Pluta AF, Cooke CA, Earnshaw WC. Structure of the human centromere at metaphase. Trends Biochem Sci. 1990;15(5):181–5.
Article
CAS
PubMed
Google Scholar
Gordon GS, Wright A. DNA segregation in bacteria. Annu Rev Microbiol. 2000;54:681–708.
Article
CAS
PubMed
Google Scholar
Schumacher MA, Tonthat NK, Lee J, Rodriguez-Castañeda FA, Chinnam NB, Kalliomaa-Sanford AK, et al. Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages. Science. 2015;349(6252):1120–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayden KE. Human centromere genomics: now it’s personal. Chromosome Res. 2012;20(5):621–33.
Article
CAS
PubMed
Google Scholar
Fukagawa T, Earnshaw WC. The centromere: chromatin foundation for the kinetochore machinery. Dev Cell. 2014;30:496–508.
Article
CAS
PubMed
PubMed Central
Google Scholar
McNulty SM, Sullivan BA. Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosome Res. 2018;26:115–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stellfox ME, Bailey AO, Foltz DR. Putting CENP-A in its place. Cell Mol Life Sci. 2013;70(3):387–406.
Article
CAS
PubMed
Google Scholar
Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res. 2019;47(3):1051–69.
Article
CAS
PubMed
Google Scholar
Nishibuchi G, Déjardin J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosome Res. 2017;25(1):77–87.
Article
CAS
PubMed
Google Scholar
Sales-Gil R, Vagnarelli P. How HP1 post-translational modifications regulate heterochromatin formation and maintenance. Cells. 2020;9:1460.
Article
CAS
PubMed Central
Google Scholar
Mozzetta C, Boyarchuk E, Pontis J, Ait-Si-Ali S. Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol. 2015;16(8):499–513.
Article
CAS
PubMed
Google Scholar
Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature. 2017;547:236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. Phase separation drives heterochromatin domain formation. Nature. 2017;547(7662):241–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erdel F, Rademacher A, Vlijm R, Tünnermann J, Frank L, Weinmann R, et al. Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid-liquid phase separation. Mol Cell. 2020;78(2):236-249.e7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ninova M, Tóth KF, Aravin AA. The control of gene expression and cell identity by H3K9 trimethylation. Development. 2019;146:dev181180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen A, Colmenares SU, Karpen GH. Heterochromatin: guardian of the genome. Annu Rev Cell Dev Biol. 2018;34:265–88.
Article
CAS
PubMed
Google Scholar
Becker JS, Nicetto D, Zaret KS. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet. 2016;32(1):29–41.
Article
CAS
PubMed
Google Scholar
Müller S, Almouzni G. Chromatin dynamics during the cell cycle at centromeres. Nat Rev Genet. 2017;18(3):192–208.
Article
PubMed
CAS
Google Scholar
Mahlke MA, Nechemia-Arbely Y. Guarding the genome: CENP-a-chromatin in health and cancer. Genes. 2020;11(7):810.
Article
CAS
PubMed Central
Google Scholar
Peters AHFM, Carroll O, Scherthan H, Mechtler K, Sauer S, Scho C, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107:323–37.
Article
CAS
PubMed
Google Scholar
McManus KJ, Biron VL, Heit R, Underhill DA, Hendzel MJ. Dynamic changes in histone H3 lysine 9 methylations: identification of a mitosis-specific function for dynamic methylation in chromosome congression and segregation. J Biol Chem. 2006;281(13):8888–97.
Article
CAS
PubMed
Google Scholar
Dimitrova E, Turberfield AH, Klose RJ. Histone demethylases in chromatin biology and beyond. EMBO Rep. 2015;16(12):1620–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slee RB, Steiner CM, Herbert B-S, Vance GH, Hickey RJ, Schwarz T, et al. Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene. 2012;31(27):3244–53.
Article
CAS
PubMed
Google Scholar
Molina O, Carmena M, Maudlin IE, Earnshaw WC. PREditOR: a synthetic biology approach to removing heterochromatin from cells. Chromosome Res. 2016;24:495–509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carmena M, Wheelock M, Funabiki H, Earnshaw WC. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol. 2012;13(12):789–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Funabiki H. Correcting aberrant kinetochore microtubule attachments: a hidden regulation of Aurora B on microtubules. Curr Opin Cell Biol. 2019;58:34–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohzeki J, Larionov V, Earnshaw WC, Masumoto H. De novo formation and epigenetic maintenance of centromere chromatin. Curr Opin Cell Biol. 2019;58:15–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martins NMC, Cisneros-Soberanis F, Pesenti E, Kochanova NY, Shang WH, Hori T, et al. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory. J Cell Sci. 2020;133(14):jsc242610.
Article
CAS
Google Scholar
Willard HF. Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet. 1985;37:524–32.
CAS
PubMed
PubMed Central
Google Scholar
Moscou MJ, Bogdanove AJ. Recognition by TAL effectors. Science. 2009;326:1501.
