McNulty SM, Sullivan BA. Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosom Res. 2018;26:115–38.
Article
CAS
Google Scholar
Burton A, Brochard V, Galan C, Ruiz-morales ER, Rovira Q, Rodriguez-terrones D, et al. Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat Cell Biol. 2020;22:767–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pavlek M, Gelfand Y, Plohl M, Meštrović N. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. DNA Res. 2015;22:387–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brajković J, Pezer Ž, Bruvo-Mađarić B, Sermek A, Feliciello I, Ugarković D. Dispersion profiles and gene associations of repetitive DNAs in the euchromatin of the beetle Tribolium castaneum. G3 Genes Genomes Genet. 2018;8:875–86.
Google Scholar
Feliciello I, Pezer Ž, Kordiš D, Bruvo Mađarić B, Ugarković Đ. Evolutionary history of Alpha Satellite DNA repeats. GBE. 2020;12:2125–38.
CAS
PubMed
PubMed Central
Google Scholar
Déjardin J. Switching between epigenetic states at pericentromeric heterochromatin. Trends Genet. 2015;31:661–72.
Article
PubMed
CAS
Google Scholar
Feliciello I, Akrap I, Ugarković Đ. Satellite DNA modulates gene expression in the beetle Tribolium castaneum after heat stress. PLoS Genet. 2015;11: e1005466.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feliciello I, Sermek A, Pezer Ž, Matulić M, Ugarković Đ. Heat stress affects H3K9me3 level at human alpha satellite DNA repeats. Genes (Basel). 2020;11:663.
Article
CAS
Google Scholar
Rebollo R, Karimi MM, Bilenky M, Gagnier L, Miceli-royer K, Goyal P, et al. Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet. 2011;7: e1002301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pezic D, Manakov SA, Sachidanandam R, Aravin AA. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev. 2014;28:1410–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eichten SR, Ellis NA, Makarevitch I, Yeh CT, Gent JI, Guo L, et al. Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet. 2012;8: e1003127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 2012;151:964–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu N, Lee CH, Swigut T, Grow E, Gu B, Bassik MC, et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature. 2018;553:228–32.
Article
CAS
PubMed
Google Scholar
Gopi LK, Kidder BL. Integrative pan cancer analysis reveals epigenomic variation in cancer type and cell specific chromatindomains. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-21707-1.
Article
PubMed
PubMed Central
Google Scholar
Slee RB, Steiner CM, Herbert BS, Vance GH, Hickey RJ, Schwarz T, et al. Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene. 2012;31:3244–53.
Article
CAS
PubMed
Google Scholar
Gurrion C, Uriostegui M, Zurita M. Heterochromatin reduction correlates with the increase of the KDM4B and KDM6A demethylases and the expression of pericentromeric DNA during the acquisition of a transformed phenotype. J Cancer. 2017;8:2866–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Armstrong RL, Duronio RJ. Phasing in heterochromatin during development. Genes Dev. 2019;33:379–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker JS, Nicetto D, Zaret KS. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet. 2016;32:29–41.
Article
CAS
PubMed
Google Scholar
Nicetto D, Zaret K. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr Opin Genet Dev. 2019;55:1–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martens JHA, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 2005;24:800–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
The ENCODE Project Consortium, Overall coordination (data analysis coordination), Dunham I, Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
The ENCODE Project Consortium, Moore JE, Purcaro MJ, Abascal F, Acosta R, Addleman NJ, Adrian J, Afzal V, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583:699–710.
Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448:553–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenfeld JA, Wang Z, Schones DE, Zhao K, DeSalle R, Zhang MQ. Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics. 2009;10:143.
Article
PubMed
PubMed Central
CAS
Google Scholar
Day DS, Luquette LJ, Park PJ, Kharchenko PV. Estimating enrichment of repetitive elements from high-throughput sequence data. Genome Biol. 2010;11:R69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gorkin DU, Barozzi I, Zhao Y, Zhang Y, Huang H, Lee AY, et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature. 2020;583:744–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amemiya HM, Kundaje A, Boyle AP. The ENCODE blacklist: identification of problematic regions of the genome. Sci Rep. 2019;9:9354.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoffman MM, Ernst J, Wilder SP, Kundaje A, Harris RS, Libbrecht M, et al. Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 2013;41:827–41.
Article
CAS
PubMed
Google Scholar
Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 2018;46:D794-801.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA Mobile DNA. 2015;6:4–9.
Article
CAS
Google Scholar
Hahne F, Ivanek R. Visualizing genomic data using Gviz and bioconductor. Methods Mol Biol. 2016;1418:335–51.
Article
PubMed
Google Scholar
Caroll TS, Liang Z, Salama R, Stark R, de Santiago I. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front Genet. 2014. https://doi.org/10.3389/fgene.2014.00075.
Article
PubMed
PubMed Central
Google Scholar
Houghton F, Houghton S. “Blacklists” and “whitelists”: a salutary warning concerning the prevalence of racist language in discussions of predatory publishing. J Med Libr Assoc. 2018;106:527–30.
Article
PubMed
PubMed Central
Google Scholar
Khan A. A call to eradicate non-inclusive terms from the life sciences. Elife. 2021;10: e65604.
Article
PubMed
PubMed Central
Google Scholar
Boots JL, von Pelchrzim F, Weiss A, Zimmermann B, Friesacher T, Radtke M, et al. RNA polymerase II-binding aptamers in human ACRO1 satellites disrupt transcription in cis. Transcription. 2020;11:217–29.
