Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011;286:35334–8. https://doi.org/10.1074/jbc.C111.284620.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Lu X, Lu J, Liang H, Dai Q, Xu GL, et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol. 2012;8:328–30. https://doi.org/10.1038/nchembio.914.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14:341–56. https://doi.org/10.1038/nrm3589.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature. 2011;473:343–8. https://doi.org/10.1038/nature10066.
Article
CAS
PubMed
PubMed Central
Google Scholar
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7. https://doi.org/10.1126/science.1210944.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Xu C, Kato A, Tempel W, Abreu JG, Bian C, et al. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell. 2012;151:1200–13. https://doi.org/10.1016/j.cell.2012.11.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lio CW, Zhang J, Gonzalez-Avalos E, Hogan PG, Chang X, Rao A. Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility. Elife. 2016. https://doi.org/10.7554/elife.18290.
Article
PubMed
PubMed Central
Google Scholar
Teif VB, Beshnova DA, Vainshtein Y, Marth C, Mallm JP, Hofer T, et al. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res. 2014;24:1285–95. https://doi.org/10.1101/gr.164418.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kafer GR, Li X, Horii T, Suetake I, Tajima S, Hatada I, et al. 5-Hydroxymethylcytosine marks sites of DNA damage and promotes genome stability. Cell Rep. 2016;14:1283–92. https://doi.org/10.1016/j.celrep.2016.01.035.
Article
CAS
PubMed
Google Scholar
Greco CM, Kunderfranco P, Rubino M, Larcher V, Carullo P, Anselmo A, et al. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat Commun. 2016;7:12418. https://doi.org/10.1038/ncomms12418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge L, Zhang RP, Wan F, Guo DY, Wang P, Xiang LX, et al. TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model. Mol Cell Biol. 2014;34:989–1002. https://doi.org/10.1128/MCB.01061-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bogdanovic O, Smits AH, Mustienes ED, Tena JJ, Ford E, Williams R, et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet. 2016;48:417–26. https://doi.org/10.1038/ng.3522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai HQ, Wang BA, Yang L, Chen JJ, Zhu GC, Sun ML, et al. TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal signalling. Nature. 2016;538:528–32. https://doi.org/10.1038/nature20095.
Article
CAS
PubMed
Google Scholar
Verma N, Pan H, Dore LC, Shukla A, Li QV, Pelham-Webb B, et al. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat Genet. 2018;50:83–95. https://doi.org/10.1038/s41588-017-0002-y.
Article
CAS
PubMed
Google Scholar
Iyer LM, Tahiliani M, Rao A, Aravind L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle. 2009;8:1698–710. https://doi.org/10.4161/cc.8.11.8580.
Article
CAS
PubMed
Google Scholar
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5. https://doi.org/10.1126/science.1170116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin R, Mo J, Dai J, Wang H. Nickel(II) inhibits tet-mediated 5-methylcytosine oxidation by high affinity displacement of the cofactor iron(II). ACS Chem Biol. 2017;12:1494–8. https://doi.org/10.1021/acschembio.7b00261.
Article
CAS
PubMed
Google Scholar
Xiao MT, Yang H, Xu W, Ma SH, Lin HP, Zhu HG, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Gene Dev. 2012;26:1326–38. https://doi.org/10.1101/gad.191056.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell. 2011;42:451–64. https://doi.org/10.1016/j.molcel.2011.04.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin SG, Zhang ZM, Dunwell TL, Harter MR, Wu X, Johnson J, et al. Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep. 2016;14:493–505. https://doi.org/10.1016/j.celrep.2015.12.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko M, An J, Bandukwala HS, Chavez L, Aijo T, Pastor WA, et al. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature. 2013;497:122–6. https://doi.org/10.1038/nature12052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Xia W, Wang Q, Towers AJ, Chen J, Gao R, et al. Isoform switch of TET1 regulates DNA demethylation and mouse development. Mol Cell. 2016;64:1062–73. https://doi.org/10.1016/j.molcel.2016.10.030.
Article
CAS
PubMed
Google Scholar
Good CR, Madzo J, Patel B, Maegawa S, Engel N, Jelinek J, et al. A novel isoform of TET1 that lacks a CXXC domain is overexpressed in cancer. Nucleic Acids Res. 2017;45:8269–81. https://doi.org/10.1093/nar/gkx435.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li T, Yang D, Li J, Tang Y, Yang J, Le W. Critical role of Tet3 in neural progenitor cell maintenance and terminal differentiation. Mol Neurobiol. 2015;51:142–54. https://doi.org/10.1007/s12035-014-8734-5.
