–73.
Article
CAS
PubMed
Google Scholar
Chen D-H, Huang Y, Ruan Y, Shen W-H. The evolutionary landscape of PRC1 core components in green lineage. Planta. 2016;243(4):825–46.
Article
CAS
PubMed
Google Scholar
Elgin SCR, Reuter G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Har Perspect Biol. 2013;5(8):a017780.
Google Scholar
Cryderman DE, Cuaycong MH, Elgin SC, Wallrath LL. Characterization of sequences associated with position-effect variegation at pericentric sites in Drosophila heterochromatin. Chromosoma. 1998;107(5):277–85.
Article
CAS
PubMed
Google Scholar
Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA. 1990;87(24):9923–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eissenberg JC, Morris GD, Reuter G, Hartnett T. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics. 1992;131(2):345–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reuter G, Dorn R, Wustmann G, Friede B, Rauh G. Third chromosome suppressor of position-effect variegation loci in Drosophila melanogaster. Mol Gen Genet MGG. 1986;202(3):481–7.
Article
CAS
Google Scholar
Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001;410(6824):116–20.
Article
CAS
PubMed
Google Scholar
Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001;292(5514):110–3.
Article
CAS
PubMed
Google Scholar
Canzio D, Chang EY, Shankar S, Kuchenbecker KM, Simon MD, Madhani HD, et al. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol Cell. 2011;41(1):67–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canzio D, Liao M, Naber N, Pate E, Larson A, Wu S, et al. A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature. 2013;496(7445):377–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. Phase separation drives heterochromatin domain formation. Nature. 2017;547(7662):241–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, et al. Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature. 2017;547(7662):236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanulli S, Trnka MJ, Dharmarajan V, Tibble RW, Pascal BD, Burlingame AL, et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature. 2019;575(7782):390–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H, et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature. 2019;570(7761):395–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seum C, Spierer A, Delattre M, Pauli D, Spierer P. A GAL4-HP1 fusion protein targeted near heterochromatin promotes gene silencing. Chromosoma. 2000;109(7):453–9.
Article
CAS
PubMed
Google Scholar
Li Y, Danzer JR, Alvarez P, Belmont AS, Wallrath LL. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development. 2003;130(9):1817–24.
Article
CAS
PubMed
Google Scholar
Lee DH, Ryu HW, Kim GW, Kwon SH. Comparison of three heterochromatin protein 1 homologs in Drosophila. J Cell Sci. 2019;132(3):jcs222729.
Article
CAS
PubMed
Google Scholar
Braun SMG, Kirkland JG, Chory EJ, Husmann D, Calarco JP, Crabtree GR. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun. 2017;8(1):560.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gessaman JD, Selker EU. Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Neurospora crassa. Proc Natl Acad Sci USA. 2017;114(45):E9598–607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR. Dynamics and memory of heterochromatin in living cells. Cell. 2012;149(7):1447–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verschure PJ, van der Kraan I, de Leeuw W, van der Vlag J, Carpenter AE, Belmont AS, et al. In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol Cell Biol. 2005;25(11):4552–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cryderman DE, Grade SK, Li Y, Fanti L, Pimpinelli S, Wallrath LL. Role of DrosophilaHP1 in euchromatic gene expression. Dev Dyn. 2005;232(3):767–74.
Article
CAS
PubMed
Google Scholar
De Lucia F, Ni JQ, Vaillant C, Sun FL. HP1 modulates the transcription of cell-cycle regulators in Drosophila melanogaster. Nucleic Acids Res. 2005;33(9):2852–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee DH, Li Y, Shin DH, Yi SA, Bang SY, Park EK, et al. DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila. Biochem Biophys Res Commun. 2013;434(4):820–8.
