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Abstract 

Epigenetic marks do not change the sequence of DNA but affect gene expression in a cell-type specific manner by 
altering the activities of regulatory elements. Development of new molecular biology assays, sequencing technolo-
gies, and computational approaches enables us to profile the human epigenome in three-dimensional structure 
genome-wide. Here we describe various molecular biology techniques and bioinformatic tools that have been devel-
oped to measure the activities of regulatory elements and their chromatin interactions. Moreover, we list currently 
available three-dimensional epigenomic data sets that are generated in various human cell types and tissues to assist 
in the design and analysis of research projects.
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Background
Nearly every cell in the human body has the same DNA. 
However, each cell has a distinct gene expression pro-
file. The cell-type specific gene expression patterns come 
from differences in the epigenome (Fig.  1a). The epig-
enome is a collection of sequence-independent regula-
tory modifications to DNA or protein, which include, but 
are not limited to histone modifications, DNA methyla-
tion, and chromatin organization [1]. Histones are pro-
teins that tightly wrap and pack DNA into nucleosomes, 
and their modifications are associated with the chromatin 
states [2, 3]. Chromatin states are largely divided into two 
states: inactive chromatin and active chromatin. Hetero-
chromatin is a form of chromatin that is densely packed 
and transcriptionally inactive. Heterochromatin regions 
are marked by histone modification H3K9me3. Inactive 
chromatin regions also include cis-regulatory elements 
(e.g., promoters, enhancers, insulators) that are silenced 

and repressed. These repressed regions are marked by 
histone modification H3K27me3. DNA methylation, the 
addition of a methyl group to the cytosine of CpG, is 
often found in inactive regulatory elements, where their 
target genes are repressed [4] (Fig. 1b, top). On the other 
hand, euchromatin is the transcriptionally active form of 
chromatin. Active regions of chromatin include regula-
tory elements that are open and accessible for proteins 
to bind. Regulatory elements bound by transcription 
factors (TFs) control the rate of transcription [5]. A pro-
moter is located near the transcriptional start site (TSS) 
of a target gene, and an active promoter is unmethyl-
ated and marked by histone modification H3K4me3 [6]. 
An enhancer, marked by histone modification H3K4me1 
for poised and H3K27ac for active status, is  located dis-
tal to the TSS of a target gene [7]. Enhancers interact 
with the promoter of a target gene to increase the rate 
of transcription. An insulator, which is marked by CTCF 
(CCCTC-binding factor), can either decrease the rate of 
transcription by interfering with the promoter-enhancer 
interaction or increase the transcription by acting as a 
barrier to stop the spread of heterochromatin [8] (Fig. 1b, 
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bottom). The most likely model that has been suggested 
for explaining the mechanisms by which regulatory ele-
ments influence gene expression is a looping model. 
In a looping model, TFs bring regulatory elements into 
proximity by forming a loop [9]. For example, forming 
promoter and enhancer loops increases the expression 
of a target gene [10]. Insulators also form a loop, often 
preventing an enhancer located between insulators from 
interacting with the promoter of a non-target gene [11].

Chromatin states and interactions not only change 
among cell types but also change between inactive and 
active status when normal cells become diseased cells, 
and vice versa (Fig. 1b). Dysregulation of the human epi-
genome can result in cancer, autoimmune diseases, psy-
chiatric diseases, and many more [12–14]. For example, 
it is reported that changes in DNA methylation of CTCF 
binding sites result in the loss of insulators and promote 
chromatin interactions between enhancers and onco-
genes in tumors [15]. Profiling and characterizing three-
dimensional (3D) epigenomes is crucial to understanding 
of underlying molecular mechanisms and promoting 
future development of treatments.

The development of molecular biology techniques 
coupled with next generation sequencing now ena-
bles us to map epigenomes genome-wide. For exam-
ple, ChIP-seq (Chromatin immunoprecipitation 
sequencing), CUT & RUN (Cleavage under targets and 
release using nuclease) sequencing, and CUT & TAG 
(Cleavage under targets and tagmentation) sequenc-
ing are used to profile histone modification and TF 

enrichment. DNase-seq (Deoxyribonuclease I hyper-
sensitive sites sequencing), MNase-seq (Micrococcal 
nuclease digestion with sequencing), FAIRE-seq (For-
maldehyde-Assisted Isolation of Regulatory Elements 
sequencing), ATAC-seq (Assay of Transpose Accessi-
ble Chromatin sequencing), and NOMe-seq (Nucleo-
some Occupancy and Methylome sequencing) are 
used to assess chromatin accessibility and nucleosome 
positioning. DNA methylation arrays and bisulfite 
sequencing are used to measure global DNA meth-
ylation levels. Chromatin interactions are mapped 
using 3C (chromatin conformation capture), 4C, 5C, 
Capture-C, Hi-C, DNase Hi-C, Micro-C, ChIA-PET 
(chromatin interaction analysis by paired-end tag) and 
HiChIP (Fig. 1c).

In this paper, we aim to introduce methods that are 
commonly used to map regulatory elements, chroma-
tin accessibility, and chromatin interactions genome-
wide. To facilitate researchers who are new in either 
molecular or computational biology, we describe wet 
lab as well as dry lab protocols for each of the methods. 
In particular, we detail chromatin conformation inter-
action methods and analysis tools, which are relatively 
new. We also discuss the advantages and limitations 
of each method and introduce recently developed sin-
gle-cell based methods. Furthermore, we list currently 
available 3D epigenomic data sets that are generated in 
various human cell types and tissues. Introduction of 
epigenomic methods and resources described here will 
assist many researchers in the design and analysis of 
their research projects.

