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Sensitivity of cohesin–chromatin 
association to high‑salt treatment corroborates 
non‑topological mode of loop extrusion
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Abstract 

Cohesin is a key organizer of chromatin folding in eukaryotic cells. The two main activities of this ring-shaped protein 
complex are the maintenance of sister chromatid cohesion and the establishment of long-range DNA–DNA interac-
tions through the process of loop extrusion. Although the basic principles of both cohesion and loop extrusion have 
been described, we still do not understand several crucial mechanistic details. One of such unresolved issues is the 
question of whether a cohesin ring topologically embraces DNA string(s) during loop extrusion. Here, we show that 
cohesin complexes residing on CTCF-occupied genomic sites in mammalian cells do not interact with DNA topologi-
cally. We assessed the stability of cohesin-dependent loops and cohesin association with chromatin in high-ionic-
strength conditions in G1-synchronized HeLa cells. We found that increased salt concentration completely displaces 
cohesin from those genomic regions that correspond to CTCF-defined loop anchors. Unsurprisingly, CTCF-anchored 
cohesin loops also dissipate in these conditions. Because topologically engaged cohesin is considered to be salt 
resistant, our data corroborate a non-topological model of loop extrusion. We also propose a model of cohesin 
activity throughout the interphase, which essentially equates the termination of non-topological loop extrusion with 
topological loading of cohesin. This theoretical framework enables a parsimonious explanation of various seemingly 
contradictory experimental findings.
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Background
Cohesin is a large nuclear protein complex involved in 
maintaining the structure and integrity of the genome in 
virtually all eukaryotic cells [1, 2]. The two major func-
tions of cohesin are chromatin spatial folding during 
interphase and cohesion of sister chromatids from repli-
cation until anaphase onset. Cohesin belongs to the fam-
ily of SMC (structural maintenance of chromosomes) 
complexes, which also includes eukaryotic condensin and 
SMC5/6 complexes as well as various types of prokary-
otic SMC complexes. The members of this ubiquitous 

group of ATP-driven molecular machines participate in 
various processes associated broadly with maintaining 
the control of long genomic DNA molecule 3D folding. 
It appears that the primordial activity of SMC complexes 
involved the individualization of sister chromosomes, 
and, thus far, each cellular division has been found to rely 
on one or another type of SMC complex.

Despite their relative functional diversity, all SMC 
complexes have a highly similar and specific struc-
tural organization, which includes the triptate SMC–
kleisin ring and several regulatory subunits more or 
less dynamically interacting with a kleisin protein [2]. 
Cohesin comprises an Smc1/Smc3 dimer, Rad21 (Scc1 
in budding yeast) kleisin subunit and SA (Scc3) protein 
which is stably associated with the kleisin (Fig. 1a). SA 
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is a large hook-shaped protein, one of the group of so-
called HAWK (HEAT-repeat containing proteins asso-
ciated with kleisin) proteins [3, 4]. Two other accessory 

HAWK proteins—Nipbl (Scc2) and Pds5—interact with 
kleisin dynamically. Of note, Scc2 and Pds5 compete 
for the same binding surface on Rad21; therefore, their 
association with cohesin is mutually exclusive [5–7].

Fig. 1  High-salt treatment causes cohesin immediate detachment from CTCF-defined binding sites and dissociation of chromatin loops. a 
Schematic of cohesin complex with stable tetrameric ring and dynamically associating HEAT-repeat regulatory subunits Scc2 and Pds5. b Western 
blots reflecting redistribution of CTCF and cohesin subunits (Smc3 and Rad21) between chromatin pellets (P) and soluble fraction (S) after 
treatment of permeabilized cells with either isotonic buffer or high-salt buffer. Salt-resistant histone protein H2B was used as loading control. c 
Heatmap representing chromatin contact frequencies inside the studied genomic region (hg19, chr21:28,981,189–30,260,402) in control (lower-left 
corner) and salt-treated (upper-right corner) nuclei. d Possible configurations of salt-sensitive CTCF-defined chromatin loops in terms of cohesin–
DNA interaction mode. Note that only structures (i) and (iv) can be reconciled with our ChIP-seq data. e ChIP-seq profiles representing association 
of CTCF and cohesin subunits (Smc3 and Rad21) with DNA within the studied region after 30-min chromatin incubation in either control buffer or 
high-ionic-strength buffer. f ChIP-seq profiles representing association of CTCF and cohesin subunit Smc3 with DNA within the studied region after 
1-min chromatin incubation in either control buffer or high-ionic-strength buffer
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It is well recognized that sister chromatid cohesion 
depends on the ability of cohesin to topologically entrap 
DNA molecules within the SMC–kleisin ring [8, 9]. 
There is also evidence that each cohesive cohesin ring 
entraps both sister chromatids [9, 10]. Such topological 
interaction is different from classic protein–DNA bind-
ing. The latter heavily relies on electrostatic interactions, 
which renders it sensitive to an increased concentration 
of counterions in the buffer [11]. In contrast, the topo-
logical entrapment of DNA with cohesin appears to be 
salt resistant [12–14]. Topological entrapment provides 
exceptional stability for cohesin–DNA interactions. Top-
ologically engaged cohesin complexes could persist on 
DNA for hours without dissociating from it [15, 16]. The 
most part of cohesive complexes detach from chromatin 
in higher eukaryotes during prophase when cohesin rings 
open through disengagement of the Smc3–kleisin inter-
face [17–19]. This process is catalyzed by Wapl (a protein 
that transiently interacts with Pds5), the activity of which 
is inhibited during G2 phase with Smc3 K112/K113 acet-
ylation and (in vertebrates) Sororin binding [17, 20, 21].