Article
CAS
PubMed
Google Scholar
Riddle NC, Jung YL, Gu T, Alekseyenko AA, Asker D, Gui H, et al. Enrichment of HP1a on drosophila chromosome 4 genes creates an alternate chromatin structure critical for regulation in this heterochromatic domain. PLoS Genet. 2012;8(9): e1002954.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park AR, Liu N, Neuenkirchen N, Guo Q, Lin H. The role of maternal HP1a in early drosophila embryogenesis via regulation of maternal transcript production. Genetics. 2019;211(1):201–17.
Article
CAS
PubMed
Google Scholar
Piacentini L, Sergio P. Positive regulation of euchromatic gene expression by HP1a. Fly. 2010;4(4):299–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piacentini L, Fanti L, Berloco M, Perrini B, Pimpinelli S. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J Cell Biol. 2003;161(4):707–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, Altieri F, et al. Heterochromatin Protein 1 (HP1a) positively regulates euchromatic gene expression through rna transcript association and interaction with hnRNPs in Drosophila. PLoS Genet. 2009;5(10): e1000670.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu BY, Emtage PCR, Duyf BJ, Hilliker AJ, Eissenberg JC. Heterochromatin Protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics. 2000;155(2):699–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulze SR, Sinclair DA, Fitzpatrick KA, Honda BM. A genetic and molecular characterization of two proximal heterochromatic genes on chromosome 3 of Drosophila melanogaster. Genetics. 2005;169(4):2165–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wakimoto BT, Hearn MG. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics. 1990;125(1):141–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz J. Variegation in Drosophila and the inert chromosome regions. Proc Natl Acad Sci USA. 1936;22(1):27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cryderman DE, Vitalini MW, Wallrath LL. Heterochromatin protein 1a is required for an open chromatin structure. Transcription. 2011;2(2):95–9.
Article
PubMed
PubMed Central
Google Scholar
Greil F. Distinct HP1 and Su(var)3–9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev. 2003;17(22):2825–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smallwood A, Hon GC, Jin F, Henry RE, Espinosa JM, Ren B. CBX3 regulates efficient RNA processing genome-wide. Genome Res. 2012;22(8):1426–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Rodriguez J, Yoo Y, Shareef MM, Badugu R, Horabin JI, et al. Cooperative and antagonistic contributions of two heterochromatin proteins to transcriptional regulation of the Drosophila sex determination decision. PLoS Genet. 2011;7(6): e1002122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Figueiredo MLA, Philip P, Stenberg P, Larsson J. HP1a recruitment to promoters is independent of H3K9 methylation in Drosophila melanogaster. PLoS Genet. 2012;8(11): e1003061.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mills BB, Thomas AD, Riddle NC. HP1B is a euchromatic Drosophila HP1 homolog with links to metabolism. PLoS ONE. 2018;13(10): e0205867.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang D, Wang D, Sun F. Drosophila melanogaster heterochromatin protein HP1b plays important roles in transcriptional activation and development. Chromosoma. 2011;120(1):97–108.
Article
CAS
PubMed
Google Scholar
Font-Burgada J, Rossell D, Auer H, Azorin F. Drosophila HP1c isoform interacts with the zinc-finger proteins WOC and Relative-of-WOC to regulate gene expression. Genes Dev. 2008;22(21):3007–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoelz JM, Feng JX, Riddle NC. The Drosophila HP1 family is associated with active gene expression across chromatin contexts. Genetics. 2021;219(1): iyab108
Article
PubMed
Google Scholar
Ryu H-W, Lee DH, Florens L, Swanson SK, Washburn MP, Kwon SH. Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila. J Proteomics. 2014;102:137–47.
Article
CAS
PubMed
Google Scholar
Kwon SH, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL. Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. Genes Dev. 2010;24(19):2133–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon SH, Workman JL. The changing faces of HP1: from heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. BioEssays. 2011;33(4):280–9.
Article
CAS
PubMed
Google Scholar
Doheny JG, Mottus R, Grigliatti TA. Telomeric position effect—a third silencing mechanism in eukaryotes. PLoS ONE. 2008;3(12): e3864.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun J, Wang X, Xu R-G, Mao D, Shen D, Xin W, et al. HP1c regulates development and gut homeostasis by suppressing Notch signaling through Su(H). EMBO Rep. 2021;22: e51298.