Article
CAS
PubMed
Google Scholar
Voytas DF, Joung JK. DNA binding made easy. Science. 2009;326:1491–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jankele R, Svoboda P. TAL effectors: tools for DNA targeting. Brief Funct Genomics. 2014;13(5):409–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayden KE, Strome ED, Merrett SL, Lee H-R, Rudd MK, Willard HF. Sequences associated with centromere competency in the human genome. Mol Cell Biol. 2013;33(4):763–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell. 2006;125(3):467–81.
Article
CAS
PubMed
Google Scholar
Ollion J, Cochennec J, Loll F, Escudé C, Boudier T. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics. 2013;29(14):1840–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martins NMC, Bergmann JH, Shono N, Kimura H, Larionov V, Masumoto H, et al. Epigenetic engineering shows that a human centromere resists silencing mediated by H3K27me3/K9me3. Mol Biol Cell. 2016;27(1):177–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng H, Tillman H, Wu G, Davidoff AM, Yang J. Frequent epigenetic alterations in polycomb repressive complex 2 in osteosarcoma cell lines. Oncotarget. 2018;9(43):27087–91.
Article
PubMed
PubMed Central
Google Scholar
Allshire RC, Madhani HD. Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol. 2018;19:229–44.
Article
CAS
PubMed
Google Scholar
Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J Cell Biol. 1998;143(7):1763–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Song Z, Huo Y, Zhang J, Zhu T, Wang J, et al. Chromatin protein HP1α interacts with the mitotic regulator borealin protein and specifies the centromere localization of the chromosomal passenger complex. J Biol Chem. 2014;289(30):20638–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishibuchi G, Nakayama JI. Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem. 2014;156(1):11–20.
Article
CAS
PubMed
Google Scholar
Kumar A, Kono H. Heterochromatin protein 1 (HP1): interactions with itself and chromatin components. Biophys Rev. 2020;12:387–400.
Article
PubMed
PubMed Central
Google Scholar
Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 2019;20(4):207–20.
Article
CAS
PubMed
Google Scholar
Fernandez Garcia M, Moore CD, Schulz KN, Alberto O, Donague G, Harrison MM, et al. Structural features of transcription factors associating with nucleosome binding. Mol Cell. 2019;75:921–32.
Article
CAS
PubMed
Google Scholar
Hayashi-Takanaka Y, Yamagata K, Nozaki N, Kimura H. Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. J Cell Biol. 2009;187(6):781–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Y, Yu L, Bowen J, Gorovsky MA, David AC. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell. 1999;97(1):99–109.
Article
CAS
PubMed
Google Scholar
Giet R, Glover DM. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol. 2001;152(4):669–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kruitwagen T, Denoth-Lippuner A, Wilkins BJ, Neumann H, Barral Y. Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation. Elife. 2015;4:e10396.
Article
PubMed
PubMed Central
Google Scholar
Lavoie BD, Hogan E, Koshland D. In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev. 2004;18:76–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrova B, Dehler S, Kruitwagen T, Heriche J-K, Miura K, Haering CH. Quantitative analysis of chromosome condensation in fission yeast. Mol Cell Biol. 2013;33(5):984–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohishi T, Muramatsu Y, Yoshida H, Seimiya H. TRF1 ensures the centromeric function of Aurora-B and proper chromosome segregation. Mol Cell Biol. 2014;34(13):2464–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ruppert JG, Samejima K, Platani M, Molina O, Kimura H, Jeyaprakash AA, et al. HP 1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry. EMBO J. 2018;37:e97677.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yi Q, Chen Q, Liang C, Yan H, Zhang Z, Xiang X, et al. HP 1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO Rep. 2018;19(4):e45484.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol. 2004;6(8):784–91.
Article
CAS
PubMed
Google Scholar
Moazed D. Mechanisms for the inheritance of chromatin states. Cell. 2011;146(4):510–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, et al. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res. 2007;17(8):1146–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KHA, et al. Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci USA. 2012;109(6):1979–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson WL, Yewdell WT, Bell JC, McNulty SM, Duda Z, O’Neill RJ, et al. RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. Elife. 2017;6:1–32.
CAS
Google Scholar
Schalch T, Steiner FA. Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma. 2017;126(4):443–55.
Article
PubMed
Google Scholar
Muller H, Gil J, Drinnenberg IA. The impact of centromeres on spatial genome architecture. Trends Genet. 2019;35(8):565–78.
Article
CAS
PubMed
Google Scholar
Ollion J, Loll F, Cochennec J, Boudier T, Escudé C. Proliferation-dependent positioning of individual centromeres in the interphase nucleus of human lymphoblastoid cell lines. Mol Biol Cell. 2015;26:2550–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ollion J, Cochennec J, Loll F, Escudé C, Boudier T. Analysis of nuclear organization with TANGO, Software for high-throughput quantitative analysis of 3D fluorescence microscopy images. Methods Mol Biol. 2015;1228:203–22.
Article
CAS
PubMed
Google Scholar
R Core Team. R . A Language and Environment for Statistical Computing. R Found Stat Comput Vienna, Austria. 2020. https://www.R-project.org/.
Tokunaga M, Imamoto N, Sakata-Sogawa K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods. 2008;5(2):159–61.
Article
CAS
PubMed
Google Scholar
Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30(16):2389–90.
Article
PubMed
PubMed Central
CAS
Google Scholar