Article
CAS
PubMed
Google Scholar
Kim R, Sheaffer KL, Choi I, Won KJ, Kaestner KH. Epigenetic regulation of intestinal stem cells by Tet1-mediated DNA hydroxymethylation. Genes Dev. 2016;30:2433–42. https://doi.org/10.1101/gad.288035.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell. 2011;8:200–13. https://doi.org/10.1016/j.stem.2011.01.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langlois T, daCostaReis M-MB, Lenglet G, Droin N, Marty C, LeCouedic JP, et al. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells. Stem Cells. 2014;32:2084–97. https://doi.org/10.1002/stem.1718.
Article
CAS
PubMed
Google Scholar
Li J, Wu X, Zhou Y, Lee M, Guo L, Han W, et al. Decoding the dynamic DNA methylation and hydroxymethylation landscapes in endodermal lineage intermediates during pancreatic differentiation of hESC. Nucleic Acids Res. 2018;46:2883–900. https://doi.org/10.1093/nar/gky063.
Article
PubMed
PubMed Central
Google Scholar
Iqbal K, Jin SG, Pfeifer GP, Szabo PE. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA. 2011;108:3642–7. https://doi.org/10.1073/pnas.1014033108.
Article
PubMed
PubMed Central
Google Scholar
Li X, Yue XJ, Pastor WA, Lin LZ, Georges R, Chavez L, et al. Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling. Proc Natl Acad Sci USA. 2016;113:E8267–76. https://doi.org/10.1073/pnas.1617802113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24. https://doi.org/10.1016/j.ccr.2011.06.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neri F, Incarnato D, Krepelova A, Dettori D, Rapelli S, Maldotti M, et al. TET1 is controlled by pluripotency-associated factors in ESCs and downmodulated by PRC2 in differentiated cells and tissues. Nucleic Acids Res. 2015;43:6814–26. https://doi.org/10.1093/nar/gkv392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serandour AA, Avner S, Oger F, Bizot M, Percevault F, Lucchetti-Miganeh C, et al. Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Res. 2012;40:8255–65. https://doi.org/10.1093/nar/gks595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hahn MA, Qiu R, Wu X, Li AX, Zhang H, Wang J, et al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep. 2013;3:291–300. https://doi.org/10.1016/j.celrep.2013.01.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsagaratou A, Aijo T, Lio CW, Yue X, Huang Y, Jacobsen SE, et al. Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc Natl Acad Sci USA. 2014;111:E3306–15. https://doi.org/10.1073/pnas.1412327111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nestor CE, Lentini A, Hagg Nilsson C, Gawel DR, Gustafsson M, Mattson L, et al. 5-Hydroxymethylcytosine remodeling precedes lineage specification during differentiation of human CD4(+) T cells. Cell Rep. 2016;16:559–70. https://doi.org/10.1016/j.celrep.2016.05.091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor SE, Li YH, Smeriglio P, Rath M, Wong WH, Bhutani N. Stable 5-hydroxymethylcytosine (5hmC) acquisition marks gene activation during chondrogenic differentiation. J Bone Miner Res. 2016;31:524–34. https://doi.org/10.1002/jbmr.2711.
Article
CAS
PubMed
Google Scholar
Ichiyama K, Chen T, Wang X, Yan X, Kim BS, Tanaka S, et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity. 2015;42:613–26. https://doi.org/10.1016/j.immuni.2015.03.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K, et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 2011;25:679–84. https://doi.org/10.1101/gad.2036011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336:934–7. https://doi.org/10.1126/science.1220671.
Article
CAS
PubMed
Google Scholar
Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473:394–7. https://doi.org/10.1038/nature10102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012;149:1368–80. https://doi.org/10.1016/j.cell.2012.04.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan L, Xiong LJ, Xu WQ, Wu FZ, Huang N, Xu YF, et al. Genome-wide comparison of DNA hydroxymethylation in mouse embryonic stem cells and neural progenitor cells by a new comparative hMeDIP-seq method. Nucleic Acids Res. 2013. https://doi.org/10.1093/nar/gkt091.