Fig. 1  Overview of epigenome change in the human genome. a Human cells within an individual are genetically identical across all cell types, 
but distinct epigenome profiles are detected between cell types. b Epigenome changes when normal cells become diseased cells, and vice 
versa. DNA methylation, histone marks H3K9me3 (heterochromatin region) and H3K27me3 (repressed region) are usually associated with inactive, 
closed chromatin, while unmethylated DNA, histone marks H3K4me3 (active promoter) and H3K27ac (active enhancer), and transcription factor 
(TF) binding are found in active, open chromatin. An insulator marked by CTCF can act as a barrier to prevent enhancer-promoter interaction and 
decrease the rate of transcription or stop the spreading of heterochromatin to increase rate of transcription. c DNA methylation arrays and bisulfite 
sequencing are used to measure DNA methylation levels. ChIP-seq, CUT & RUN, and CUT & TAG are used to identify regulatory elements using 
histone mark and TF enriched regions. 3C, 4C, 5C, Capture-C, Hi-C, DNase Hi-C, ChIA-PET, and HiChIP are used to map chromatin interactions. PolII: 
RNA Polymerase II, GTF: General transcription factor
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Main text
Methods to map regulatory elements
The advancement of molecular biology techniques and 
next generation sequencing has led to the development 
of methods to identify regulatory elements throughout 
the entire genome by analyzing protein-DNA interac-
tion, histone modification, chromatin accessibility, and 
DNA methylation. The enrichment of specific DNA-
binding protein and histone modification is used to iden-
tify regulatory elements. Chromatin accessibility analysis 
reveals open and closed chromatin regions and nucleo-
some positioning. DNA methylation studies identify the 
location of methylated CpG sites, which is used to infer 
chromatin states of regulatory elements and their influ-
ences in gene expression [16]. As different factors (pro-
tein-DNA interaction, histone modification, chromatin 
accessibility, and DNA methylation) are assayed, various 
size of regulatory elements can be identified depending 
on the methods [17]. Here we introduce commonly used 
methods to map regulatory elements.

Assays for protein‑DNA interaction and histone 
modification
ChIP-seq [18] is one of the popular methods to analyze 
protein-DNA binding or histone modifications (Fig. 2a). 
Because regulatory elements are marked by specific pro-
teins that bind to DNA and histone modifications, ChIP-
seq has been utilized to profile the activities of regulatory 
elements [19]. ChIP-seq wet lab protocol includes follow-
ing steps. First, to identify the regions occupied by TFs 
or marked by histone modifications, cells can be fixed 
using crosslinking reagents such as formaldehyde. To 
localize histone modifications and nucleosome position-
ing, native ChIP can be done without crosslinking [20]. 
Second, nuclei are isolated from cells using lysis buffer. 
Third, the DNA is sonicated or enzymatically fragmented 
to produce sheared chromatin and quantified for the next 
step to capture specific regions of interest. Fourth, the 
sheared chromatin is immunoprecipitated with an anti-
body specific to the protein or histone modification of 
interest. Next, the DNA–protein complex is separated by 
reverse crosslinking as needed. Finally, the pulled down 
DNA is purified to generate a library by adding adapters 
for sequencing. The library is sequenced to determine the 
global genomic regions bound by the protein or marked 
by the histone modification [21].

ChIP-seq bioinformatic pipeline includes (1) mapping 
of sequenced reads to the genome, (2) quality check (QC) 
of sequenced data sets, (3) calling peaks to identify TF 
binding sites or histone mark enriched regions, and (4) 
downstream analysis steps to characterize TF binding 
sites or identify regulatory elements. First, the sequenced 
reads (e.g., fastq files) are aligned to the reference genome 

(e.g., human genome assembly 38 (GRCh38) a.k.a. hg38) 
using mapping software such as BWA [22] or Bowtie2 
[23]. Second, the quality of ChIP-seq data sets is checked. 
To remove poorly sequenced reads, PCR duplicated 
reads, and unaligned reads, sequenced reads are filtered 
using programs such as FastQC [24], Picard [25], bed-
tools [26], or Samtools [27]. The quality of ChIP-seq data 
sets is further checked by calculating quality metrics such 
as PCR Bottleneck Coefficient (PBC), Non-Redundant 
Fraction (NRF), Normalized Strand Cross-correlation 
coefficient (NSC), and Relative Strand Cross-correlation 
coefficient (RSC) [28]. These quality control and filtering 
processes are necessary to determine whether the ChIP-
seq data sets are of high quality with library complexity 
(high fraction of DNA fragments that are non-redundant 
and mapped to genome) and highly enriched signals [29]. 
Third, using aligned reads from the ChIP sample and 
input sample, which indicates background signals, sig-
nificantly enriched genomic regions are called with peak 
calling software programs [30–32] such as SPP [33] and 
MACS2 [34]. To reduce technical variation and identify 
reproducible peaks, it is recommended to perform ChIP 
using at least two biological replicates. To measure con-
sistency between replicates, metrics such as Irreproduc-
ible Discovery Rate (IDR), which identifies reproducible 
peaks by generating pseudo replicates from true repli-
cates to call and compare peaks, can be also calculated 
[35]. Finally, for downstream analysis, genomic distri-
butions of called peaks are analyzed to characterize 
TF binding sites or identify regulatory elements using 
programs such as HOMER [36] and ChIPseeker [37]. 
Differential enrichment of ChIP-seq signals between 
conditions can be evaluated using programs [38, 39] 
such as DiffBind [40] and MAnorm [41]. Furthermore, 
enriched TF motifs at identified peaks and regulatory ele-
ments can be determined using motif-search programs 
such as MEME Suite [42], Transfac [43], Jaspar [44], and 
HOMER [36]. Identified TF motifs by TF ChIP-seq data 
are archived in databases such as Factorbook [45].