Another important and seemingly unrelated func-
tion of cohesin is the extrusion of chromatin loops (LE) 
[22–24]. This activity is realized throughout interphase 
and, in some cases, during mitosis by a cohesin subpopu-
lation dynamically associated with chromatin [25–27]. 
LE implies the ability of a cohesin complex to capture a 
small DNA loop by bridging two neighboring DNA sites 
and then to gradually increase the loop by translocating 
in one (one-sided LE) or both directions (two-sided LE) 
along DNA. In vitro data indicate that cohesin is an ATP-
driven molecular machine capable of rapid LE on its own 
[28, 29]. Several groups have shown that cohesin extrudes 
loops in a two-sided manner [29, 30]. Although theoreti-
cal considerations suggest, that two-sided LE by dimers 
of cohesin rings should take place in living mammalian 
cells [31], there are contradictory reports on whether this 
is actually the case in in vitro models [28, 29].

In cells of Bilateralia the 11-zinc-finger transcription 
factor CTCF blocks the process of LE when the cohesin 
complex approaches DNA-bound CTCF from its N-ter-
minal side [32, 33]. Such blocking apparently does not 
interfere with the translocation of cohesin (or indeed 
a dimer of cohesin rings) in the other direction of two-
sided LE; therefore, LE proceeds in a one-sided man-
ner until cohesin encounters another chromatin-bound 
CTCF. Cohesin-dependent loops with fixed CTCF-
defined anchors are accumulated in the cell population as 
a result [23]; these phased loops can be readily detected 
with proximity-ligation-based methods such as Hi-C [25, 
26, 34].

Several lines of circumstantial evidence suggest that 
cohesin interacts topologically with at least one anchor 

of the loop during the process of extrusion. First, the 
comparative stability of extruding cohesin complexes 
on chromatin (residence time around 5–20  min) dis-
tinguishes it from other DNA-binding proteins (typical 
residence time below 1  min) [15, 16]. Second, the pro-
cessivity of LE is negatively regulated by the same set of 
proteins (Pds5 and Wapl) that participate in the disen-
gagement of topologically bound cohesin from chromatin 
and cohesion disruption in early mitosis [26, 35]. Finally, 
it is tempting to accept a parsimonious model explain-
ing both cohesin activities with the same basic principle 
of topological DNA entrapment. However recently pub-
lished studies performed both in  vitro and in  vivo sug-
gested that topological entrapment is dispensable for 
cohesin LE [9, 28, 29].

Here, to determine whether cohesin complexes mediat-
ing LE are bound to chromatin in a topological manner, 
we analyzed the salt-sensitivity of cohesin and CTCF-
anchored DNA loops in the G1 cell cycle phase. The 
results support a non-topological mode of LE. Addition-
ally, we propose a new model that describes the dynamic 
of loop extrusion and topological DNA entrapment in the 
interphase nucleus and reconciles non-topological LE 
with the data indicating close relationships between LE 
and topological DNA engagement.

Results and discussion
To find out what proportion, if any, of cohesin com-
plexes topologically entrap DNA molecules during the 
G1 phase in mammalian cells, we analyzed the possibility 
of extracting chromatin-bound cohesin with a high-salt 
solution. We synchronized HeLa cells in the G1 phase, 
lysed them in isotonic buffer, and incubated permeabi-
lized cells on ice in either isotonic buffer or in a buffer 
containing 0.5 M NaCl. This relatively high concentration 
of salt should cause the extraction of most non-histone 
DNA-binding proteins, whereas topologically bound 
cohesin rings should remain associated with long chro-
mosomal DNA molecules [12–14].