Article
PubMed
PubMed Central
Google Scholar
Kim M, Park YK, Kang TW, Lee SH, Rhee YH, Park JL, et al. Dynamic changes in DNA methylation and hydroxymethylation when hES cells undergo differentiation toward a neuronal lineage. Hum Mol Genet. 2014;23:657–67. https://doi.org/10.1093/hmg/ddt453.
Article
CAS
PubMed
Google Scholar
Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain. Science. 2009;324:929–30. https://doi.org/10.1126/science.1169786.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han D, Lu XY, Shih AH, Nie J, You QC, Xu MM, et al. A highly sensitive and robust method for genome-wide 5hmC profiling of rare cell populations. Mol Cell. 2016;63:711–9. https://doi.org/10.1016/j.molcel.2016.06.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colquitt BM, Allen WE, Barnea G, Lomvardas S. Alteration of genic 5-hydroxymethylcytosine patterning in olfactory neurons correlates with changes in gene expression and cell identity. Proc Natl Acad Sci USA. 2013;110:14682–7. https://doi.org/10.1073/pnas.1302759110.
Article
PubMed
PubMed Central
Google Scholar
Dawlaty MM, Breiling A, Le T, Barrasa MI, Raddatz G, Gao Q, et al. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell. 2014;29:102–11. https://doi.org/10.1016/j.devcel.2014.03.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 2014;28:2103–19. https://doi.org/10.1101/gad.248005.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hackett JA, Reddington JP, Nestor CE, Dunican DS, Branco MR, Reichmann J, et al. Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development. 2012;139:3623–32. https://doi.org/10.1242/dev.081661.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu R, Jin Y, Tang WH, Qin L, Zhang X, Tellides G, et al. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation. 2013;128:2047–57. https://doi.org/10.1161/CIRCULATIONAHA.113.002887.
Article
PubMed
PubMed Central
Google Scholar
Zhang R, Cui Q, Murai K, Lim Yen C, Smith Zachary D, Jin S, et al. Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell. 2013;13:237–45. https://doi.org/10.1016/j.stem.2013.05.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang R, Yu T, Kou X, Gao X, Chen C, Liu D, et al. Tet1 and Tet2 maintain mesenchymal stem cell homeostasis via demethylation of the P2rX7 promoter. Nat Commun. 2018;9:2143. https://doi.org/10.1038/s41467-018-04464-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong LC, Tan L, Lv RT, Shi ZN, Xiong LJ, Wu FZ, et al. A primary role of TET proteins in establishment and maintenance of de novo bivalency at CpG islands. Nucleic Acids Res. 2016;44:8682–92. https://doi.org/10.1093/nar/gkw529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22. https://doi.org/10.1038/nature08514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, et al. Epigenomic analysis of multiline age differentiation of human embryonic stem cells. Cell. 2013;153:1134–48. https://doi.org/10.1016/j.cell.2013.04.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, D’Alessio AC, Ito S, Xia K, Wang Z, Cui K, et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature. 2011;473:389–93. https://doi.org/10.1038/nature09934.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Zheng H, Wang Q, Zhou C, Wei L, Liu X, et al. Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biol. 2018;19:18. https://doi.org/10.1186/s13059-018-1390-8.
Article
PubMed
PubMed Central
Google Scholar
Neri F, Incarnato D, Krepelova A, Rapelli S, Pagnani A, Zecchina R, et al. Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. Genome Biol. 2013;14:R91. https://doi.org/10.1186/gb-2013-14-8-r91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N, et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 2013;32:645–55. https://doi.org/10.1038/emboj.2012.357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orlanski S, Labi V, Reizel Y, Spiro A, Lichtenstein M, Levin-Klein R, et al. Tissue-specific DNA demethylation is required for proper B-cell differentiation and function. Proc Natl Acad Sci USA. 2016;113:5018–23. https://doi.org/10.1073/pnas.1604365113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell. 2014;56:286–97. https://doi.org/10.1016/j.molcel.2014.08.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahe EA, Madigou T, Serandour AA, Bizot M, Avner S, Chalmel F, et al. Cytosine modifications modulate the chromatin architecture of transcriptional enhancers. Genome Res. 2017;27:947–58. https://doi.org/10.1101/gr.211466.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151:1417–30. https://doi.org/10.1016/j.cell.2012.11.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu S, Wan J, Su Y, Song Q, Zeng Y, Nguyen HN, et al. DNA methylation presents distinct binding sites for human transcription factors. Elife. 2013;2:e00726. https://doi.org/10.7554/eLife.00726.