As the traditional ChIP-seq protocol uses sonication to 
fragment DNA, the resolution of data is not high. There-
fore, ChIP-exo, which is a modified ChIP-seq method 
that uses exonuclease digestion after ChIP, has been 
developed [46]. ChIP-exo can identify binding locations 
at single nucleotide resolution with less background sig-
nal [46]. To analyze ChIP-exo data sets, the ChIP-seq 
bioinformatic pipeline can be used. Specialized bioin-
formatic tools such as MACE and ChExMix have been 
developed to analyze ChIP-exo data sets [47, 48]. ChIP-
seq requires a relatively large number of cells and has a 
high background noise. Therefore, methods like CUT & 
RUN sequencing [49] and CUT & TAG sequencing [50] 
have been developed to compensate for such limitations. 
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Unlike traditional ChIP that uses fixed cells, CUT & RUN 
and CUT & TAG methods use unfixed permeabilized 
cells to facilitate the entry of an antibody into the nuclei, 
where it binds to TF or histone modification. Unlike ChIP 
that shears DNA and pulls down enriched regions using 
an antibody, CUT & RUN uses an antibody and pA-MN 
(protein A and micrococcal nuclease (MNase) fusion pro-
tein) to isolate specific protein-DNA complexes. Calcium 

ion is added to activate pA-MN, which cleaves the DNA 
on either side of the binding site of the targeted protein 
or histone modification. The fragmented DNA that dif-
fuses out of the nuclei is extracted and sequenced after 
making a DNA library [49]. CUT & TAG  is similar to 
CUT & RUN, except it uses pA-Tn5 transposase instead 
of pA-MN. pA-Tn5 transposase gets activated by magne-
sium and ligates an adapter sequence during the cleavage 

Fig. 2  Methods to map regulatory elements. a Simplified protocols of methods to identify regulatory elements using histone modifications are 
shown. ChIP-seq is performed in lysed cells, while CUT & RUN and CUT & TAG are performed in intact nuclei. b Simplified protocols of methods 
to map chromatin accessibility are shown. Cells are lysed, and the DNA is either fragmented with enzymes or through sonication. c Simplified 
protocols of methods to measure global DNA methylation levels are shown. Bisulfite sequencing uses bisulfite conversion followed by sequencing. 
NOMe-seq simultaneously detects endogenous DNA methylation levels (CpG) and chromatin accessibility (GpC). Bisulfite treatment converts 
unmethylated C into U, which is converted to T during PCR amplification. pA-MN: Protein A and micrococcal nuclease. pA-Tn5: Protein A and Tn5 
transposase, M.CviPl: GpC Methyltransferase
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process [50]. Advantages of both CUT & TAG and CUT 
& RUN are low background noise and lower cell input 
requirement, since only the DNA that binds to the pro-
tein of interest is extracted and sequenced [49, 50]. To 
analyze CUT & RUN and CUT & TAG sequencing data 
sets, software programs used for ChIP-seq bioinformatic 
pipeline can be used. Recently, specialized tools such as 
SEACR [51], CUT&RUNTools [52], and CUT&TAG 
pipeline [53] have been developed as well.

Assays for chromatin accessibility and DNA methylation
Chromatin accessibility can be measured to identify 
active regulatory elements and nucleosome depleted 
regions (NDRs), where TFs bind (Fig.  2b). Commonly 
used methods to measure chromatin accessibility include 
DNase-seq [54], MNase-seq [55], FAIRE-seq [56], ATAC-
seq [57], and NOMe-seq [58]. Unlike histone mark 
ChIP-seq, CUT & RUN, and CUT & TAG methods that 
identify regulatory elements which are several kb in size, 
methods to measure chromatin accessibility can identify 
smaller-sized NDRs [17]. Moreover, nucleosome and TF 
footprints can be examined using these methods. These 
methods do not require an antibody, since they do not 
target specific proteins or histone marks, so the analysis 
is not confined to specific TFs or histone modifications 
[59]. This is advantageous especially when antibodies of 
the proteins of interest that work for immunoprecipita-
tion and ChIP are not available.

DNase-seq utilizes the Deoxyribonuclease I (DNase 
I) enzyme that digests accessible DNA regions. There-
fore, DNase I hypersensitivity sites (DHS) identified by 
DNase-seq include open chromatin regulatory regions, 
where TFs bind [60].  DNase-seq wet lab protocol 
includes following steps [54]. First, nuclei are isolated 
from cells using lysis buffer in a similar fashion as ChIP-
seq protocol. Second, nuclei are digested using DNase 
I. DNA fragment sizes are measured to identify optimal 
digestion using gel electrophoresis. Third, biotinylated 
linkers are ligated to the ends of digested DNA after 
polishing to make blunt ends, and the DNA is isolated. 
Fourth, the DNA with biotinylated linker is digested by 
restriction endonuclease MmeI and captured by strepta-
vidin-coated Dynabeads to generate short tags to which 
the second sequencing adaptor can be ligated. Finally, a 
second linker is ligated and amplified to generate a library 
for sequencing [54]. Protocols of DNase I digestion and 
size selection steps may vary by research groups [54, 61, 
62]. DNase-seq bioinformatic pipeline is similar to that of 
ChIP-seq. First, sequenced reads are aligned to reference 
genome with BWA [22] or Bowtie2 [23] Second, quality 
of DNase-seq data sets are checked. Poorly sequenced 
reads, PCR duplicated reads, and unaligned reads are fil-
tered using programs such as FastQC [24], Samtools [27], 

