Thomas JO. Histone H1: location and role. Curr Opin Cell Biol. 1999;11:312–7. https://doi.org/10.1016/S0955-0674(99)80042-8.
Article
CAS
Google Scholar
Kadam S, McAlpine GS, Phelan ML, Kingston RE, Jones KA, Emerson BM. Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 2000;14:2441–51. https://doi.org/10.1101/gad.828000.
Article
CAS
Google Scholar
Bannister A, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95. https://doi.org/10.1038/cr.2011.22.
Article
CAS
Google Scholar
Becker PB, Workman JL. Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol. 2013;5:a017905. https://doi.org/10.1101/cstperspect.a017905.
Article
Google Scholar
Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell. 2002;108:475–87. https://doi.org/10.1016/s0092-8674(02)00654-2.
Article
CAS
Google Scholar
Hota SK, Johnson JR, Verschueren E, Thomas R, Blotnick AM, Zhu Y, Sun X, Pennacchio LA, Krogan NJ, Bruneau BG. Dynamic BAF chromatin remodeling complex subunit inclusion promotes temporally distinct gene expression programs in cardiogenesis. Development. 2019;146:dev174086. https://doi.org/10.1242/dev.174086.
Article
CAS
Google Scholar
Stern M, Jensen R, Herskowitz I. Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol. 1984;178:853–68. https://doi.org/10.1016/0022-2836(84)90315-2.
Article
CAS
Google Scholar
Carlson M, Osmond BC, Botstein D. Mutants of yeast defective in sucrose utilization. Genetics. 1981;98:25–40.
CAS
Google Scholar
Neigeborn L, Carlson M. Genes affecting the regulation of Suc2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics. 1984;108:845–58.
CAS
Google Scholar
Kingston RE, Bunker CA, Imbalzano AN. Repression and activation by multicomplexes that alter chromatin structure. Genes Dev. 1996;10:905–20. https://doi.org/10.1101/gad.10.8.905.
Article
CAS
Google Scholar
Pérez-Martín J, Johnson AD. The C-terminal domain of Sin1 interacts with the SWI-SNF complex in yeast. Mol Cell Biol. 1998;18:4157–64. https://doi.org/10.1128/MCB.18.7.4157.
Article
Google Scholar
Winston F, Carlson M. Yeast SWI/SNF transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 1992;8:387–91. https://doi.org/10.1016/0168-9525(92)90300-s.
Article
CAS
Google Scholar
Wu L, Winston F. Evidence the Snf-Swi controls chromatin structure over both TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae. Nucleic Acids Res. 1997;25:4230–4. https://doi.org/10.1093/nar/25.21.4230.
Article
CAS
Google Scholar
David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones T, Davis RW, Steinmetz LM. A high-resolution map of transcription in the yeast genome. PNAS. 2006;103:5320–5. https://doi.org/10.1073/pnas.0601091103.
Article
CAS
Google Scholar
Peterson CL, Herskowitz I. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell. 1992;68:573–83. https://doi.org/10.1016/0092-8674(92)90192-f.
Article
CAS
Google Scholar
Smith CL, Horowitz-Scherer R, Flanagan JF, Woodcock CL, Peterson CL. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat Struct Biol. 2003;10:141–5. https://doi.org/10.1038/nsb888.
Article
CAS
Google Scholar
Mekonnen LM, Zhang B, Horowitz-Scherer R, Persinger J, Woodcock CL, Peterson CL, Bartholomew B. Architecture of the SWI/SNF-nucleosome complex. Mol Cell Biol. 2008;28:6010–21. https://doi.org/10.1128/MCB.00693-08.
Article
CAS
Google Scholar
Mohrmann L, Langenberg K, Krijgsveld J, Kal AK, Heck AJR, Verrijzer CP. Differential targeting of two distinct SWI/SNF-Related Drosophila Chromatin-Remodeling Complexes. Mol Cell Biol. 2004;24:3077–88. https://doi.org/10.1128/MCB.24.8.3077-3088.2004.
Article
CAS
Google Scholar
Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC, Kennison JA. Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2. Cell. 1992;68(3):561–72.
Article
CAS
Google Scholar
Tang L, Nogales E, Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol. 2010;102:122–8. https://doi.org/10.1016/j.pbiomolbio.2010.05.001.
Article
CAS
Google Scholar
Papoulas O, Daubresse G, Armstrong JA, Jin J, Scott MP, Tamkun JW. The HMG-domain protein BAP111 is important for the function of the BRM chromatin-remodeling complex in vivo. Proc Natl Acad Sci. 2001;98:5728–33. https://doi.org/10.1073/pnas.091533398.
Article
CAS
Google Scholar
Kadoch C, Crabtree G. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv. 2015;1:e1500447. https://doi.org/10.1126/sciadv.1500447.
Article
CAS
Google Scholar
Khavari PA, Peterson CL, Tamkun JW, Crabtree GR. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature. 1993;366:170–4. https://doi.org/10.1038/366170a0.
Article
CAS
Google Scholar
Wang W, Cote J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, Workman JL, Crabtree GR. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO. 1996;15:5370–82. https://doi.org/10.1002/j.1460-2075.1996.tb00921.x.
Article
CAS
Google Scholar
Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, Crabtree GR. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013;45:592–601. https://doi.org/10.1038/ng.2628.
Article
CAS
Google Scholar
Phelan ML, Sif S, Narlikar GJ, Kingston RE. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell. 1999;3:247–53. https://doi.org/10.1016/s1097-2765(00)80315-9.
Article
CAS
Google Scholar
Alpsoy A, Dykhuizen EC. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J Biol Chem. 2018;293:3892–903. https://doi.org/10.1074/jbc.RA117.001065.
Article
CAS
Google Scholar
Trotter KW, Archer TK. The BRG1 transcriptional coregulator. Nucl Recept Signal. 2008;6:e004. https://doi.org/10.1621/nrs.06004.
Article
CAS
Google Scholar
Mashtalir N, D’Avino AR, Michel BC, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018;175:1272–88. https://doi.org/10.1016/j.cell.2018.09.032.
Article
CAS
Google Scholar
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56. https://doi.org/10.1016/j.cell.2005.08.020.
Article
CAS
Google Scholar
Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol. 2006;7(6):437–47. https://doi.org/10.1038/nrm1945.
Article
CAS
Google Scholar
Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304. https://doi.org/10.1146/annurev.biochem.77.062706.153223.
Article
CAS
Google Scholar
Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5. https://doi.org/10.1038/47412.