Article
PubMed
PubMed Central
Google Scholar
Yang YQA, Zhao JC, Fong KW, Kim J, Li SZ, Song CX, et al. FOXA1 potentiates lineage-specific enhancer activation through modulating TET1 expression and function. Nucleic Acids Res. 2016;44:8153–64. https://doi.org/10.1093/nar/gkw498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki T, Shimizu Y, Furuhata E, Maeda S, Kishima M, Nishimura H, et al. RUNX1 regulates site specificity of DNA demethylation by recruitment of DNA demethylation machineries in hematopoietic cells. Blood Adv. 2017;1:1699–711. https://doi.org/10.1182/bloodadvances.2017005710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, Titgemeyer F, Slany RK. The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res. 2002;30:958–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bach C, Mueller D, Buhl S, Garcia-Cuellar MP, Slany RK. Alterations of the CxxC domain preclude oncogenic activation of mixed-lineage leukemia 2. Oncogene. 2009;28:815–23. https://doi.org/10.1038/onc.2008.443.
Article
CAS
PubMed
Google Scholar
Hu DQ, Gao X, Morgan MA, Herz HM, Smith ER, Shilatifard A. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol. 2013;33:4745–54. https://doi.org/10.1128/Mcb.01181-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479:74–9. https://doi.org/10.1038/nature10442.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marina RJ, Sturgill D, Bailly MA, Thenoz M, Varma G, Prigge MF, et al. TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing. EMBO J. 2016;35:335–55. https://doi.org/10.15252/embj.201593235.
Article
CAS
PubMed
Google Scholar
Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466:1129–33. https://doi.org/10.1038/nature09303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsagaratou A, Gonzalez-Avalos E, Rautio S, Scott-Browne JP, Togher S, Pastor WA, et al. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat Immunol. 2017;18:45–53. https://doi.org/10.1038/ni.3630.
Article
CAS
PubMed
Google Scholar
Rudenko A, Dawlaty MM, Seo J, Cheng AW, Meng J, Le T, et al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron. 2013;79:1109–22. https://doi.org/10.1016/j.neuron.2013.08.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar D, Aggarwal M, Kaas GA, Lewis J, Wang J, Ross DL, et al. Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxy-methylation, object location memory, and threat recognition memory. Neuroepigenetics. 2015;4:12–27. https://doi.org/10.1016/j.nepig.2015.10.002.
Article
PubMed
PubMed Central
Google Scholar
Zhu X, Girardo D, Govek EE, John K, Mellen M, Tamayo P, et al. Role of Tet1/3 genes and chromatin remodeling genes in cerebellar circuit formation. Neuron. 2016;89:100–12. https://doi.org/10.1016/j.neuron.2015.11.030.
Article
CAS
PubMed
Google Scholar
Karuppagounder SS, Kumar A, Shao DS, Zille M, Bourassa MW, Caulfield JT, et al. Metabolism and epigenetics in the nervous system: creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases. Brain Res. 2015;1628:273–87. https://doi.org/10.1016/j.brainres.2015.07.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Chen SQ, Zhang DM, Shi ZX, Li H, Zhao TB, et al. Tet3-mediated DNA demethylation contributes to the direct conversion of fibroblast to functional neuron. Cell Rep. 2016;17:2326–39. https://doi.org/10.1016/j.celrep.2016.10.081.
Article
CAS
PubMed
Google Scholar
Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118:4509–18. https://doi.org/10.1182/blood-2010-12-325241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301. https://doi.org/10.1056/NEJMoa0810069.
Article
PubMed
Google Scholar
Madzo J, Liu H, Rodriguez A, Vasanthakumar A, Sundaravel S, Caces DB, et al. Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis. Cell Rep. 2014;6:231–44. https://doi.org/10.1016/j.celrep.2013.11.044.