or Picard [25]. Signal Portion of Tags (SPOT) is used to 
measure signal-to-noise levels in the genome [63]. Third, 
the aligned reads are used to call DHS peaks against 
input sample (background signal) with programs like 
Hotspot2 [63] or MACS2 [34]. With high-depth sequenc-
ing, DNase I cleavage sites can be revealed at base-pair 
resolution, revealing the presence of TF protected DNA 
sequences as footprints [64]. CENTIPEDE [65] and DNa-
se2TF [66] are examples of programs that detect these 
footprints. While DNase-seq shows a greater sensitivity 
for regulatory sites, especially promoters [67], DNase-
seq suffers from sequence specific cutting bias of DNase I 
that can complicate genomic footprinting [68].

MNase-seq determines chromatin accessibility with 
micrococcal nuclease (MNase) that preferentially digests 
nucleosome-free, protein-unbound DNA regions [55, 
69]. MNase-seq wet lab protocol includes following 
steps [70]. First, nuclei are isolated from either native 
or crosslinked chromatin similar to ChIP-seq protocol. 
Second, nuclei are digested using MNase with titration. 
Usually, three to five test digestions with a broad range of 
total units of MNase is added for a single experiment to 
help identify the amount of MNase needed for optimal 
digestion. Third, the uncut DNA is purified and mono-
nucleosome bands are isolated and excised through gel 
electrophoresis. Finally, the isolated DNA is amplified by 
adding adapters to generate a library, and sequenced [55]. 
MNase-seq primarily sequences regions of DNA bound 
by histones or other proteins [71]. Therefore, it indi-
rectly determines which regions of DNA are accessible by 
directly determining which regions are bound to nucle-
osomes or proteins [70]. It is noted that MNase prefers to 
cut AT-rich sequences in limiting enzyme concentrations 
[72–74], so careful enzymatic titrations are required for 
generating accurate and reproducible MNase-seq data 
sets. While MNase-seq follows most of the software used 
by DNase-seq for the bioinformatic pipeline (mapping, 
QC, calling peaks, and downstream analysis), DANPOS2 
[75, 76] is reported to be optimized to identify NDRs and 
dynamic nucleosomes from MNase-seq data sets. Com-
putational analysis with MNase-seq has been also used to 
predict chromatin interaction and structure [77, 78].

FAIRE-seq is a method, which simply isolates NDRs 
from chromatin, not using an antibody to target histone 
mark or TF [56]. FAIRE-seq wet lab protocol includes fol-
lowing steps [79]. First, cells are fixed using formaldehyde 
so that TFs and histones are crosslinked to interacting 
DNA like ChIP-seq protocol. Second, crosslinked chro-
matin is sheared by sonication that generates protein-free 
DNA and protein-crosslinked DNA fragments. Third, 
protein-free DNA is isolated using a phenol–chloro-
form extraction; DNA crosslinked with protein stays in 
organic phase, while protein-free DNA stays in aqueous 
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phase. Finally, the purified DNA, which includes NDRs, 
is amplified using adapters to generate a library and then 
sequenced [56]. The FAIRE-seq bioinformatic pipeline is 
similar to the DNase-seq pipeline (mapping, QC, calling 
peaks, and downstream analysis). FAIRE-seq peaks are 
often called using software such as F-Seq [80], ChIPOTle 
[81], Mixer [82], or MACS2 [34]. Because FAIRE-seq 
does not require single-cell suspension or nuclear isola-
tion, it is more adaptable for tissue samples [56]. FAIRE-
seq is relatively free from the sequence-specific cleavage 
bias that is seen in DNase-seq or MNase-seq [59]. How-
ever, FAIRE-seq has a higher background level and a 
lower signal-to-noise ratio, compared to other chromatin 
accessibility assays, which can limit identifying all open 
chromatin regions in a given cell [83, 84]. It is reported 
that FAIRE-seq has lower resolution in identifying open 
chromatin regions at promoters but captures more distal 
regulatory elements, compared to DNase-seq [79, 84, 85].

DNase-seq, MNase-seq, and FAIRE-seq require a rel-
atively large number of cells and have high background 
noise level. Therefore, ATAC-seq was developed to sup-
plement. ATAC-seq uses hyperactive Tn5 transposase 
that preferentially cuts accessible chromatin regions and 
simultaneously inserts adapters to the fragmented region 
[57]. ATAC-seq wet lab protocol includes following steps 
[57]. First, nuclei are isolated from cells using lysis buffer. 
Second, Tn5 transposase is added to nuclei, and often 
cases, detergents such as digitonin, NP40, and Tween-20 
are added together in this step to improve cell permea-
bilization and remove mitochondria from the transposi-
tion reaction [86]. Third, DNA is isolated and purified. 
Finally, fragmented and tagged DNA by Tn5 transposase 
is purified and then amplified to generate a library and 
sequenced for analysis. The first step of bioinformatic 
pipeline of ATAC-seq is adapter trimming. Because of 
adapter sequences that are added during Tn5 transposase 
activity, programs like Cutadapt [87] and Trimmomatic 
[88] are used to remove adapter sequences before align-
ment. Second, the sequenced reads are mapped to the 
genome after trimming, similar to other methods. Third, 
the quality of the data sets is evaluated like ChIP-seq and 
DNase-seq data sets (see above). Finally, ATAC-seq peaks 
are called using MACS2 [34] or HMMRATAC, which is 
a peak calling program specific to ATAC-seq that uses a 
Hidden Markov model to learn the chromatin structure 
and predict accessible regions [89]. As in DNase-seq, 
high-depth ATAC-seq data can be used for genomic foot-
printing, using HINT-ATAC [90] or CENTIPEDE [65]. 
The advantage of  ATAC-seq is that it is relatively fast 
and requires a low amount of sample inputs compared 
to other assays, while maintaining similar specificity 
[57]. However, ATAC-seq data may be contaminated with 
a high percentage of mitochondrial DNA [91], so it may 