Article
CAS
Google Scholar
Levine M, Tjian R. Transcription regulation and animal diversity. Nature. 2003;424(6945):147–51. https://doi.org/10.1038/nature01763.
Article
CAS
Google Scholar
Cosma MP. Ordered recruitment: gene-specific mechanism of transcription activation. Mol Cell. 2002;10(2):227–36. https://doi.org/10.1016/s1097-2765(02)00604-4.
Article
CAS
Google Scholar
Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18:407–22. https://doi.org/10.1038/nrm.2017.26.
Article
CAS
Google Scholar
Sirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y. The RSC chromatin remodeling ATPase translocates DNA with high force and small step size. EMBO J. 2011;30:2364–72. https://doi.org/10.1038/emboj.2011.141.
Article
CAS
Google Scholar
Han Y, Reyes AA, Malik S, He Y. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature. 2020;579:452–5. https://doi.org/10.1038/s41586-020-2087-1.
Article
CAS
Google Scholar
Wagner FR, Dienemann C, Wang H, Stutzer A, Tegunov D, Urlaub H, Cramer P. Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature. 2020;579:448–51. https://doi.org/10.1038/s41586-020-2088-0.
Article
CAS
Google Scholar
Wang C, Guo Z, Zhan X, Yang F, Wu M, Zhang X. Structure of the yeast SWI/SNF complex in a nucleosome free state. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-17229-x.
Article
Google Scholar
Ye Y, Wu H, Chen K, Clapier CR, Verma N, Zhang W, Deng H, Cairns BR, Gao N, Chen Z. Structure of the RSC complex bound to the nucleosome. Science. 2019;366(6467):838–43. https://doi.org/10.1126/science.aay0033.
Article
CAS
Google Scholar
He S, Wu Z, Tian Y, Yu Z, Yu J, Wang X, Li J, Liu B, Xu Y. Structure of nucleosome-bound human BAF complex. Science. 2020;367(6480):875–81. https://doi.org/10.1126/science.aaz9761.
Article
CAS
Google Scholar
Bao X, Tang J, Lopez-Pajares V, Tao S, Qu K, Crabtree GR, Khavari PA. ACTL6a enforces the epidermal progenitor state by suppressing SWI/SNF-dependent induction of KLF4. Cell Stem Cell. 2013;12(2):193–203. https://doi.org/10.1016/j.stem.2012.12.014.
Article
CAS
Google Scholar
Yoo AS, Staahl BT, Chen L, Crabtree GR. MicroRNA-mediated switching of chromatin-remodeling complexes in neural development. Nature. 2009;460:642–6. https://doi.org/10.1038/nature08139.
Article
CAS
Google Scholar
Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetch RE, Tsien RW, Crabtree GR. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 2011;476(7359):228–31. https://doi.org/10.1038/nature10323.
Article
CAS
Google Scholar
Kadoch C, Crabtree GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. 2013;153(1):71–85. https://doi.org/10.1016/j.cell.2013.02.036.
Article
CAS
Google Scholar
Orkin SH, Hochedlinger K. Chromatin connections to pluripotency and cellular reprogramming. Cell. 2011;145(6):835–50. https://doi.org/10.1016/j.cell.2011.05.019.
Article
CAS
Google Scholar
Lessard J, Crabtree GR. Chromatin regulatory mechanisms in pluripotency. Annu Rev Cell Dev Biol. 2010;26:503–32. https://doi.org/10.1146/annurev-cellbio-051809-102012.
Article
CAS
Google Scholar
Wu JI. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer. ABBS. 2012;44(1):54–69. https://doi.org/10.1093/abbs/gmr099.
Article
CAS
Google Scholar
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6. https://doi.org/10.1038/292154a0.
Article
CAS
Google Scholar
Ludwig T, Levenstein M, Jones J, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24:185–7. https://doi.org/10.1038/nbt1177.
Article
CAS
Google Scholar
Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005;19:1129–55. https://doi.org/10.1101/gad.1303605.
Article
CAS
Google Scholar
Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–40. https://doi.org/10.1038/ng1760.
Article
CAS
Google Scholar
Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii A, Ranish J, Crabtree GR. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. PNAS. 2009;106:5181–6. https://doi.org/10.1073/pnas.0812889106.
Article
Google Scholar
Gatchalian J, Malik S, Ho J, Lee DS, Kelso TWR, Shokhirev MN, Dixon JR, Hargreaves DC. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naïve pluripotency in mouse embryonic stem cells. Nat Commun. 2018;9:5139. https://doi.org/10.1038/s414-018-07528-9.
Article
Google Scholar
Zhang B, Chambers KJ, Faller DV, Wang S. Reprogramming of the SWI/SNF complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation. Oncogene. 2007;26:4153–7. https://doi.org/10.1038/sj.onc.1210509.
Article
CAS
Google Scholar
Schaniel C, Ang YS, Ratnakumar K, Cormier C, James T, Bernstein E, Lemischka IR, Paddison PJ. Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells. 2009;27:2979–91. https://doi.org/10.1002/stem.223.
Article
CAS
Google Scholar
Innis S, Alpsoy A, Crodian J, Tseng Y, Cabot R, Dykhuizen E, Cabot B. Identification of SWI/SNF chromatin remodeling complex GBAF subunits BRD9 and GLTSCR1 in porcine oocytes, embryos, and cell lines. [Virtual Poster Session]. Society for the Study of Reproduction Annual Meeting, Ottawa, Ontario, Canada. 2020.
Magnani L, Cabot R. Manipulation of SMARCA2 and SMARCA4 transcript levels in porcine embryos differentially alters development and expression of SMARCA1, SOX2, NANOG, and EIF1. Reproduction. 2009;137:23–33. https://doi.org/10.1530/REP-08-0335.
Article
CAS
Google Scholar
Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G, Magnuson T. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell. 2000;6:1287–95. https://doi.org/10.1016/s1097-2765(00)00127-1.
Article
CAS
Google Scholar
Sumi-Ichinose C, Ichinose H, Metzger D, Chambon P. SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells. Mol Cell Biol. 1997;17:5976–86. https://doi.org/10.1128/mcb.17.10.5976.
Article
CAS
Google Scholar
Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T. Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev. 2006;20:1744–54. https://doi.org/10.1101/gad.1435106.
Article
CAS
Google Scholar
Thompson EM, Legouy E, Renard JP. Mouse embryos do not wait for the MBT: chromatin and RNA polymerase remodeling in genome activation at the onset of development. Dev Genet. 1998;22:31–42. https://doi.org/10.1002/(SICI)1520-6408(1998)22:1%3c31::AID-DVG4%3e3.0.CO;2-8.