Article
CAS
PubMed
Google Scholar
Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, et al. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity. 2015;43:251–63. https://doi.org/10.1016/j.immuni.2015.07.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan HX, Wang YM, Qu XL, Li J, Hale J, Huang YM, et al. Distinct roles for TET family proteins in regulating human erythropoiesis. Blood. 2017;129:2002–12. https://doi.org/10.1182/blood-2016-08-736587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montagner S, Leoni C, Emming S, Della Chiara G, Balestrieri C, Barozzi I, et al. TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities. Cell Rep. 2016;15:1566–79. https://doi.org/10.1016/j.celrep.2016.04.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yue XJ, Trifari S, Aijo T, Tsagaratou A, Pastor WA, Zepeda-Martinez JA, et al. Control of Foxp3 stability through modulation of TET activity. J Exp Med. 2016;213:377–97. https://doi.org/10.1084/jem.20151438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K, Kawakami R, et al. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat Immunol. 2017;18:173–83. https://doi.org/10.1038/ni.3646.
Article
CAS
PubMed
Google Scholar
Zhong X, Wang QQ, Li JW, Zhang YM, An XR, Hou J. Ten-eleven translocation-2 (Tet2) is involved in myogenic differentiation of skeletal myoblast cells in vitro. Sci Rep UK. 2017. https://doi.org/10.1038/srep43539.
Article
Google Scholar
Ancey PB, Ecsedi S, Lambert MP, Talukdar FR, Cros MP, Glaise D, et al. TET-catalyzed 5-hydroxymethylation precedes HNF4A promoter choice during differentiation of bipotent liver progenitors. Stem Cell Rep. 2017;9:264–78. https://doi.org/10.1016/j.stemcr.2017.05.023.
Article
CAS
Google Scholar
Shimozaki K. Ten-eleven translocation 1 and 2 confer overlapping transcriptional programs for the proliferation of cultured adult neural stem cells. Cell Mol Neurobiol. 2017;37:995–1008. https://doi.org/10.1007/s10571-016-0432-6.
Article
CAS
PubMed
Google Scholar
Kim H, Jang WY, Kang MC, Jeong J, Choi M, Sung Y, et al. TET1 contributes to neurogenesis onset time during fetal brain development in mice. Biochem Biophys Res Commun. 2016;471:437–43. https://doi.org/10.1016/j.bbrc.2016.02.060.
Article
CAS
PubMed
Google Scholar
Seritrakul P, Gross JM. Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways. PLoS Genet. 2017;13:e1006987. https://doi.org/10.1371/journal.pgen.1006987.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi YJ, Gao XC, Dai JX, Ma Y, Xu LX, Jin WL. A novel function of TET2 in CNS: sustaining neuronal survival. Int J Mol Sci. 2015;16:21846–57. https://doi.org/10.3390/ijms160921846.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fong KSK, Hufnagel RB, Khadka VS, Corley MJ, Maunakea AK, Fogelgren B, et al. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure. Dis Model Mech. 2016;9:585–96. https://doi.org/10.1242/dmm.024109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Dai J, Ma Y, Mi Y, Cui D, Ju G, et al. Dynamics of ten-eleven translocation hydroxylase family proteins and 5-hydroxymethylcytosine in oligodendrocyte differentiation. Glia. 2014;62:914–26. https://doi.org/10.1002/glia.22649.
Article
PubMed
Google Scholar
Rao LJ, Yi BC, Li QM, Xu Q. TET1 knockdown inhibits the odontogenic differentiation potential of human dental pulp cells. Int J Oral Sci. 2016;8:110–6. https://doi.org/10.1038/ijos.2016.4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kunimoto H, Fukuchi Y, Sakurai M, Sadahira K, Ikeda Y, Okamoto S, et al. Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells. Sci Rep. 2012;2:273. https://doi.org/10.1038/srep00273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Lan Y, Schwartz-Orbach L, Korol E, Tahiliani M, Evans T, et al. Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence. Cell Rep. 2015;12:1133–43. https://doi.org/10.1016/j.celrep.2015.07.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carty SA, Gohil M, Banks LB, Cotton RM, Johnson ME, Stelekati E, et al. The loss of TET2 promotes CD8(+) T cell memory differentiation. J Immunol. 2018;200:82–91. https://doi.org/10.4049/jimmunol.1700559.
Article
CAS
PubMed
Google Scholar
Chapman CG, Mariani CJ, Wu F, Meckel K, Butun F, Chuang A, et al. TET-catalyzed 5-hydroxymethylcytosine regulates gene expression in differentiating colonocytes and colon cancer. Sci Rep. 2015;5:17568. https://doi.org/10.1038/srep17568.
Article
CAS
PubMed
PubMed Central
Google Scholar