require some extra procedures to reduce mitochondrial 
DNA contamination [92]. Omni-ATAC is one of methods 
that improve mitochondrial DNA contamination by pre-
treating DNA with DNase I to remove free-floating and 
to digest DNA from dead cells [86]. Omni-ATAC is also 
reported to work using archival frozen tissue samples and 
50-μm sections, generating fewer sequencing reads that 
map to mitochondrial DNA.

NOMe-seq is a method to identify NDRs with 
M.CviPI methyltransferase that methylates cytosine in 
GpC dinucleotides not protected by nucleosomes or 
other proteins (Fig. 2c) [58]. Unlike CmpG, GpCm in the 
human genome does not occur naturally in most cell 
types [93–95]. Therefore, GpCm levels at open chroma-
tin regions can be compared to background signals and 
determine NDRs. NOMe-seq wet lab protocol includes 
following steps [17]. First, nuclei are isolated from 
cells using lysis buffer. Second, nuclei are treated with 
M.CviPI and S-adenosylhomocysteine (SAM) to meth-
ylate accessible GpC sites. Third, M.CviPI treated DNA 
is sheared using a sonicator, so that DNA fragments 
can be sequenced in the later step. Fourth, the DNA 
is treated with bisulfite, which converts unmethylated 
cytosine to uracil using sodium bisulfite, while methyl-
ated cytosine is unaffected. Finally, library is generated 
using adapters and sequenced. Since NOMe-seq uses 
bisulfite treatment, besides GpC methylation, endog-
enous CpG methylation is also measured [17]. Open 
chromatin is expected to have high levels of GpCm but 
low levels of CmpG. Therefore, NOMe-seq identifies 
NDRs using the two separate methylation analyses that 
serve as independent (but opposite) measures, provid-
ing matched chromatin designations for each regula-
tory element [17]. Bioinformatic pipeline of NOMe-seq 
includes following steps. First, the sequenced reads are 
aligned to a bisulfite-converted genome using mapping 
programs such as BSMAP [96], BWA-METH [97], Bis-
mark [98], BS-SEEKER [99], or Biscuit [100]. Second, 
Picard [25], Samtools [27], and BamToElementEnrich-
ment script from ECWorkflows [101] are used for QC 
and post-alignment processing to identify high qual-
ity and mapped reads. Third, the methylation status of 
CpG sites and GpC sites are identified using Bis-SNP 
[102] or Biscuit [100] programs. Finally, NDRs from 
NOMe-seq are identified with aaRon R package [103], 
and plots are generated using programs such as Bis-
tools [104]. Unlike other assays, NOMe-seq can deter-
mine NDRs at single molecular resolution, and it has 
no bias toward open chromatin regions, since there 
is no sonication or digestion with enzyme in the step 
that identifies open chromatin regions [17]; sonica-
tion is done after identifying open chromatin regions 
to fragment DNA for sequencing purpose. However, it 
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is noted that sequencing cost of NOMe-seq, which is 
based on whole genome sequencing, is more expensive 
than other assays such as ATAC-seq.

Quantification of DNA methylation level in regulatory 
elements also helps us to understand the activities of reg-
ulatory elements (Fig. 2c) [4]. Active regulatory elements 
have relatively low levels of CmpG, because proteins 
bound at open chromatin regions block the DNA meth-
yltransferase (DNMT) complex, needed to methylate 
cytosine in the regions [105]. On the other hand, DNA 
methylation in regulatory elements such as CpG island 
promoters leads to gene silencing [106]. The most com-
mon method to assess DNA methylation level is to use 
bisulfite treatment. Depending on the coverage of profil-
ing, reduced representation bisulfite sequencing (RRBS) 
[107], DNA methylation arrays [108], and whole genome 
bisulfite sequencing (WGBS) [93] are used. RRBS uses 
restriction enzyme digestion to produce sequence-
specific fragmentation, and it is the method of choice 
to study specific regions of interest [107]. For genome-
wide analyses, most commonly used methods are using 
Illumina DNA methylation arrays that can target 27,000 
(Human Methylation (HM) 27  K BeadChIP) [109], 
450,000 (HM 450 K BeadChIP) [110], and 850,000 (Epic 
BeadChIP) [111] methylation sites across the genome. 
Unlike arrays that are restricted to probes, WGBS can 
assess the DNA methylation status of the entire genome, 
because whole genome sequencing is used after bisulfite 
conversion [93]. Similar to NOMe-seq, RRBS and WGBS 
sequenced data are analyzed by bisulfite mapping pro-
grams such as BWA-METH [97], BSMAP [96], Bismark 
[98] and BS-SEEKER [99]. Quality of DNA methylation 
data sets are checked with Picard [25] and Samtools [27], 
and methylated regions are identified using programs like 
MOABS [112] and methylKit [113]. Illumina DNA meth-
ylation array data can be analyzed using software such as 
Illumina GenomeStudio Software, minfi [114], sesame 
[115], and DMRCate [116].