We separated extracted proteins from the insoluble 
material by centrifugation and assessed with western 
blotting the distribution of cohesin subunits Rad21 and 
Smc3 as well as CTCF between the fractions in differ-
ent conditions. As expected, CTCF remained associ-
ated with chromatin in isotonic conditions, but was 
completely extracted from nuclei in a high-salt buffer 
(Fig.  1b, Additional file  1: Figure S1). On the other 
hand, approximately one half of the cohesin molecules 
(50–55%) were solubilized during cellular lysis in the 
isotonic conditions, a result that is in general agreement 
with previous publications [13, 36]. It is assumed that 
this easily solubilized fraction of cohesin roughly cor-
responds to a subpopulation of unbound free-diffusing 
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cohesin molecules revealed by FRAP experiments [16, 
36]. In contrast to CTCF, approximately 25–30% of 
cohesin complexes remain associated with chromatin 
even after incubation in high-ionic-strength conditions 
(Fig.  1b, Additional file  1: Figure S1). Recently, a salt-
resistant form of cohesin DNA binding was described 
that does not necessarily involve true topological 
entrapment; this mode of cohesin–DNA interactions 
was referred to as a “gripping state” [37–39]. Although 
gripping state is salt resistant at 4 °C, it was shown that 
it could potentially be disrupted in high-salt buffers at 
higher temperatures [38]. Albeit that the gripping state 
seems to be short lived in vivo and could only be cap-
tured in special in vitro conditions (such as the usage of 
non-hydrolysable ATP analogues or ATPase-deficient 
cohesin complexes), we checked whether salt-resistant 
cohesin complexes observed in G1 cells are represented 
at some level by “gripping” cohesin complexes. To 
achieve that aim, we incubated permeabilized cells in a 
high-salt buffer at 37 °C and assessed the redistribution 
of cohesin subunits between supernatant and chroma-
tin-associated fraction. We found that in these condi-
tions, the proportion of solubilized cohesin increased, 
but a substantial fraction (10–20%) still remained asso-
ciated with chromatin (Fig. 1b, Additional file 1: Figure 
S1). It is, therefore, likely that this portion is repre-
sented by cohesin that topologically entraps chromo-
somal DNA during the G1 stage of the cell cycle (i.e., 
before the onset of DNA replication). This notion is 
supported by observations made in a yeast model, 
where topologically engaged cohesin rings could be 
biochemically detected even in replication-deficient 
cells [9].

In the next set of experiments, we investigated 
whether chromatin loops generated by LE are resistant 
to salt extraction. With this aim, we generated 3C-seq 
libraries from permeabilized G1 cells incubated for 
30 min in either isotonic or high-salt buffer. We chose 
the ~ 1  Mb region on chromosome 21 that contains 
several well-defined CTCF-anchored cohesin loops in 
HeLa cells and enriched 3C-seq libraries with ligation 
products from this region using the C-TALE protocol 
[40]. Examination of heatmaps showed that high-salt 
treatment caused the complete disappearance of bright 
spots located away from the diagonal that are believed 
to reflect the presence of chromatin loops (Fig.  1c, 
Additional file 1: Figure S2). It is, therefore, likely that 
in vivo generated loops are sensitive to high concentra-
tions of salt; this behavior is similar to that of cohesin 
loops generated in  vitro [28, 29]. The latter are dis-
rupted along with a complete dissociation of cohesin 
from DNA molecules when the salt concentration 

increases [29]. These in vitro results were interpreted in 
favor of a non-topological mode of cohesin LE [29].

However, our results can be explained otherwise 
because the C-TALE data alone, in contrast to the 
results of the above-mentioned in vitro experiments, do 
not show whether loop-maintaining cohesin molecules 
remained associated with chromatin after high-salt treat-
ment. Theoretically, loops in which cohesin molecules 
topologically entrap DNA can be, nonetheless, sensitive 
to increased ionic strength. There are several possible 
structures of such loops (Fig. 1d). First, the cohesin mol-
ecule can associate with CTCF loop anchors asymmetri-
cally, with one DNA anchor entrapped in a topological 
manner, whereas the other is not (Fig. 1d-(ii)) (hereinaf-
ter, we will refer to loops of such structure as being semi-
topological). Alternatively, each cohesin molecule of a 
dimer, maintaining one loop, can interact with DNA in 
a semi-topological manner (Fig. 1d-(iii–iv)). Two princi-
pally different configurations actually correspond to such 
a dimer, with either both CTCF anchors occupied by 
topologically bound cohesin or the other way round, with 
both CTCF anchors associated with the non-topolog-
ically engaged salt-sensitive pole of cohesin. Finally, our 
experimental settings involve comparatively prolonged 
incubation of nuclei in a high-salt buffer. It is possible 
that in such a time interval, even topologically engaged 
cohesin molecules can diffuse from their original CTCF 
anchors along DNA molecules. In this scenario, even 
loops that do not rely on electrostatic cohesin–DNA 
interactions can produce blurred and, thus, indiscernible 
spots in C-TALE heatmaps (Fig. 1d-(v)).

To determine which of the above-presented con-
figurations better describes real cohesin–CTCF loops, 
we performed ChIP-seq to identify profiles of cohesin 
association with the genomic region under study (1 Mb 
region on chromosome 21) in control and salt-treated 
nuclei. We found that high-salt treatment caused the dis-
placement of cohesin from CTCF-defined loop anchors 
sites, which were originally enriched in it (Fig. 1e, Addi-
tional file 1: Figure S3).