Article
CAS
Google Scholar
Panamarova M, Cox A, Wicher KB, Zernicka-Goetz M. The BAF chromatin remodeling complex is an epigenetic regulator of lineage specification in the early mouse embryo. Development. 2016;143:1271–83. https://doi.org/10.1242/dev.131961.
Article
CAS
Google Scholar
Cabot B, Tseng Y, Crodian JS, Cabot R. Differential expression of key subunits of SWI/SNF chromatin remodeling complexes in porcine embryos derived in vitro or in vivo. Mol Reprod Dev. 2017;84:1238–49. https://doi.org/10.1002/mrd.22922.
Article
CAS
Google Scholar
Ho L, Crabtree GR. Chromatin remodeling during development. Nature. 2010;463:474–84. https://doi.org/10.1038/nature08911.
Article
CAS
Google Scholar
Loo C, Gatchalian J, Liang Y, Leblanc M, Xie M, Ho J, Venkatraghavan B, Hargreaves DC, Zheng Y. A genome-wide CRISPR screen reveals a role for the non-canonical nucleosome-remodeling BAF complex in Foxp3 expression and regulatory T cell function. Immunity. 2020;53(1):143–57. https://doi.org/10.1016/j.immuni.2020.06.011.
Article
CAS
Google Scholar
Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol. 2007;8(5):457–61. https://doi.org/10.1038/ni1455.
Article
CAS
Google Scholar
Gebuhr TC, Kovalev GI, Bultman S, Godfrey V, Su L, Magnuson T. The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development. J Exp Med. 2003;198:1937–49. https://doi.org/10.1084/jem.20030714.
Article
CAS
Google Scholar
Chi TH, Wan M, Zhao K, Taniuchi I, Chen L, Littman DR, Crabtree GR. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature. 2002;418:195–9. https://doi.org/10.1038/nature00876.
Article
CAS
Google Scholar
Vradii D, Wagner S, Doan DN, Nickerson JA, Montecino M, Lian JB, Stein JL, van Wijnen AJ, Imbalzano AN, Stein GS. Brg1, the ATPase subunit of the SWI/SNF chromatin remodeling complex, is required for myeloid differentiation to granulocytes. J Cell Phys. 2005;206:112–8. https://doi.org/10.1002/jcp.20432.
Article
CAS
Google Scholar
Krasteva V, Buscarlet M, Diaz-Tellez A, Bernard M, Crabtree GR, Lessard JA. The BAF53a subunit of SWI/SNF-like BAF complexes is essential for hemopoietic stem cell function. Blood. 2012;120:4729–32. https://doi.org/10.1182/blood-2012-04-427047.
Article
CAS
Google Scholar
Yelamanchili SV, Morsey B, Harrison EB, Rennard DA, Emanuel K, Thapa I, Bastola DR, Fox HS. The evolutionary young miR-1290 favors mitotic exit and differentiation of human neural progenitors through altering the cell cycle proteins. Cell Death Dis. 2014. https://doi.org/10.1038/cddis.2013.498.
Article
Google Scholar
Huang B, Li X, Tu X, Zhao W, Zhu D, Feng Y, Si X, Chen J. OTX1 regulates cell cycle progression of neural progenitors in the developing cerebral cortex. J Biol Chem. 2017;293:2137–48. https://doi.org/10.1074/jbc.RA117.001249.
Article
Google Scholar
Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 2007;55:201–15. https://doi.org/10.1016/j.neuron.2007.06.019.
Article
CAS
Google Scholar
Staahl B, Tang J, Wu W, Sun A, Gitler A, Yoo A, Crabtree G. Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J Neurosci. 2013;33:10348–61. https://doi.org/10.1523/JNEUROSCI.1258-13.2013.
Article
CAS
Google Scholar
Alfert A, Moreno N, Kerl K. The BAF complex in development and disease. Epigenet Chromatin. 2019;12:19. https://doi.org/10.1186/s13072-019-0264-y.
Article
Google Scholar
Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, Hibi-Ko Y, et al. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet. 2012;44:376–8. https://doi.org/10.1038/ng.2219.
Article
CAS
Google Scholar
De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional, and chromatin genes disrupted in autism. Nature. 2014;515:209–15. https://doi.org/10.1038/nature13772.
Article
CAS
Google Scholar
Levy P, Baraitser M. Coffin-Siris syndrome. J Med Genet. 1991;28:338–41. https://doi.org/10.1136/jmg.28.5.338.
Article
CAS
Google Scholar
Schrier SA, Bodurtha JN, Burton B, Chudley AE, Chiong MAD, D’avanzo MG, et al. The coffin-siris syndrome: a proposed diagnostic approach and assessment of 15 overlapping cases. Am J Med Genet A. 2012;158A:1865–76. https://doi.org/10.1002/ajmg.a.35415.
Article
CAS
Google Scholar
Bramswig NC, Ludecke HJ, Alanay Y, Albrecht B, Barthelmie A, Boduroglu K, et al. Exome sequencing unravels unexpected differential diagnoses in individuals with the tentative diagnosis of Coffin-Siris and Nicolaides-Baraitser syndromes. Hum Genet. 2015;134:553–68. https://doi.org/10.1007/s00439-015-1535-8.
Article
CAS
Google Scholar
Sokpor G, Xie Y, Rosenbusch J, Tuoc T. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders. Front Mol Neurosci. 2017;10:243. https://doi.org/10.3389/fnmol.2017.00243.
Article
CAS
Google Scholar
Marom R, Jain M, Burrage L, Song I, Graham BH, Brown CW, Stevens SJC, Stegmann APA, Gunter AT, Kaplan JD, et al. Heterozygous variants in ACTL6A, encoding a component of the BAF complex, are associated with intellectual disability. Hum Mutat. 2017;38:1365–71. https://doi.org/10.1002/humu.23282.
Article
CAS
Google Scholar
Nixon K, Rousseau J, Stone MH, Sarikahya M, Ehresmann S, Mizuno S, Matsumoto N, Miyake N, et al. A syndromic neurodevelopmental disorder caused by mutations in SMARCD1, a core SWI/SNF subunit needed for context-dependent neuronal gene regulation in flies. AJHG. 2019;104:P596-610. https://doi.org/10.1016/j.ajhg.2019.02.001.
Article
CAS
Google Scholar
Schain AH, Pollack JR. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE. 2013;8:e55119. https://doi.org/10.1371/journal.pone.0055119.
Article
CAS
Google Scholar
Wilson BG, Roberts C. SWI/SNF nucleosome remodelers and cancer. Nat Rev Cancer. 2011;11:481–92. https://doi.org/10.1038/nrc3068.