The processed sequencing data can be visualized in 
genome browsers like UCSC Genome Browser [117], 
Integrative Genomics Viewer (IGV) [118], Integrated 
Genome Browser (IGB) [119], Ensembl Genome Browser 
[120], or WashU Epigenome Browser [121]. Commonly 
used file formats for these genome browsers are bam, 
bigwig, and bedgraph, which show aligned reads and sig-
nal intensity of data sets. Files with bed extensions can be 
also loaded to the genome browsers to visualize peaks. 
Some genome browsers like UCSC Genome Browser and 
Ensembl Genome Browser can only be used as the web-
based applications, while IGV and IGB can be used from 
the local desktop. IGV is also now available as web-based 
application as well. The web-based genome browsers are 
generally better at importing and exporting sessions, as 

data sets can be visualized without downloading data to 
the local desktop and shared between users.

Recently, advanced techniques using single cell 
sequencing have been developed to better understand 
heterogeneity of individual cells. For example, single-cell 
ATAC-seq, which improves the low input requirement 
of ATAC-seq further by capturing and assaying cells 
using a programmable microfluidics platform, has been 
developed [122]. The specificity of single-cell ATAC-seq 
identifies chromatin accessibility variance among cell 
populations, and it is useful to identify sets of TFs asso-
ciated with specific subgroups [123]. Single-cell NOMe-
seq has also been developed using fluorescence-activated 
cell sorting, and it is reported that it can directly estimate 
the fraction of accessible regions of individual cells [124]. 
Single-cell WGBS is also performed. For example, single-
cell WGBS on human oocytes revealed distinct DNA 
methylation patterns in three oocyte maturation stages 
[125]. Currently, a small number of single-cell ATAC-seq, 
NOMe-seq, and WGBS data sets have been generated, 
while thousands of data sets have been generated using a 
population of cells.

Data sets that mapped regulatory elements
Large consortia such as ENCODE (Encyclopedia of DNA 
Elements) [126] and REMC (Roadmap Epigenomics 
Mapping Consortium) [127] profiled global regulatory 
elements using over one hundred different cell types. The 
ENCODE consortium is a project that aims to assemble 
comprehensive lists of functional elements in the human 
and mouse genome (https://​www.​encod​eproj​ect.​org/). 
From the phase III of the ENCODE project, a registry 
of 926,535 human and 339,815 mouse candidate regula-
tory elements is developed [126]. Data sets generated 
by the ENCODE project include, but are not limited to, 
histone mark and TF ChIP-seq, ATAC-seq, DNase-seq, 
FAIRE-seq, eCLIP-seq, RRBS, DNA methylation array, 
and WGBS. For example, 2039 ChIP-seq data sets that 
annotate regulatory elements (promoters, enhancers, and 
insulators), and 2066 open chromatin and DNA methyla-
tion data sets from various cell and tissue types have been 
generated as of October 2020. As part of the ENCODE 
project, the functional genomics database that stores 
thousands of experimental data sets is established. The 
distinguishing feature of the ENCODE database com-
pared to other databases is its filtering capabilities. Its 
user-friendly interface allows one to filter experimental 
data according to assay, target of assay, organism, cell 
and tissue type, and even developmental stage. Moreover, 
some data sets can be visualized using its own genome 
browser and other genome browsers such as UCSC and 
Ensembl. REMC is a consortium that aims to produce 
data sets of the human epigenomes that include ChIP-seq 

https://www.encodeproject.org/
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of histone modifications, chromatin accessibility, DNA 
methylation, and gene expression data sets for hundreds 
of human cell types and tissues (http://​www.​roadm​apepi​
genom​ics.​org/). Unlike ENCODE, REMC only profiles 
the human epigenomes, and it does not produce TF 
ChIP-seq data sets including CTCF ChIP-seq data that 
mark insulators. The REMC database has searching tools 
and a matrix, which allows a user to search data sets 
based on experiment, cell-, and/or tissue-type. Moreover, 
it has options to visualize data sets in the UCSC genome 
browser.

There are additional consortia that profile the human 
epigenomes focusing on specific tissues or diseases. For 
example, PsychENCODE has profiled the epigenomes of 
brain cells and tissues obtained from patients who suf-
fer from psychiatric diseases [128]. On the other hand, 
Blueprint project focuses on hematopoietic epigenomes 
[129], and The Cancer Genome Atlas (TCGA) specializes 
in cancer (https://​www.​cancer.​gov/​tcga). PsychENCODE 
has generated ChIP-seq, ATAC-seq, and DNA meth-
ylation data sets of more than 750 samples (http://​www.​
psych​encode.​org/).  Blueprint project includes histone 
modification ChIP-seq, DNase-seq and WGBS data sets 
(https://​www.​bluep​rint-​epige​nome.​eu/), while TCGA 
mainly contains ATAC-seq and DNA methylation arrays 
to profile the epigenomes of tumors. Over 400 chromatin 
accessibility data sets and over 12,300 methylation data 
sets generated by TCGA are available in GDC data portal 
(https://​portal.​gdc.​cancer.​gov/).