CAS
PubMed
PubMed Central
Google Scholar
Abel J, Eskeland R, Raffa GD, Kremmer E, Imhof A. Drosophila HP1c is regulated by an auto-regulatory feedback loop through its binding partner Woc. PLoS ONE. 2009;4(4): e5089.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dollinger R, Gilmour DS. Regulation of Promoter Proximal Pausing of RNA Polymerase II in Metazoans. J Mol Biol. 2021;433(14): 166897.
Article
CAS
PubMed
Google Scholar
Pinto D, Page V, Fisher RP, Tanny JC. New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Curr Genet. 2021;67(5):695–705.
Article
CAS
PubMed
Google Scholar
Sansó M, Parua PK, Pinto D, Svensson JP, Pagé V, Bitton DA, et al. Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription. Nucleic Acids Res. 2020;48(13):7154–68.
PubMed
PubMed Central
Google Scholar
Kessler R, Tisserand J, Font-Burgada J, Reina O, Coch L, Attolini CS-O, et al. dDsk2 regulates H2Bub1 and RNA polymerase II pausing at dHP1c complex target genes. Nat Commun. 2015;6(1):7049.
Article
CAS
PubMed
Google Scholar
Di Mauro G, Carbonell A, Escudero-Ferruz P, Azorin F. The zinc-finger proteins WOC and ROW play distinct functions within the HP1c transcription complex. Biochim Biophys Acta Gene Regul Mech. 2020;1863(3): 194492.
Article
PubMed
CAS
Google Scholar
Martin B, Chruscicki A, Howe L. Transcription promotes the interaction of the FAcilitates Chromatin Transactions (FACT) complex with nucleosomes in S. cerevisiae. Genetics. 2018;210(3):869–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Zhou K, Zhang N, Wei H, Tan YZ, Zhang Z, et al. FACT caught in the act of manipulating the nucleosome. Nature. 2020;577(7790):426–31.
Article
CAS
PubMed
Google Scholar
Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA Polymerase II. Cell. 2006;125(4):703–17.
Article
CAS
PubMed
Google Scholar
Murawska M, Schauer T, Matsuda A, Wilson MD, Pysik T, Wojcik F, et al. The chaperone FACT and histone H2B ubiquitination maintain S. pombe genome architecture through genic and subtelomeric functions. Mol Cell. 2020;77(3):501–13.
Article
CAS
PubMed
Google Scholar
Herman N, Kadener S, Shifman S. The chromatin factor ROW cooperates with BEAF-32 in regulating long-range inducible genes. bioRxiv. 2021:2021.03.08.434270.
Jiang N, Emberly E, Cuvier O, Hart CM. Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Drosophila melanogaster Links BEAF to transcription. Mol Cell Biol. 2009;29(13):3556–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shrestha S, Oh D-H, McKowen JK, Dassanayake M, Hart CM. 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin. PLoS ONE. 2018;13(9): e0203843.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dong Y, Avva SVSP, Maharjan M, Jacobi J, Hart CM. Promoter-proximal chromatin domain insulator protein BEAF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila. Genetics. 2020;215(1):89–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X, Fejes Tóth K, Aravin AA. piRNA Biogenesis in Drosophila melanogaster. Trends Genet. 2017;33(11):882–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128(6):1089–103.
Article
CAS
PubMed
Google Scholar
Yin H, Lin H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature. 2007;450(7167):304–8.
Article
CAS
PubMed
Google Scholar
Kelleher ES. Reexamining the P-element invasion of Drosophila melanogaster through the lens of piRNA silencing. Genetics. 2016;203(4):1513–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS, et al. The Drosophila HP1 homolog rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell. 2009;138(6):1137–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Wang J, Schultz N, Zhang F, Swapnil P, Tu S, et al. The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell. 2014;157(6):1353–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rangan P, Malonne CD, Navarro C, Newbold SP, Sachidanandam R, et al. piRNA production requires heterochromatin formation in Drosophila. Curr Biolo. 2011;21(16):1373–9.