Article
CAS
Google Scholar
Lu P, Roberts C. The SWI/SNF tumor suppressor complex: regulation of promoter nucleosomes and beyond. Nucleus. 2013;4:374–8. https://doi.org/10.4161/nucl.26654.
Article
Google Scholar
Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J, Begemann M, Crabtree GR, Goff SP. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell. 1994;79:119–30. https://doi.org/10.1016/0092-8674(94)90405-7.
Article
CAS
Google Scholar
Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6. https://doi.org/10.1038/28212.
Article
CAS
Google Scholar
Biegel JA, Zhou JY, Rorke LB, Strenstrom C, Wainwright LM, Fogelgren B. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999;59:74–9. https://doi.org/10.1002/(sici)1098-2264(200005)28:1%3c31::aid-gcc4%3e3.0.co;2-y.
Article
CAS
Google Scholar
Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci. 2000;97:13796–800. https://doi.org/10.1073/pnas.250492697.
Article
CAS
Google Scholar
Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C, Yaniv M. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 2000;1:500–6. https://doi.org/10.1093/embo-reports/kvd129.
Article
CAS
Google Scholar
Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA, Webster W, Smith TW, Imbalzano AN, Jones SN. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol. 2001;21:3598–603. https://doi.org/10.1128/MCB.21.10.3598-3603.2001.
Article
CAS
Google Scholar
Roberts CW, Leroux MM, Fleming MD, Orkin SH. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell. 2002;2:415–25. https://doi.org/10.1016/S1535-6108(02)00185-X.
Article
CAS
Google Scholar
Smith JS, Tachibana I, Pohl U, Lee HK, Thanarajasingam U, Portier BP, Ueki K, Ramaswamy S, Billings SJ, Mohrenweiser HW, Louis DN, Jenkins RB. A transcript map of the chromosome 19q-arm glioma tumor suppressor region. Genomics. 2000;64:44–50. https://doi.org/10.1006/geno.1999.6101.
Article
CAS
Google Scholar
Yang P, Kollmeyer TM, Buckner K, Bamlet W, Ballman KV, Jenkens RB. Polymorphisms in GLTSCR1and ERCC2 are associated with the development of oligodendrogliomas. Cancer. 2005. https://doi.org/10.1002/cncr.21028.
Article
Google Scholar
Rajaraman P, Hutchinson A, Wichner S, Black P, Fine H, Loeffler J, Selker R, Shapiro W, Rothman N, Linet M, Inskip P. DNA repair gene polymorphisms and risk of adult meningioma, glioma, and acoustic neuroma. Neuro-Oncology. 2010;12(1):37–48. https://doi.org/10.1093/neuonc/nop012.
Article
CAS
Google Scholar
Inskip PD, Linet MS, Heineman EF. Etiology of brain tumors in adults. Epidemiol Rev. 1995;17:382–414. https://doi.org/10.1093/oxfordjournals.epirev.a036200.
Article
CAS
Google Scholar
Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL. Epidemiology of brain tumors. Neurol Clin. 2007;25:867–90. https://doi.org/10.1016/j.ncl.2007.07.002.
Article
Google Scholar
Slager SL, Schaid DJ, Cunningham JM, McDonnell SK, Marks AF, Peterson BJ, Hebbring SJ, Anderson S, French AJ, Thibodeau SN. Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am J Hum Genet. 2003;72:759–62. https://doi.org/10.1086/368230.
Article
CAS
Google Scholar
Neville PJ, Conti DV, Krumroy LM, Catalona WJ, Suarez BK, Witte JS, Casey G. Prostate cancer aggressiveness locus on chromosome segment 19q12-q13.1 identified by linkage and allelic imbalance studies. Genes Chromosom Cancer. 2003;36:332–9. https://doi.org/10.1002/gcc.10165.
Article
CAS
Google Scholar
Ma X, Du T, Zhu D, Chen X, Lai Y, Wu W, Wang Q, Lin C, Li Z, Liu L, Huang H. High levels of glioma tumor suppressor candidate region gene 1 predicts a poor prognosis for prostate cancer. Oncol Lett. 2018;16:6749–55. https://doi.org/10.3892/ol.2018.9490.
Article
CAS
Google Scholar
Jefimov K, Alcaraz N, Kloet SL, Varv S, Sakya SA, Vaagenso CD, Vermuelen M, Aasland R, Andersson R. The GBAF chromatin remodeling complex binds H3K27ac and mediates enhancer transcription. bioRxiv. 2018. 445148. https://doi.org/https://doi.org/10.1101/445148.
Yin J, Ma Y, Vogel U, Liu D, Sun Z. GLTSCR1, ATM, PPP1R13L and CD3EAP genetic variants and lung cancer risk in a chinese population. Curr Med Sci. 2018;38:734–40. https://doi.org/10.1007/s11596-018-1938-6.
Article
CAS
Google Scholar
Han F, Zhang L, Chen C, Wang Y, Zhang Y, Qian L, Sun W, Zhou D, Yang B, Zhang H, Lai M. GLTSCR1 negatively regulates BRD4-dependent transcription elongation and inhibits CRC metastasis. Adv Sci. 2019;6:e1901114. https://doi.org/10.1002/advs.201901114.
Article
CAS
Google Scholar
Michel B, D’Avino AR, Cassel SH, Nashtalir N, McKenzie ZM, McBride MJ, Valencia AM, Zhou Q, Bocker M, Soares LM, Pan J, Remillard DI, Lareau CA, et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 2018;20:1410–20. https://doi.org/10.1038/s41556-018-0221-1.
Article
CAS
Google Scholar
Walker C, Oakes C, Genutis L, Giacopelli B, Liyanarachchi S, Nicolet D, Eisfeld A, Scholz M, Brock P, Kohlschmidt J, Mrozek K, Bill M, Carroll A, et al. Genome-wide association study identifies an acute myeloid leukemia susceptibility locus near BICRA. Leukemia. 2019;33:771–5. https://doi.org/10.1038/s41375-018-0281-z.
Article
Google Scholar
Hargreaves DC, Horng T, Medzhitov R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell. 2009;138(1):129–45. https://doi.org/10.1016/j.cell.2009.05.047.
Article
CAS
Google Scholar
Maksylewicz A, Bysiek A, Lagosz K, Macina J, Kantorowicz M, Bereta G, Sochalska M, Gawron K, Chomyszyn-Gajewska M, Potempa J, Grabiec A. BET bromodomain inhibitors suppress inflammatory activation of gingival fibroblasts and epithelial cells from periodontitis patients. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.00933.