Although the extraction of CTCF by a high-salt solu-
tion should release cohesin from anchorage sites, the 
topologically bound cohesin is expected to reside in 
proximity to these sites because it has limited capac-
ity to passively diffuse along nucleosome-bound DNA 
[41]. However, the possibility that topologically bound 
cohesin rings can passively diffuse along DNA under 
conditions of increased salt concentration cannot be 
ruled out. In particular, such diffusion can occur dur-
ing the 30-min incubation in a high-salt solution per-
formed in our experiments. To exclude this possibility 
we repeated the ChIP-seq experiments using a signifi-
cantly shorter time of incubation in the high-salt buffer 
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(1  min instead of 30  min). We expected to observe the 
preservation or, perhaps, partial flattening of cohesin 
peaks at the original locations after this short treatment 
if, indeed, cohesin remained topologically bound to DNA 
but started to diffuse along the chromatin fiber. However, 
we again registered a complete disappearance of cohesin 
peaks (Fig. 1f, Additional file 1: Figure S3). We also ana-
lyzed genome-wide ChIP-seq profiles of cohesin–chro-
matin interactions after 1-min salt treatment in G1 as 
well as in G2 cells (Additional file  1, Figure S4). These 
data confirmed that CTCF-associated cohesin rings are 
extremely sensitive to high-salt treatment. Interestingly, 
these experiments also demonstrated that regulatory 
genomic sequences such as promoters and enhancers in 
which cohesin enrichment is believed to be independ-
ent of CTCF co-occupancy also lose ChIP-seq cohesin 
signal after brief salt treatment. Thus, we concluded that, 
at least around highly positioned ChIP-detectable sites, 
cohesin likely does not interact with DNA topologically 
throughout the interphase. Overall, the ChIP-seq data 
support either a non-topological or semi-topological 
structure of CTCF-anchored chromatin loops (Fig. 1d-(i) 
and Fig. 1d-(iv)).

Our results can be accommodated by a wide range of 
hypothetical models of LE, in which the cohesin ring 
either does not physically entrap DNA at all (non-topo-
logical LE) or entraps it during only some stages of the 
ATP hydrolysis cycle. Below we present a model (Fig. 2a) 
that provides reasonable explanations for most of the 
apparently controversial observations. First, we suggest 
that LE is performed by Scc2-bound cohesin complexes 
in a non-topological manner. This proposal is consist-
ent with the in  vitro data on cohesin LE [28, 29] and is 
corroborated by our results. Additionally, topological 
entrapment was shown to be dispensable for cohesin 
translocation from the loading sites in yeast [9]. Further, 
we postulate that Pds5 blocks in two ways the Scc2 activ-
ity in the LE process, namely (i) Pds5 competes with Scc2 
for a binding surface on Rad21 and (ii) Pds5 participates 
in LE termination by recruiting Wapl, which causes the 
temporary opening of the Smc3–kleisin gate, leading to 
topological DNA entrapment. This process apparently 
leads to the termination of loop extrusion. The suggested 
mechanism explains how both Pds5 and Wapl negatively 
regulate the processivity of LE [26, 35]. In the proposed 
scenario, the Pds5–Wapl complex, rather than Scc2, 
serves as an actual cohesin loader in  vivo. Such activity 
has been indeed demonstrated in  vitro [45]. The Scc2 
in vitro loading activity shown in several studies is likely 
to rely on the same process of transient Smc3–kleisin 
gate opening. Taking into account several circumstantial 
pieces of evidence [14, 37, 38], it is reasonable, however, 
to assume that Scc2, in contrast to Pds5–Wapl, poorly 

catalyzes DNA passage through the Smc3–kleisin gate; 
such a reaction apparently requires multiple rounds of 
ATP hydrolysis cycle and specifically tailored conditions.

According to the proposed model (Fig.  2a), topologi-
cally loaded cohesin complexes are not able to resume 
loop extrusion and are, therefore, subsequently released 
from chromatin through an additional round of Pds5–
Wapl-catalyzed Smc3–kleisin gate opening. Accordingly, 
the Pds5–Wapl complex mediates both the engagement 
of cohesin in topological interactions with DNA and dis-
engagement from it, as previously suggested [45].

We propose that CTCF inhibits both LE progression 
and termination by selectively recruiting Pds5 to cohesin 
while preventing Wapl and Scc2 binding (Fig. 2b). Thus, 
CTCF sites are, in fact, locations for a temporal pausing 
of LE. It was, indeed, reported that CTCF N-terminal 
binding to cohesin inhibits LE termination by blocking 
Wapl binding to the ‘‘conserved essential surface’’ (CES) 
of SA protein [33]. Furthermore, various cohesin regula-
tors, including Wapl, Shugoshin, Sororin and Scc2 (but 
not Pds5), contain the amino acid motif F/YXF involved 
in CTCF–CES interactions. Hence, it is reasonable to 
assume that CTCF binding may also interfere with Scc2 
recruitment to cohesin. Pds5A was recently shown to 
interact with CTCF through its N-terminal domain 
[46]. Additionally, Pds5 knockdown data suggest a con-
tribution of Pds5 in CTCF-dependent LE blockage [26]. 
Thus, it is possible that CTCF inhibits the processivity of 
cohesin by selectively recruiting Pds5 in place of Scc2 to 
the complex and also prevents loop dissociation by inhib-
iting Wapl activity.