Article
CAS
Google Scholar
Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and Maelstrom and its impact on chromatin state and gene expression. Cell. 2012;151(5):964–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sienski G, Batki J, Senti K-A, Dönertas D, Tirian L, Meixner K, et al. Silencio/CG9754 connects the Piwi–piRNA complex to the cellular heterochromatin machinery. Genes Dev. 2015;29(21):2258–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pane A, Jiang P, Zhao DY, Singh M, Schüpbach T. The cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline. EMBO J. 2011;30(22):4601–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wehr K, Swan A, Schüpbach T. Deadlock, a novel protein of Drosophila, is required for germline maintenance, fusome morphogenesis and axial patterning in oogenesis and associates with centrosomes in the early embryo. Dev Biol. 2006;294(2):406–17.
Article
CAS
PubMed
Google Scholar
Mohn F, Sienski G, Handler D, Brennecke J. The Rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell. 2014;157(6):1364–79.
Article
CAS
PubMed
Google Scholar
Andersen PR, Tirian L, Vunjak M, Brennecke J. A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 2017;549(7670):54–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buratowski S, Hahn S, Guarente L, Sharp PA. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell. 1989;56(4):549–61.
Article
CAS
PubMed
Google Scholar
Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, et al. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev. 2007;21(18):2300–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang SH, Elgin SCR. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc Natl Acad Sci. 2011;108(52):21164–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu Y, Gu J, Jin Y, Luo Y, Preall JB, Ma J, et al. Panoramix enforces piRNA-dependent cotranscriptional silencing. Science. 2015;350(6258):339–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teo RYW, Anand A, Sridhar V, Okamura K, Kai T. Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila. Nat Commun. 2018;9(1):1735.
Article
PubMed
PubMed Central
CAS
Google Scholar
Larkin A, Marygold SJ, Antonazzo G, Attrill H, Dos Santos G, Garapati PV, et al. FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res. 2021;49(D1):D899–907.
Article
CAS
PubMed
Google Scholar
Levine MT, Vander Wende HM, Malik HS. Mitotic fidelity requires transgenerational action of a testis-restricted HP1. Elife. 2015;4: e07378.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol Cell. 2005;19(3):381–91.
Article
CAS
PubMed
Google Scholar
Rachez C, Legendre R, Costallat M, Varet H, Yi J, Kornobis E, et al. HP1γ binding pre-mRNA intronic repeats modulates RNA splicing decisions. EMBO Rep. 2021;22(9):e52320.
Article
CAS
PubMed
Google Scholar
Saint-André V, Batsché E, Rachez C, Muchardt C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat Struct Mol Biol. 2011;18(3):337–44.
Article
PubMed
CAS
Google Scholar
Haddrill PR, Charlesworth B, Halligan DL, Andolfatto P. Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol. 2005;6(8):R67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Piovesan A, Antonaros F, Vitale L, Strippoli P, Pelleri MC, Caracausi M. Human protein-coding genes and gene feature statistics in 2019. BMC Res Notes. 2019;12(1):315.
Article
PubMed
PubMed Central
CAS
Google Scholar
Loomis RJ, Naoe Y, Parker JB, Savic V, Bozovsky MR, Macfarlan T, et al. Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol Cell. 2009;33(4):450–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alló M, Buggiano V, Fededa JP, Petrillo E, Schor I, De La Mata M, et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol. 2009;16(7):717–24.
Article
PubMed
CAS
Google Scholar
Smallwood A, Esteve PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 2007;21(10):1169–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fritsch L, Robin P, Mathieu JR, Souidi M, Hinaux H, Rougeulle C, et al. A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol Cell. 2010;37(1):46–56.
Article
CAS
PubMed
Google Scholar