Article
Google Scholar
Prinjha RK, Witherington J, Lee K. Place your BETs: the therapeutic potential of bromodomains. Trends Pharm Sci. 2012;33(3):146–53. https://doi.org/10.1016/j.tips.2011.12.002.
Article
CAS
Google Scholar
Dey A, Nishiyama A, Karpova T, McNally J, Ozato K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol Biol Cell. 2009;20:4899–909. https://doi.org/10.1091/mbc.e09-05-0380.
Article
CAS
Google Scholar
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith W, Fedorov O, Morse EM, Keates T, Hickman T, Felletar I, Philpott M, Munro S, McKeown M, Wan Y, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–73. https://doi.org/10.1038/nature09504.
Article
CAS
Google Scholar
Phelps M, Lin T, Johnson A, Hurh E, Rozewski D, Farley K, Wu D, Blum K, Fisher B, Mitchell S, Moran M, Brooker-McEldowney M, Heerema N, et al. Clinical response and pharmacokinetics from a phase 1 study of an active dosing schedule of flavopiridol in relapsed lymphocytic leukemia. Blood. 2009;113(12):2637–45. https://doi.org/10.1182/blood-2008-07-168583.
Article
CAS
Google Scholar
French CA, Miyoshi I, Aster JC, Kubonishi I, Kroll TG, Cin P, Vargas SO, Perez-Atayde AR, Fletcher JA. BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). J Pathol. 2001;159(6):1987–92. https://doi.org/10.1016/S0002-9440(10)63049-0.
Article
CAS
Google Scholar
Zhou J, Ma J, Zhang BC, Li XL, Shen SR, Zhu SG, Xiong W, Liu HY, Huang H, Zhou M, Li GY. BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some novel important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Phys. 2004;200(1):89–98. https://doi.org/10.1002/jcp.20013.
Article
CAS
Google Scholar
Peng C, Liu HY, Zhou M, Zhang LM, Li X, Shen S, Li G. BRD7 suppresses the growth of Nasopharyngeal Carcinoma cells (HNE1) through negatively regulating B-catenin and ERK pathways. Mol Cell Biochem. 2007;303:141–9. https://doi.org/10.1007/s11010-007-9466-x.
Article
CAS
Google Scholar
Burrows AE, Smogorzewska A, Elledge SJ. Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. PNAS. 2010;107(32):14280–5. https://doi.org/10.1073/pnas.1009559107.
Article
Google Scholar
Hay D, Rogers C, Fedorov O, Tallant C, Martin S, Monteiro O, Muller S, Knapp S, Schofield C, Brennan P. Design and synthesis of potent and selective inhibitors of BRD7 and BRD9 bromodomains. Med Chem Commun. 2015;6:1381–6. https://doi.org/10.1039/C5MD00152H.
Article
CAS
Google Scholar
Karim R, Chan A, Zhu J, Shonbrunn E. Structural basis of inhibitor selectivity in the BRD7/9 subfamily of bromodomains. J Med Chem. 2020;63(6):3227–37. https://doi.org/10.1021/acs.jmedchem.9b01980.
Article
CAS
Google Scholar
Theodoulou N, Bamborough P, Bannister A, Becher I, Bit R, Che K, Chung C, Dittmann A, Drewes G, Drewry D, Gordon L, Grandi P, Leveridge M, et al. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition. J Med Chem. 2016;59(4):1425–39. https://doi.org/10.1021/acs.jmedchem.5b00256.
Article
CAS
Google Scholar
Hohmann AF, Martin LJ, Minder JL, Roe J, Shi J, Steurer S, Bader G, McConnell D, Pearson M, Gerstberger T, Gottschamel T, Thompson D, Suzuki Y, Koegl M, Vakoc CR. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat Chem Biol. 2016;12:672–9. https://doi.org/10.1038/nchembio.2115.
Article
CAS
Google Scholar
Huang H, Wang Y, Li Q, Fei X, Ma H, Hu R. miR-140-3p functions as a tumor suppressor in squamous cell lung cancer by regulating BRD9. Cancer Lett. 2019;446:81–9. https://doi.org/10.1016/j.canlet.2019.01.007.
Article
CAS
Google Scholar
Haas JE, Palmer NF, Weinberg AG, Beckwith JB. Ultrastructure of malignant rhabdoid tumor of the kidney: A distinctive renal tumor of children. Hum Pathol. 1981;12(7):646–57. https://doi.org/10.1016/S0046-8177(81)80050-0.
Article
CAS
Google Scholar
Fisher C. Synovial sarcoma. Ann Diag Path. 1998;2(6):401–21. https://doi.org/10.1016/S1092-9134(98)80042-7.
Article
CAS
Google Scholar
Krämer KF, Moreno N, Frühwald MC, Kerl K. BRD9 inhibition, alone or in combination with cytostatic compounds as a therepeutic approach in rhabdoid tumors. Int J Mol Sci. 2017;18(7):e1537. https://doi.org/10.3390/ijms18071537.
Article
CAS
Google Scholar
Brien GL, Remillard D, Shi J, Hemming ML, Chabon J, Wynne K, Dillon ET, Cagney G, Van Mierlo G. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife. 2018;7:e41305. https://doi.org/10.7554/eLife.41305.
Article
Google Scholar
Sima X, He J, Peng J, Xu Y, Zhang F, Deng L. The genetic alteration spectrum of the SWI/SNF complex: the oncogenic roles of BRD9 and ACTL6A. PLoS ONE. 2019;14(9):e0222305. https://doi.org/10.1371/journal.pone.0222305.
Article
CAS
Google Scholar
Bevill S, Olivares-Quintero J, Sciaky N, Golitz B, Singh D, Beltran A, Rashid N, Stuhlmiller T, Hale A, Moorman N, Santos C, Angus S, Zawistowski J, Johnson G. GSK2801, a BAZ2/BRD9 bromodomain inhibitor, synergizes with bet inhibitors to induce apoptosis in triple-negative breast cancer. Mol Cancer Res. 2019;17(7):1503–18. https://doi.org/10.1158/1541-7786.MCR-18-1121.
Article
CAS
Google Scholar
Inoue D, Chew G, Liu B, Michel B, Pangallo J, D’Avino A, Hitchman T, North K, Lee S, Bitner L, Block A, Moore A, Yoshimi A, Escobar-Hoyos L, Penson A, et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature. 2019;574(7778):432–6. https://doi.org/10.1038/s41586-019-1646-9.