Overall, the presented model implies that active cohesin 
LE does not involve topological DNA entrapment and 
that LE termination is catalyzed by the Pds5–Wapl com-
plex and is associated with cohesin topological loading 
and subsequent release. Such a hypothetical framework 
reconciles non-topological LE with the fact that both 
Pds5 and Wapl, primarily recognized as unloading fac-
tors, negatively regulate the processivity of LE. Released 
cohesin rings can be involved in new rounds of LE. How-
ever, a time gap exists between LE termination and the 
release of cohesin from chromatin. This gap explains the 
existence of topologically loaded cohesin rings during the 
G1 phase reported in our study and in previous publica-
tions [9, 13]. This subpopulation of engaged rings can be 
stabilized on chromosomes during the S phase by Smc3 
K112/113 acetylation and Sororin recruitment, which 
block Wapl-dependent cohesin release (Fig. 2a) [47, 48].

Conclusions
Here, we showed that a small but substantial subpopula-
tion of cohesin complexes is associated with chromatin 
in a salt-resistant manner during the G1 phase of the 
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cell cycle in mammalian cells. However, cohesin asso-
ciation with CTCF-bound genomic regions as well as 
CTCF-defined loops is sensitive to high-salt treatment. 
We suppose that these results, in conjunction with pre-
viously published data on cohesin structure and activity, 
are in better agreement with a non-topological mode of 
LE. We also proposed a parsimonious model of cohesin 
activity during interphase that takes into account many 

experimental observations and reconciles non-topologi-
cal LE with the crucial role of cohesin-releasing factors in 
the regulation of LE processivity.

Methods
Cell culture and synchronization
Human HeLa cells were cultured in a DMEM medium 
supplemented with 10% FBS, 100 U/ml penicillin and 100 

Fig. 2  Cohesin activity during interphase. a Schematic of cohesin loop extrusion (LE) cycle (i–vii), Wapl-dependent termination of LE (viii–xii), 
and Wapl-dependent cohesin unloading (xiii–xv). Note that Scc2-catalyzed LE does not involve topological entrapment. One possible variant of 
cohesin structural rearrangements accompanying the LE cycle is depicted. This specific scenario involves (as was largely proposed by other authors 
[37, 42, 43]) cycles of cohesin bending–unbending at elbow regions of SMC coiled-coils coupled with cycles of ATP binding-hydrolysis and SMC 
head engagement–disengagement. During the LE cycle, the cohesin molecule constantly maintains DNA binding through one DNA-binding 
surface (stable anchor) while translocating along DNA with the other two DNA-interacting domains (dynamic anchor). Here, we propose that 
the stable DNA-binding surface is represented by Scc3, whereas DNA is transiently captured by either SMC heads and Scc2 in “gripping state” 
or hinge domains. LE can be terminated by Pds5–Wapl-catalyzed DNA passage through the Smc3–kleisin gate (xii), which leads to topological 
DNA entrapment. Note that CTCF blocks Pds5-dependent Wapl recruitment. Additional round of the gate opening (in essence a reverse reaction, 
catalyzed by the same protein complex) unloads cohesin from DNA and destroys the chromatin loop (xiv). The latter is inhibited in the G2 phase 
by Smc3 K112/113 acetylation and Sororin. b Hypothetical structure of CTCF-defined chromatin loop. CTCF stabilizes cohesin in the depicted 
conformation by promoting Pds5 binding to the complex while blocking Scc2 and Wapl recruitment. Potential propensity of asymmetrically 
extruding SMC complexes to form closely spaced dimmers [44] can explain formation of loops with CTCF bound to both external anchors
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U/ml streptomycin at 37  °C in 5% CO2 in a humidified 
atmosphere. For G1 synchronization, cells were treated 
with 2 mM thymidine for 20 h, washed twice with DPBS, 
and released into a complete medium. After 6 h, nocoda-
zole (Sigma) was added (100 ng/ml) for 8 h. Mitotic cells 
were collected by shake-off and centrifugation. Cells were 
washed twice with DPBS and released into a fresh com-
plete medium. For C-TALE and ChIP-seq experiments, 
mitotic cells were seeded in poly-L-lysine-coated dishes. 
For coating, dish bottoms were covered with 0.1 mg/mL 
solution of poly-L-lysine (Sigma, P6282) in DPBS and 
incubated for 1 h at room temperature; after the solution 
was discarded, dishes were rinsed twice with DPBS and 
dried for 45 min under the hood. G1 cells were harvested 
for experiments after 5 h of release from mitotic arrest. 
For late S/G2 synchronization, cells were seeded in poly-
L-lysine-coated dishes, treated with 2 mM thymidine for 
17 h, released for 10 h from the block, then treated with 
thymidine for additional 14  h and released once again 
into a fresh medium. Each time before release into thy-
midine-free medium cells were washed twice with DPBS. 
Late S/G2 cells were harvested for experiments after 6 h 
of release from the second thymidine block.

