Skip to main content
Fig. 2 | Epigenetics & Chromatin

Fig. 2

From: A low-input high resolution sequential chromatin immunoprecipitation method captures genome-wide dynamics of bivalent chromatin

Fig. 2

A Summary table of samples sequenced in E14 mouse embryonic stem cells indicating replicate (Rep), ChIP, total aligned reads, percentage duplication and number of peaks. B Analysis pipeline for calling bivalent peaks. C Genome browser view of reChIP datasets including IgG–IgG reChIP control (grey), in-line total H3K4me3 (green, rows 2 and 3), in-line total H3K27me3 (red, rows 4 and 5) and bivalent reChIP for H3K4me3 followed by H3K27me3 (K4-K27, purple, rows 6 and 7) or vice-versa (K27-K4, blue, row 8 and 9). Two biological duplicates (R1 and R2) are shown for all but IgG–IgG libraries. CpG islands are denoted by orange bars. Bivalent regions are highlighted in yellow. D FRiP scores showing proportion of reads within peaks for each individual sample. IgG–IgG (grey) is shown for each set of peaks to get background levels. E Comparison of peaks called using our reChIP method compared to in silico overlap of independently derived total ChIP-seq datasets F Single ChIP-qPCR for H3K4me3 (green) or H3K27me3 (red) at a H3K4me3 region (Gapdh1) or three bivalent regions (Tlx1, Pou4f1, Dlx3). Bottom panel shows corresponding reChIP controls: IgG–IgG (black), H3K4me3-IgG (light green), H3K27me3-IgG (light red). G Schematic of enrichment of first IP into the second IP when IgG antibody is used as the second IP in reChIP experiments. H reChIP-qPCR analysis of a H3K4me3-only region (Gapdh1) and three bivalent regions (Tlx1, Pou4f1 and Dlx3) in control (dark bars) versus cells treated with Tazemetostat (Taz) to reduce global H3K27me3 levels (light bars)

Back to article page