Article
CAS
Google Scholar
Wang L, Lawrence M, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca D, Zhang L, Zhang W, Vartanov A, Fernandes S, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365:2497–506. https://doi.org/10.1056/NEJMoa1109016.
Article
CAS
Google Scholar
Seiler M, Peng S, Agrawal A, Palacino J, Teng T, Zhu P, Smith P, Buonamici S, Yu L. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 2018;23(1):282–96. https://doi.org/10.1016/j.celrep.2018.01.088.
Article
CAS
Google Scholar
Park DE, Cheng J, McGrath JP, Lim MY, Cushman C, Swanson SK, Tillgren ML, Paulo JA, Gokhale PC, Florens L, Washburn MP, Trojer P, DeCaprio JA. Merkel cell polyomavirus activates LSD1-mediated blockade of non-canonical BAF to regulate transformation and tumorigenesis. Nat Cell Biol. 2020;22:603–15. https://doi.org/10.1038/s41556-020-0503-2.
Article
CAS
Google Scholar
Di C, Zhang Q, Chen Y, Wang Y, Zhang X, Liu Y, Zhang C, Hoheisel J. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Diff. 2019;26:1181–94. https://doi.org/10.1038/s41418-018-0231-3.
Article
CAS
Google Scholar
Stein CA, Castanotto D. FDA-Approved Oligonucleotide Therapies in 2017. Mol Ther. 2017;25(5):1069–75. https://doi.org/10.1016/j.ymthe.2017.03.023.
Article
CAS
Google Scholar
Rinaldi C, Wood MJ. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018;14:9–21. https://doi.org/10.1038/nrneurol.2017.148.
Article
CAS
Google Scholar
Strober BE, Dunaief JL, Guha, Goff SP. Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol Cell Biol. 1996;16(4):1576–83. https://doi.org/10.1128/mcb.16.4.1576.
Article
CAS
Google Scholar
Wong AK, Shanahan F, Chen Y, Lian L, Ha P, Hendricks K, Ghaffari S, Iliev D, Penn B, Woodland AM, Smith R, Salada G, Carillo A, Laity K, Gupte J, Swedlund B, Tavtigian SV, Teng DH, Lees E. BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 2000;60:6171–7.
CAS
Google Scholar
Weissman B, Knudsen KE. Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res. 2009;69:8223–30. https://doi.org/10.1158/0008-5472.CAN-09-2166.
Article
Google Scholar
Shi J, Whyte WA, Zepeda-Mendoz CJ, Milazzo JP, Shen C, Roe JS, Minder JL, Mercan F, Wang E, Eckersley-Maslin MA, Campbell AE, Kawaoka S, et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 2013;27:2648–62. https://doi.org/10.1101/gad.232710.113.
Article
CAS
Google Scholar
Buscarlet M, Krasteva V, Ho L, Simon C, Hebert J, Wilhelm B, Crabtree GR, Sauvageau G, Thibault P, Lessard JA. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance. Blood. 2014;123:1720–8. https://doi.org/10.1182/blood-2013-02-483495.
Article
CAS
Google Scholar
Witkowski L, Carrot-Zhang J, Albrecht S, Fahiminiya S, Hamel N, Tomiak E, Grynspan D, Saloustros E, Nadaf J, Rivera B, Gilpin C, Castellsague E, Silva-Smith R, et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet. 2014;46:438–43. https://doi.org/10.1038/ng.2931.
Article
CAS
Google Scholar
Ramos P, Karnezis AN, Craig DW, Sekulic A, Russell ML, Hendricks WP, Corneveaux JJ, Barrett MT, Shumansky K, Yang Y, Shah SP, Prentice LM, et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet. 2014;46:427–9. https://doi.org/10.1038/ng.2928.
Article
CAS
Google Scholar
Bai J, Pengjin M, Zhang C, Chen F, Li C, Pan Z, Liu H, Zheng J. BRG1 is a prognostic marker and potential therapeutic target in human breast cancer. PLoS ONE. 2013;8:e59772. https://doi.org/10.1371/journal.pone.0059772.
Article
CAS
Google Scholar
Wang P, Song X, Cao D, Cui K, Wang J, Utpatel K, Shang R, Wang H, Che L, Evert M, Zhao K, Calvisi DF, Chen X. Onco-gene-dependent function of BRG1 in hepatocarcinogenesis. Cell Death Dis. 2020. https://doi.org/10.1038/s41419-020-2289-3.
Article
Google Scholar
Wu Q, Sharma S, Cui H, LeBlanc SE, Zhang H, Muthuswami R, Nickerson JA, Imbalzano AN. Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells. Oncotarget. 2016;7:27158–75. https://doi.org/10.18632/oncotarget.8384.
Article
Google Scholar
Muthuswami R, Bailey L, Rakesh R, Imbalzano AN, Nickerson JA, Hockensmith JW. BRG1 is a prognostic indicator and a potential therapeutic target for prostate cancer. J Cell Physiol. 2019. https://doi.org/10.1002/jcp.28161.
Article
Google Scholar
Heebøll S, Borre M, Ottosen PD, Andersen CL, Mansilla F, Dyrskjøt L, Orntoft TF, Tørring N. SMARCC1 expression is upregulated in prostate cancer and positively correlated with tumour recurrence and dedifferentiation. Histol Histopathol. 2008;23:1069–76. https://doi.org/10.14670/HH-23.1069.
Article
Google Scholar
Ralhan R, Desouza LV, Matta A, Tripathi SC, Ghanny S, Datta Gupta S, Bahadur S, Siu KW. Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimension liquid chromatography, and tandem mass spectrometry. Mol Cell Proteom. 2008;7:1162–73. https://doi.org/10.1074/mcp.M700500-MCP200.
Article
CAS
Google Scholar
Shadeo A, Chari R, Lonergan KM, Pusic A, Miller D, Ehlen T, Van Niekerk D, Matisic J, Richards-Kortum R, Guillaud M, Lam WL, MacAulay C. Up regulation in gene expression of chromatin remodeling factors in cervical intraepithelial neoplasia. BMC Genomics. 2008;9:1. https://doi.org/10.1186/1471-2164-9-64.
Article
CAS
Google Scholar
Andersen CL, Christensen LL, Thorsen K, Schepeler T, Sorensen FB, Verspaget HW, Simon R, Kruhoffer M, Aaltonen LA, Laurberg S, Orntoft TF. Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer. Br J Cancer. 2009;100:511–23. https://doi.org/10.1038/sj.bjc.6604884.
Article
CAS
Google Scholar
Decristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W, Weissman BE. Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol. 2001;186:136–45. https://doi.org/10.1002/1097-4652(200101)186:1%3c136::AID-JCP1010%3e3.0.CO;2-4.