Lysate preparation and immunoblotting
Approximately 5 mln G1 cells were harvested with 0.05% 
trypsin–EDTA solution and centrifuged; the pellet was 
resuspended in 1 mL of PBS. One-quarter of the suspen-
sion was centrifuged and the cellular pellet was lysed in 
600 uL of ice-cold RIPA buffer (50 mM Tris–HCl pH 8.0, 
150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycho-
late, 0.1% SDS) supplemented with protease inhibitors 
(Bimake, B14001). The cellular lysate was stored in ice 
until shearing (see below). The remaining part of the cel-
lular suspension was centrifuged and the pellet was resus-
pended in 750 uL of ice-cold isotonic lysis buffer (10 mM 
Hepes pH 8.0, 145 mM NaCl, 1.5 mM MgCl2, 1% NP-40, 
1 × protease inhibitors). The permeabilization was per-
formed on ice for 10 min, and the suspension was then 
centrifuged. The supernatant was collected and diluted 
with an equal volume of isotonic lysis buffer (superna-
tant 1). The pellet was thoroughly resuspended in 50 ul of 
ice-cold isotonic buffer (10 mM Hepes pH 8.0, 145 mM 
NaCl, 1.5  mM MgCl2, 0.5% NP-40, 1 × protease inhibi-
tors), and the suspension was separated in three equal 
parts. One aliquot was diluted with 470 uL of the same 
isotonic buffer, the other two—with 470 uL of ice-cold 
high-salt buffer (10  mM Hepes pH 8.0, 500  mM NaCl, 
1.5 mM MgCl2, 0.5% NP-40, 1 × protease inhibitors). The 
isotonic aliquot and one of high-salt aliquots were incu-
bated at 4  °C. The other high-salt aliquot was incubated 
in a preheated thermoblock at 37  °C. All suspensions 
were occasionally agitated. After a 30-min incubation 

chromatin pellets were separated from solubilized mate-
rial with centrifugation at 20,000g for 5  min. Each of 
the three chromatin pellets were lysed in 600 uL of ice-
cold RIPA buffer supplemented with protease inhibi-
tors. Supernatants were cleared up with an additional 
round of centrifugation at 20,000g for 5  min (superna-
tants 2–4). Solubilized proteins from all four generated 
supernatants (supernatants 1–4) were subjected to three 
rounds of concentration in 30-kDa Amicon filter col-
umns (Millipore, UFC503096) with a subsequent recon-
stituting volume with RIPA buffer; after the final round 
of concentration, material from each supernatant was 
brought to 600 uL with RIPA buffer supplemented with 
protease inhibitors. Cellular and chromatin lysates were 
sheared with a VirSonic 100 cell disrupter. DNA was 
isolated from 20-uL aliquots of sonicated material from 
each pellet (cellular or chromatin). DNA quantities were 
measured with a Qubit fluorometer and concentrations 
in original lysates were calculated. Each sample (both 
lysates from pellets and supernatant samples) was diluted 
with RIPA to obtain final solutions such that each uL 
would contain or correspond to (in the case of superna-
tant samples) approximately 10 ng of DNA. Final samples 
were stored at 4 °C for several days until they were loaded 
into sodium dodecyl sulfate-polyacrylamide gel.

Polyacrylamide gel electrophoresis and immunoblot-
ting were performed as described in [49].

C‑TALE and ChIP‑seq
Chromatin for C-TALE and ChIP-seq experiments was 
prepared as follows. G1-synchronized HeLa cells in 
10-cm dishes were washed once with PBS and dishes 
were cooled on ice for several minutes. 5 mL of ice-cold 
isotonic lysis buffer (10  mM Hepes pH 8.0, 145  mM 
NaCl, 1.5  mM MgCl2, 1% NP-40, 1 × protease inhibi-
tors) were added to each dish, cells were permeabilized 
for 10  min on ice, then the buffer was removed. 5  mL 
of either ice-cold isotonic buffer (10 mM Hepes pH 8.0, 
145 mM NaCl, 1.5 mM MgCl2, 0.5% NP-40, 1 × protease 
inhibitors) or high-salt buffer (10  mM Hepes pH 8.0, 
500 mM NaCl, 1.5 mM MgCl2, 0.5% NP-40, 1 × protease 
inhibitors) was added to permeabilized cells. Dishes were 
incubated at 4  °C for 30 min. In one series of ChIP-seq 
experiments, the incubation time was shortened to 
1 min. After incubation, permeabilized cells were rinsed 
three times with 5  mL of ice-cold wash buffer (10  mM 
Hepes pH 8.0, 145  mM NaCl, 1.5  mM MgCl2). Each 
washing was performed on ice and lasted for 10  min. 
After the final portion of wash buffer was discarded, 
chromatin was fixed for 10  min at room temperature 
with 9 ml of 2% formaldehyde solution in the wash buffer. 
Fixation was quenched by adding 1 ml of 2 M glycine for 
10 min. Fixed chromatin was washed once with PBS and 
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scraped in 7 mL of ice-cold Farnham lysis buffer (5 mM 
Hepes pH 8.0, 85  mM KCl, 0.5% NP-40) supplemented 
with protease inhibitors. Chromatin was collected by 
centrifugation at 1,000g for 5 min at 4 °C.