Article
PubMed
PubMed Central
Google Scholar
Warburton PE, Hasson D, Guillem F, Lescale C, Jin X, Abrusan G. Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics. 2008;9:533.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin CC, Sasi R, Fan YS, Court D. Isolation and identification of a novel tandemly repeated DNA sequence in the centromeric region of human chromosome 8. Chromosoma. 1993;102:333–9.
Article
CAS
PubMed
Google Scholar
Kim JH, Ebersole T, Kouprina N, Noskov VN, Ohzeki JI, Masumoto H, et al. Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing. Genome Res. 2009;19:533–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Genomic tackling of human satellite DNA: breaking barriers through time. Int J Mol Sci. 2021;22:4707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willard HF. Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet. 1985;37:524–32.
CAS
PubMed
PubMed Central
Google Scholar
Sullivan LL, Chew K, Sullivan BA. α satellite DNA variation and function of the human centromere. Nucleus. 2017;8:331–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baxter E, Windloch K, Gannon F, Lee JS. Epigenetic regulation in cancer progression. Cell Biosci. 2014. https://doi.org/10.1186/2045-3701-4-45.
Article
PubMed
PubMed Central
Google Scholar
Bardet AF, He Q, Zeitlinger J, Stark A. A computational pipeline for comparative ChIP-seq analyses. Nat Protoc. 2012;7:45–61.
Article
CAS
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, et al. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol. 2013;9:5–12.
Article
CAS
Google Scholar
Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, et al. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol. 2018;20:620–31.
Article
CAS
PubMed
Google Scholar
Kauzlaric A, Ecco G, Cassano M, Duc J, Imbeault M, Trono D. The mouse genome displays highly dynamic populations of KRAB-zinc finger protein genes and related genetic units. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0173746.
Article
PubMed
PubMed Central
Google Scholar
Tetuev RK, Nazipova NN. Consensus of repeated region of mouse chromosome 6 containing 60 tandem copies of a complex pattern. Repbase Rep. 2010;10:776–776.
Google Scholar
Lu JY, Shao W, Chang L, Ramalho-Santos M, Sun Y, Lu JY, et al. Genomic repeats categorize genes with distinct functions for orchestrated regulation. Cell Rep. 2020;30:3296-3311.e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schueler MG, Dunn JM, Bird CP, Ross MT, Viggiano L, Rocchi M, et al. Progressive proximal expansion of the primate X chromosome centromere. Proc Natl Acad Sci U S A. 2005;102:10563–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eymery A, Horard B, el Atifi-Borel M, Fourel G, Berger F, Vitte AL, et al. A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res. 2009;37:6340–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ting DT, Lipson D, Paul S, Brannigan BW, Coffman EJ, Contino G, et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 2011;331:593–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho XD, Nguyen HG, Trinh LH, Reimann E, Prans E, Kõks G, et al. Analysis of the expression of repetitive DNA elements in osteosarcoma. Front Genet. 2017. https://doi.org/10.3389/fgene.2017.00193.
Article
PubMed
PubMed Central
Google Scholar
Zhu Q, Hoong N, Aslanian A, Hara T, Benner C, Heinz S, et al. Heterochromatin-encoded satellite RNAs induce breast cancer. Mol Cell. 2018;70:842-853.e7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nogalski MT, Shenk T. HSATII RNA is induced via a noncanonical ATM-regulated DNA damage response pathway and promotes tumor cell proliferation and movement. Proc Natl Acad Sci U S A. 2020;117:31891–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saksouk N, Simboeck E, Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenet Chromatin. 2015. https://doi.org/10.1186/1756-8935-8-3.
Article
Google Scholar
Valori V, Tus K, Laukaitis C, Harris DT, LeBeau L, Maggert KA. Human rDNA copy number is unstable in metastatic breast cancers. Epigenetics. 2020;15:85–106.
Article
PubMed
Google Scholar
Ninova M, Tóth KF, Aravin AA. The control of gene expression and cell identity by H3K9 trimethylation. Dev. 2019. https://doi.org/10.1242/dev.181180.
Article
Google Scholar
Nobrega MA, Ovcharenko I, Afzal V, Rubin EM. Scanning human gene deserts for long-range enhancers. Science. 2003;302:413.
Article
CAS
PubMed
Google Scholar
de La Calle-Mustienes E, Feijóo CG, Manzanares M, Tena JJ, Rodríguez-Seguel E, Letizia A, et al. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res. 2005;15:1061–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burton A, Torres-Padilla M. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol. 2014;15:723–4.
Article
CAS
PubMed
Google Scholar
Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G. A Strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell. 2010;19:625–38.
Article
CAS
PubMed
Google Scholar
Yandım C, Karakülah G. Expression dynamics of repetitive DNA in early human embryonic development. BMC Genomics. 2019;20:439.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tagarro I, Fernández-Peralta AM, González-Aguilera JJ. Chromosomal localization of human satellites 2 and 3 by a FISH method using oligonucleotides as probes. Hum Genet. 1994;93:383–8.
CAS
PubMed
Google Scholar
Black EM, Giunta S. Repetitive fragile sites: centromere satellite DNA as a source of genome instability in human diseases. Genes (Basel). 2018;9:615.
Article
CAS
Google Scholar
Miga KH. Centromeric satellite DNAs: Hidden sequence variation in the human population. Genes (Basel). 2019;10:352.
Article
CAS
Google Scholar