With the increased amount of epigenome data sets 
generated by researchers, multiple epigenome databases 
have been developed and maintained. The most com-
monly used database for regulatory elements data sets 
is GEO (Gene Expression Omnibus) (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/). GEO is a public functional genom-
ics database that archives and freely distributes numer-
ous genomic data sets as part of the National Center for 
Biotechnology Information (NCBI) [126]. While GEO 
[130] allows some searching and filtering based on organ-
ism and sample type, its query and search mechanism is 
not as intuitive as that of ENCODE or REMC. However, 
GEO stores by far the largest amount of epigenome data 
sets that profile regulatory elements as any researchers 
can deposit data sets. In addition, European Nucleotide 
Archive (ENA) [131] led by the European Molecular 
Biology Laboratory—European Bioinformatics Institute 
(EMBL-EBI) archives functional genomic data sets result-
ing from biomedical research projects (https://​www.​ebi.​
ac.​uk/​ena/). Moreover, the International Human Epig-
enome Consortium (IHEC) coordinates the production 
of epigenomes from healthy and diseased human cells 
[132] (http://​ihec-​epige​nomes.​org/). Currently, IHEC 
data portal archives thousands of epigenome data sets 

generated from ENCODE, REMC, Blueprint, Canadian 
Epigenetics, Environment and Health Research Consor-
tium (CEEHRC), Japan Agency of Medical Research and 
Development & Core Research for Evolutional Science 
and Technology (AMED-CREST), Korean National Insti-
tute of Health (KINH), and Deutsches Epigenom Pro-
gramm (DEEP). Individual research groups also maintain 
databases by collecting and processing epigenome data 
sets generated and reported by the research commu-
nity. For example, Cistrome Data Browser [133] (http://​
cistr​ome.​org/) encompasses TF, histone ChIP-seq and 
chromatin accessibility data from GEO, ENCODE, and 
REMC. ReMap2020 database [134] (http://​remap.​univ-​
amu.​fr/) collects data sets specialized in transcriptional 
regulators of DNA-binding experiments in Homo sapiens 
and Arabidopsis thaliana.

Methods to map chromatin interactions
The human genome is tightly packed into the nucleus, 
because the stretched DNA cannot be contained within 
the cell size. Increasing evidence suggests that chromatin 
organization and interaction of regulatory elements influ-
ence gene regulation and expression. Local chromatin 
conformation change can also result in human diseases 
[13, 14, 135–137]. For example, chromatin conformations 
affect promoter-enhancer interactions. An enhancer that 
is located hundreds of kb away from the promoter of a 
target gene can activate or inactivate the target gene by 
changing chromatin interaction and organization. More-
over, studies on relationship with polycomb repressive 
complexes (i.e., PRC1, PRC2) [138–140] and cohesin 
complex (e.g., CTCF, RAD21) that is enriched at chro-
matin loop anchors [141, 142] support the importance 
of chromatin organization in epigenome changes. Here 
we describe commonly used techniques to profile global 
chromatin interactions.

Chromatin conformation capture (3C) based tech-
niques are one of useful methods to study the chromatin 
interactions and the spatial organization of the human 
genome (Fig. 3). The standard 3C protocol includes fol-
lowing steps. First, cells are crosslinked to fix chromatin 
segments connected by a protein complex. Second, nuclei 
are isolated from fixed cells, and then chromatin seg-
ments are fragmented using a restriction enzyme. Third, 
the chromatin fragments, which are in spatially proxim-
ity, are ligated together. Next, crosslinking is reversed to 
isolate ligated DNA. Finally, the purified ligation prod-
uct (3C template) is quantified with PCR, using prim-
ers designed for two chromatin segments looped (one 
vs one) [143]. 3C is not coupled with next generation 
sequencing, so 3C cannot assess chromatin interactions 
genome-wide. Therefore, many derivatives of 3C-based 

http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
https://www.cancer.gov/tcga
http://www.psychencode.org/
http://www.psychencode.org/
https://www.blueprint-epigenome.eu/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/ena/
https://www.ebi.ac.uk/ena/
http://ihec-epigenomes.org/
http://cistrome.org/
http://cistrome.org/
http://remap.univ-amu.fr/
http://remap.univ-amu.fr/
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methods (e.g., 4C, 5C, Hi-C) to measure chromatin inter-
actions in many to all loci are developed.

Circular Chromosome Conformation Capture (4C) 
identifies all possible interactions between a locus of 
interest with other DNA sequences (one vs all) [144]. 4C 
wet lab protocol includes additional steps after perform-
ing 3C. In 4C, the 3C template is digested again with sec-
ond restriction enzyme. Then, the product is circularized 
using ligation. Next, an inverse PCR is performed with 
primers binding outward on the genomic region of inter-
est to identify and quantify fragments that are ligated 
to the genomic region of interest. Finally, the amplicons 
are analyzed using microarray or sequencing to capture 
all interactions of the genomic region of interest [145]. 
In 4C-seq (circular chromosome conformation capture, 
coupled to high throughput sequencing), inverse PCR 
is performed with a primer that hybridizes to second 
restriction enzyme fragment and has overhang sequences 
that corresponds to adapter sequence used in sequenc-
ing [145, 146]. 4C-seq bioinformatic pipeline includes 
following steps. First, the sequenced reads that include 
the genomic region of interests are kept by demulti-
plexing and trimmed to extract the sequence including 

restriction enzyme motifs. Second, data are mapped to 
reference genome using Bowtie [147] or Novoalign [148]. 
Third, reads that are mapped to restriction fragment 
ends with captured regions are quantified using in silico 
digested reference genome [145]. Finally, read counts are 
normalized and smoothened, and analyses are performed 
to identify statistically significant chromatin interactions. 
Programs like peakC [149], 4C-ker [150], fourSig [151] 
and FourCSeq [145] are commonly used to identify chro-
matin interactions from 4C.