For C-TALE experiments, chromatin pellets were 
resuspended in the restriction digestion buffer, and then 
C-TALE was performed essentially as described previ-
ously [40]. Restriction endonuclease NlaIII was used for 
DNA digestion. An equimolar mix of BAC DNA iso-
lated from 7 clones—RP11-690G6, RP11-619G21, RP11-
30C13, RP11-297L18, RP11-916H5, RP11-1054D23, 
RP11-791E20—was used for probe preparation. The 
probes covered the 1.3-Mb region of the human genome 
on chromosome 21: 28,981,189–30,260,402 (hg19) rep-
resenting the region of interest. Experiments for both 
studied conditions (control chromatin and high-salt-
treated chromatin) were performed in three biological 
replicates. C-TALE libraries were sequenced (PE150) 
with Illumina NextSeq and HiSeq 2500 platforms. Reads 
were mapped to the 4-Mb fragment of the genome (hg19, 
chr21:27,922,688–32,028,897), in which the region of 
interest was embedded, using Bowtie2 v2.3.5 [50]. The 
data were processed using the hiclib pipeline [51]. Sta-
tistics for the C-TALE data processing can be found in 
Additional file 2: Table S1. 10 kb-binned HDF5 files were 
converted to cool format matrices using cooler v0.8.7. 
Data from three biological replicates for each experimen-
tal condition (control and high-salt-treated chromatin) 
were merged in two matrices which were then iteratively 
normalized using a publicly available script [52] (“–mult_
factor 2” option). Weights in a few poorly covered bins 
were reduced to NA during the normalization proce-
dure; the rhdf5 (2.34.0) R package was used to manually 
replace these NA weights with the values of the highest 
weight found in each matrix. C-TALE heatmaps were vis-
ualized in matplotlib v3.2.1 with the “cooler show” com-
mand. Pairwise stratum-adjusted correlation coefficients 
(SCC) between matrices were calculated with hicrep 
(1.12.2) R package. Hierarchical clustering and visualiza-
tions of SCC heatmap and dendrogram were performed 
with pheatmap (1.0.12) R package.

For ChIP-seq experiments, fixed chromatin pellets 
were resuspended in 600 uL of ice-cold RIPA buffer sup-
plemented with protease inhibitors. Chromatin was 
sheared on ice with a VirSonic 100 cell disrupter with 10 
30-s pulses on “15” power setting, separated with 3-min 
periods of recovery. Input DNA was isolated from 1/10 
aliquots of sonicated samples. Sheared chromatin from 
approximately 1 mln cells and 1 ug of antibodies (against 
either CTCF, Smc3, or Rad21) were used in each immu-
noprecipitation reaction. Chromatin immunoprecipita-
tion was performed as described in the Abcam X-ChIP 
manual [53] with minor modifications. 25 ul of protein 

A/G magnetic beads (Thermo Scientific, 26,162) was 
used per reaction instead of agarose beads; thus, a mag-
net was used instead of a centrifuge to reclaim beads. 
Beads were blocked with 1% BSA solution in RIPA over-
night, meanwhile chromatin was incubated with antibod-
ies. BSA-blocked beads were mixed with antibody-bound 
chromatin for 6 h. Immunoprecipitated DNA was sepa-
rated from beads by overnight treatment with protein-
ase K (Thermo Scientific, EO0491) in PBS supplemented 
with 1% SDS at 65 °C. The solution was then cleared from 
beads with a magnet, and DNA was isolated with stand-
ard phenol–chloroform extraction and ethanol precipita-
tion. Sequencing libraries from both immunoprecipitated 
DNA and inputs were generated as described previously 
[40]. In a subset of “enriched ChIP-seq” experiments the 
same probe set as in C-TALE was used for the enrich-
ment of ChIP-seq libraries with fragments from the 
chosen genomic region [40]. ChIP-seq libraries were 
sequenced (PE100) with Illumina NovaSeq 6000 and 
HiSeq 4000 platforms. Each immunoprecipitation exper-
iment was performed in two biological replicates.

Reads from the enriched ChIP-seq libraries were 
mapped to the 4  Mb fragment of the genome (hg19, 
chr21:27,922,688–32,028,897), in which the region 
of interest (hg19, chr21: 28,981,189–30,260,402) was 
embedded, using Bowtie2 v2.3.5 [50]. Illumina TruSeq 
adapters were trimmed with cutadapt v1.15 [54]. Read 
pairs with at least one non-uniquely mapped read as well 
as PCR and optical duplicates were filtered using sam-
tools v1.7. Bedtools v2.25.0 [55] and bedGraphToBigWig 
utility (from UCSC) were used to generate bigwig cover-
age files. Statistics for the ChIP-seq data processing can 
be found in Additional file 2: Table S2. Bigwig files were 
scaled to 1 mln uniquely mapped read pairs with deep-
tools v3.4.3 [56]. Corresponding input bigwig files were 
subtracted from each immunoprecipitation bigwig file 
and then mean profiles were calculated from pairs of bio-
logical replicates. Both operations were performed with 
deeptools v3.4.3. ChIP-seq bar charts were visualized 
with the IGV v2.8.0 desktop browser [57]. Pairwise Pear-
son correlations and hierarchical clustering were calcu-
lated and visualized with deeptools v3.4.3.