Article
CAS
Google Scholar
Chen J, Archer TK. Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation: BAF155 and BAF170 limit expression of BAF57. Mol Cell Biol. 2005;25:9016–27. https://doi.org/10.1128/MCB.25.20.9016-9027.2005.
Article
CAS
Google Scholar
Moshkin YM, Mohrmann L, van Ijcken WF, Verrijzer CP. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol Cell Biol. 2007;27:651–61. https://doi.org/10.1128/MCB.01257-06.
Article
CAS
Google Scholar
Yang X, Zaurin R, Beato M, Peterson CL. Swi3p controls SWI/SNF assembly and ATP-dependent H2A–H2B displacement. Nat Struct Mol Biol. 2007;14:540–7. https://doi.org/10.1038/nsmb1238.
Article
CAS
Google Scholar
Ahn J, Ko M, Lee C, Kim J, Yoon H, Seong RH. Srg3, a mouse homolog of BAF155, is a novel p53 target and acts as a tumor suppressor by modulating p21WAF1/CIP1 expression. Oncogene. 2011;30:445–56. https://doi.org/10.1038/onc.2010.424.
Article
CAS
Google Scholar
Wang L, Zhao Z, Meyer MB, Sandeep S, Menggang Y, Guo A, Wisinski KB, Huang W, Cai W, Pike JW, Yuan M, Ahlquist P, Xu W. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell. 2014;25:21–36. https://doi.org/10.1016/j.ccr.2013.12.007.
Article
CAS
Google Scholar
Li Y, Shan Z, Xu Y, Yang D, Wu J, Men C. BAF155 inhibits proliferation and migration by up-regulation of p16 and inactivation of PI3K/AKT and Wnt/B-catenin pathways in PC3 cells. Int J Clin Exp Pathol. 2017;10:2644–51.
CAS
Google Scholar
Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75:495–505. https://doi.org/10.1016/0092-8674(93)90384-3.
Article
CAS
Google Scholar
Goodwin EC, DiMaio D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. PNAS. 2000;97:12513–8. https://doi.org/10.1073/pnas.97.23.12513.
Article
CAS
Google Scholar
Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001;20:7888–98. https://doi.org/10.1038/sj.onc.1204860.
Article
CAS
Google Scholar
Lee K, Lee A, Kwon YK, Kwon H. Suppression of HPV E6 and E7 expression by BAF53 deletion in cervical cancer cells. Biochem Biophys Res Comm. 2011;412:328–33. https://doi.org/10.1016/j.bbrc.2011.07.098.
Article
CAS
Google Scholar
Henriksson M, Lüscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res. 1996;68:109–82. https://doi.org/10.1016/s0065-230x(08)60353-x.
Article
CAS
Google Scholar
Park J, Wood MA, Cole MD. BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation. Mol Cell Biol. 2001;22:1307–16. https://doi.org/10.1128/MCB.22.5.1307-1316.2002.
Article
CAS
Google Scholar
Taulli R, Foglizzo V, Morena D, Coda DM, Ala U, Bersani F, Maestro N, Ponzetto C. Failure to downregulate the BAF53a subunit of the SWI/SNF chromatin remodeling complex contributes the differentiation block in rhabdomyosarcoma. Oncogene. 2014;33:2354–62. https://doi.org/10.1038/onc.2013.188.
Article
CAS
Google Scholar
Ito T, Yamauchi M, Nishina M, Yamamichi N, Mizutani T, Ui M, Murakami M, Iba H. Identification of SWI/SNF complex subunit BAF60a as a determinant of the transactivational potential of Fos/Jun dimers. J Biol Chem. 2001;276:2852–7. https://doi.org/10.1074/jbc.M009633200.
Article
CAS
Google Scholar
Van Straaten F, Muller R, Curran T, Van Beveren C, Verma IM. Complete nucleotide sequence of a human c-onc gene: deduced amino acid sequence of the human c-fos protein. PNAS. 1983;80:3183–7. https://doi.org/10.1073/pnas.80.11.3183.
Article
Google Scholar
Bossy-Wetzel E, Bakiri L, Yaniv M. Induction of apoptosis by the transcription factor c-Jun. EMBO J. 1997;16:1695–709. https://doi.org/10.1093/emboj/16.7.1695.
Article
CAS
Google Scholar
Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene. 2001;20:2390–400. https://doi.org/10.1038/sj.onc.1204383.
Article
CAS
Google Scholar
Shen J, Xiao Z, Wu WK, Wang MH, To KF, Chen Y, Yang W, Li MS, Shin VY, Tong JH, Kang W, Zhang W, Li M, Wang L, Lu L, Chan R, Wong SH, et al. Epigenetic silencing of miR-490-3p reactivates the chromatin remodeler SMARCD1 to promote Helicobacter pylori-induced gastric carcinogenesis. Cancer Res. 2015;75:754–65. https://doi.org/10.1158/0008-5472.CAN-14-1301.
Article
CAS
Google Scholar
Hong C, Lin S, Chou Y, Wu C. MicroRNA-7 compromises p53 protein-dependent apoptosis by controlling the expression of the chromatin remodeling factor SMARCD1. J Biol Chem. 2016;291:1877–89. https://doi.org/10.1074/jbc.M115.667568.
Article
CAS
Google Scholar
Arts FA, Keogh L, Smyth P, O’Toole S, Ta R, Gleeson N, O’Leary JJ, Flavin R, Sheils O. miR-223 potentially targets SWI/SNF complex protein SMARCD1 in atypical proliferative serous tumor and high-grade ovarian serous carcinoma. Hum Pathol. 2017;70:98–104. https://doi.org/10.1016/j.humpath.2017.10.008.
Article
CAS
Google Scholar
Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.00478.
Article
Google Scholar
Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, Jensen RV, Moskaluk CA, Dutta A. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011;71:1313–24. https://doi.org/10.1158/0008-5472.CAN-10-1031.
Article
CAS
Google Scholar
Deng L, Shang L, Bai S, Chen J, He X, Martin-Trevino R, Chen S, Li X, Meng X, Yu B, Wang X, Liu Y, McDermott SP, Ariazi AE, Ginestier C, Ibarra I, et al. MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development. Cancer Res. 2014;74:6648–60. https://doi.org/10.1158/0008-5472.CAN-13-3710.
Article
CAS
Google Scholar
Lee D, Kim JW, Seo T, Hwang SG, Choi EJ, Choe J. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem. 2002;277:22330–7. https://doi.org/10.1074/jbc.M111987200.