Reads from genome-wide ChIP-seq libraries (we used 
only the first read from each pair) were mapped to the 
hg19 reference human genome using Bowtie2 v2.3.5. Illu-
mina TruSeq adapters were trimmed with cutadapt v1.15. 
Non-uniquely mapped reads as well as PCR and optical 
duplicates were filtered using samtools v1.7. Statistics for 
the genome-wide ChIP-seq data processing can be found 
in Additional file 2: Table S3. RPKM-normalized bigwig 
files were generated; the average bigwig profile for each 
pair of biological replicates was created from normal-
ized bigwig files. Both operations were performed with 
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deeptools v3.4.3. ChIP-seq heatmaps and density profiles 
were built, pairwise Pearson correlations and hierarchical 
clustering were calculated and visualized with deeptools 
v3.4.3.

Coordinates of CTCF-bound sites used for plotting of 
ChIP-seq heatmap were derived as follows. CTCF peaks 
were called in both replicates of control CTCF ChIP-seq 
with MACS2 v2.1.1 [58]. We used input data from our 
previous publication [59] as control profiles for peak call-
ing. Peaks falling into ENCODE-blacklisted regions were 
discarded and finally peaks reproducibly detected in both 
replicates were annotated as CTCF-bound sites. Promot-
ers used for plotting of ChIP-seq heatmap were down-
loaded from UCSC Table Browser (hg19, UCSC genes, 
knownGene, bed, “Upstream by 10 bases”). Genomic 
coordinates of enhancers active in HeLa cells were taken 
from [60]. Only 2,000 promoters and 2,000 enhancers 
with the highest SMC3 ChIP-seq signal in G2 control 
dataset were used for heatmap plotting.

Motif search
CTCF motifs were annotated inside the region of interest 
(hg19, chr21:28,981,189–30,260,402) with HOMER pack-
age v4.11 [61] (findMotifs.pl command with “-find ctcf.
motif” option).

Antibodies
Antibodies against histone H2B (Active Motif, 61,037), 
CTCF (Active Motif, 61,311), cohesin subunits Rad21 
(Abcam, ab992) and Smc3 (Abcam, ab9263), as well as 
secondary horseradish peroxidase-conjugated antibod-
ies against mouse IgG (GE Healthcare, NA931VS) and 
against rabbit IgG (GE Healthcare, NA934VS) were used.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13072-​021-​00411-w.

Additional file 1: Figure S1. Western blots reflecting redistribution of 
CTCF and cohesin subunit Smc3 between chromatin pellets and soluble 
fraction after treatment of permeabilized cells with either isotonic buffer 
or high-salt buffer. Samples for the depicted blots represent a biological 
replicate of the experiment shown in Fig. 1b. Only material from pellets 
is analyzed. Note the almost complete extraction of CTCF with high-salt 
buffers and salt-resistant subpopulation of cohesin (Smc3). Histone pro-
tein H2B was used as loading control. Figure S2. Salt-induced dissocia-
tion of chromatin loops assessed with C-TALE is highly reproducible. a 
Heatmaps representing chromatin contact frequencies inside the studied 
genomic region (hg19, chr21:28,981,189–30,260,402) in three biological 
replicates of control (upper row) and salt-treated (lower row) nuclei. b 
Heatmap showing pairwise similarity between all C-TALE experiments cal-
culated using stratum-adjusted correlation coefficient (SCC). Dendrogram 
depicts the result of hierarchical clustering analysis based on the similarity 
scores. Figure S3. Salt-induced dissociation of CTCF and cohesin from 
chromatin is highly reproducible. ChIP-seq profiles representing associa-
tion of CTCF (a), Smc3 (b) and Rad21 (c) with DNA within the studied 
region (hg19, chr21:28,981,189–30,260,402) in each individual replicate 

and heatmaps showing pairwise Pearson correlations between all the 
experiments. Figure S4. Genome-wide salt-sensitivity of cohesin in highly 
positioned sites throughout the interphase. a ChIP–seq heatmaps and 
density profiles of the cohesin subunit Smc3 and CTCF in CTCF-bound 
sites, SMC3-occupied promoters and enhancers. Data for control and 
1-min salt-treated chromatin in asynchronous (CTCF), G1- and G2-syn-
chronized (Smc3) HeLa cells are presented. b Heatmaps showing pairwise 
Pearson correlations between genome-wide ChIP-seq experiments and 
dendrograms resulted from a hierarchical clustering analysis.

Additional file 2: Table S1. C-TALE sequencing and processing statistics. 
Table S2. Enriched ChIP-seq sequencing and processing statistics. 
Table S3. Genome-wide ChIP-seq sequencing and processing statistics.
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