Article
CAS
Google Scholar
Oh J, Sohn DH, Ko M, Chung H, Jeon SH, Seong RH. BAF60a interacts with p53 to recruit the SWI/SNF complex. J Biol Chem. 2008;283:11924–34. https://doi.org/10.1074/jbc.M705401200.
Article
CAS
Google Scholar
Yang K, Lui W, Xie Y, Zhang A, Skytting B, Mandahl N, Larsson C, Larsson O. Co-existence of SYT-SSX1 and SYT-SSX2 fusions in synovial sarcomas. Oncogene. 2002;21:4181–90. https://doi.org/10.1038/sj.onc.1205569.
Article
CAS
Google Scholar
Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, Gusterson BA, Cooper CS. Identification of novel genes, SYT and SSX, involved in the t(X;18) (p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994;7(4):502–8. https://doi.org/10.1038/ng0894-502.
Article
CAS
Google Scholar
De Leeuw B, Balemans M, Weghuis DO, Geurts van Kessel A. Identification of two alternative fusion genes, SYT-SSX1 and SYT-SSX2, in t(X;18)(p11.2;q11.2)-positive synovial sarcomas. Hum Mol Genet. 1995;4(6):1097–9. https://doi.org/10.1093/hmg/4.6.1097.
Article
Google Scholar
Skytting B, Nilsson G, Brodin B, Xie Y, Lundeberg J, Uhlen M, Larsson O. A novel fusion gene, SYT-SSX4, synovial sarcoma. J Natl Cancer Inst. 1999;91(11):974–5. https://doi.org/10.1093/jnci/91.11.974.
Article
CAS
Google Scholar
D’Arcy PD, Maruwge W, Ryan BA, Brodin B. The oncoprotein SSX1 promotes p53 ubiquitination and degradation by enhancing HDM2 Stability. Mol Cancer Res. 2008;6(1):127–38. https://doi.org/10.1158/1541-7786.MCR-07-0176.
Article
CAS
Google Scholar
Soulez M, Saurin AJ, Freemont PS, Knight JC. SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human polycomb group complex. Oncogene. 1999;18(17):2739–46. https://doi.org/10.1038/sj.onc.1202613.
Article
CAS
Google Scholar
Thaete C, Brett D, Monaghan P, Whitehouse S, Rennie G, Rayner E, Cooper CS, Goodwin G. Function Domains OF the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Hum Mol Genet. 1999;8(4):585–91. https://doi.org/10.1093/hmg/8.4.585.
Article
CAS
Google Scholar
Schneider-Stock R, Onnasch D, Haeckel C, Mellin W, Franke DS, Roessner A. Prognostic significance of p53 gene mutations and p53 protein expression in synovial sarcomas. Virchows Arch. 1999;435(4):407–12. https://doi.org/10.1007/s004280050418.
Article
CAS
Google Scholar
Oda Y, Sakamoto A, Satio T, Kawauchi S, Iwamoto Y, Tsuneyoshi M. Molecular abnormalities of p53, MDM2, and H-ras in synovial sarcoma. Mod Pathol. 2000;13(9):994–1004. https://doi.org/10.1038/modpathol.3880180.
Article
CAS
Google Scholar
McBride M, Pulice J, Beird H, Ingram D, D’Avino A, Shern J, Charville G, Hornick J, Nakayama R, Garcia-Rivera E, Araujo D, Wang W, Tsai J, Yeagley M, et al. The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell. 2018;33(6):1128–41. https://doi.org/10.1016/j.ccell.2018.05.002.
Article
CAS
Google Scholar
Stacchiotti S, Van Tine BA. Synovial sarcoma: current concepts and future perspectives. J Clin Oncol. 2018;36(2):180–7. https://doi.org/10.1200/JCO.2017.75.1941.
Article
CAS
Google Scholar
Peng C, Guo W, Yang Y, Zhao H. Downregulation of SS18-SSX1 expression by small interfering RNA inhibits growth and induces apoptosis in human synovial sarcoma cell line HS-SY-II in vitro. Eur J Cancer Prev. 2008;17(5):392–8. https://doi.org/10.1097/CEJ.0b013e328305a11b.
Article
CAS
Google Scholar
Takenaka S, Naka N, Araki N, Hashimoto N, Ueda T, Yoshioka K, Yoshikawa H, Itoh K. Downregulation of SS18-SSX1 expression in synovial sarcoma by small interfering RNA enhances the focal adhesion pathway and inhibits anchorage-independent growth in vitro and tumor growth in vivo. Int J Oncol. 2010;36(4):823–31. https://doi.org/10.3892/ijo_00000559.
Article
CAS
Google Scholar
Cai W, Sun Y, Wang W, Han C, Ouchida M, Xia W, Zhao X, Baocun S. The effect of SYT-SSX and extracellular signal-regulated kinase (ERK) on cell proliferation in synovial sarcoma. Pathol Oncol Res. 2011;17:357–67. https://doi.org/10.1007/s12253-010-9334-y.
Article
CAS
Google Scholar
Fairchild C, Floros K, Jacob S, Coon C, Puchalapalli M, Hu B, Dozmorov M, Koblinski J, Smith S, Domson G, Ebi H, Faber A, Boikos SA. Evaluation of combined BCL-2/MCL-1 inhibition as a therapeutic approach for synovial sarcoma. J Clin Oncol. 2020. https://doi.org/10.1200/JCO.2020.38.15_suppl.e23561.
Article
Google Scholar
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cbio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4. https://doi.org/10.1158/2159-8290.CD-12-0095.
Article
Google Scholar
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1. https://doi.org/10.1126/scisignal.2004088.
Article
CAS
Google Scholar
Zhu B, Ueda A, Song X, Horike S, Yokota T, Akagi T. Baf53a is involved in survival of mouse ES cells, which can be compensated by Baf53b. Sci Rep. 2017;7:14059. https://doi.org/10.1038/s41598-017-14362-4.
Article
CAS
Google Scholar
Lu W, Fang L, Ouyang B, Zhang X, Zhan S, Feng X, Bai Y, Han X, Kim H, He Q, Wan M, Shi F, Feng X, Liu D, Huang J, Songyang Z. Actl6a protects embryonic stem cells from differentiating into primitive endoderm. Stem Cells. 2015. https://doi.org/10.1002/stem.2000.
Article
Google Scholar
Wilde JJ, Petersen JR, Niswaner L. Genetic, epigenetic, and environmental contributions to neural tube closure. Annu Rev Genet. 2014;48:583–611. https://doi.org/10.1146/annurev-genet-120213-092208.
Article
CAS
Google Scholar