Carbon Copy Chromosome Conformation Capture 
(5C) detects interactions between all restriction frag-
ments within given regions (many vs many) [152]. 5C 
wet lab protocol includes additional steps after generat-
ing the 3C template. To make a 5C library, the 3C tem-
plate is first converted using multiplex ligation-mediated 
amplification (LMA), which detects and amplifies spe-
cific genomic regions of interest using primer pairs that 
anneal next to each other on the same DNA strand; In 
5C, two sets of primers (5C forward and 5C reverse prim-
ers) are annealed to the specific target sequences, and 
only sequences with both primers attached to the same 
DNA strand are ligated. The generated 5C library is then 

Fig. 3  Methods to map chromatin interactions. Simplified protocols of methods to map chromatin interactions are shown. DNA is first crosslinked, 
and fragmented with restriction enzymes (3C, 4C, 5C, Capture-C, Hi-C), DNaseI (DNase Hi-C), or MNase (Micro-C). After fragmentation, biotin is 
added for all methods except for 3C, 4C, 5C or Capture-C. The DNA then goes through proximity ligation, and reverse-crosslinked. Purification 
and amplification steps are followed. ChIA-PET and HiChIP use an antibody specific to TF or histone modification to map chromatin interactions 
associated with the specific TF or regulatory elements. IP: Immunoprecipitation
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followed by microarray or sequencing. For sequencing, 
universal PCR primers that anneal to tails of 5C primers 
are used to amplify 5C library for sequencing [152]. The 
5C bioinformatic pipeline is similar to 4C. First, paired-
end reads are aligned to a pseudo-genome that include 
all 5C primer sequences using Bowtie [147] or Novoa-
lign [148]. Next, 5C interactions are counted when both 
paired-end reads are uniquely mapped to the 5C primer 
pseudo-genome. During this step, invalid interactions 
that include reads with the same primer or primers of the 
same type were removed or flagged. Finally, interaction 
contact matrices are generated using valid interaction 
counts and normalized for distance and background sig-
nals using statistical methods such as quantile normaliza-
tion [153, 154]. Software such as HiFive [155] and my5C 
[156] have been developed for 5C data analysis. HiFive is 
capable of mapping, filtering, normalizing, and visualiz-
ing 5C as well as Hi-C data sets, allowing users to analyze 
the data with a single program [155].

Assays to map chromatin interactions genome‑wide
Unlike 3C, 4C, and 5C, Hi-C can map all possible chro-
matin interactions  across the genome (all vs all) [135–
137, 157–159]. Hi-C wet lab protocol includes following 
steps. First two steps are similar to 3C protocol. First, 
cells are crosslinked like 3C. Second, nuclei are iso-
lated and then chromatin segments are fragmented by 
a restriction enzyme. Third, after DNA fragmentation, 
biotin-labeled nucleotides are added to mark the end. 
Fourth, segments in proximity are ligated using a DNA 
ligase. Biotin-label allows enrichment of crosslinked liga-
tion products across the genome. Fifth, the ligated prod-
ucts are reverse-crosslinked. Next, ligation products 
are fragmented using a sonicator and then pulled down 
using biotin to generate the biotinylated DNA suitable 
for sequencing. Finally, by adding adapters needed for 
sequencing, DNA is amplified and purified. The Hi-C 
library is then sequenced using paired-end sequenc-
ing. By mapping the pair of sequences cut by restriction 
enzymes and ligated, individually, all possible pairwise 
interactions between fragments are identified [157].

With the increasing popularity of Hi-C experiments, 
numerous Hi-C analysis bioinformatic tools have been 
recently developed. Hi-C bioinformatic pipelines include 
(1) matrix generation, (2) topologically associating 
domains (TAD) calling, (3) loop calling, and (4) repro-
ducibility and differential analysis steps (Table  1). Once 
Hi-C data is generated, the resulting sequencing FASTQ 
files are first processed to generate a matrix that includes 
chromatin contact frequencies throughout the entire 
genome. Examples of matrix generation software include 
HiC-Pro [160], Juicer [161], Hiclib [162], and Distiller 
[163] (Table  1). In the first step of matrix generation, 

read-pairs are aligned to the human genome. During this 
process, programs account for chimeric reads that span 
the ligation junction and restriction enzymes that were 
used. After alignment, the reads are filtered to remove 
technical artifacts such as PCR duplicates or low-quality 
alignment reads. Invalid pairs, which are generated due 
to invalid ligation like dangling end or self-circle circu-
lation, are also filtered. Next, the reads are then mapped 
through ‘binning’, in which the genome is partitioned into 
fixed size called ‘bin’, and the number of contacts between 
bins are assessed and normalized.

Hi-C contact matrices often contain systemic biases 
that can affect the consistency and analysis of the data 
sets. Therefore, after Hi-C data sets are mapped, the con-
tact matrices are normalized to remove biases such as 
GC content, mappability,  copy number variations, and 
fragment length (Table  2). The normalization method 
can be divided into two categories: implicit and explicit. 
The explicit normalization assumes specific sources of 
biases and utilizes additional information like fragment 
length, mappability score, and GC content to correct 
biases [164]. Examples of software that normalize using 
the explicit methods include Hicpipe [165] and HiC-
Norm [164]. On the other hand, the implicit normaliza-
tion assumes no known source of bias and assumes that 
all loci have equal representation when there is no bias. 
Examples of implicit normalization method include ICE 
(Iterative Correction and Eigenvector Decomposition) 
[162] and SCN (Sequential Component normalization) 
[166]. ICE collectively normalizes bias affecting experi-
mental visibility through iterative correction, while SCN 
normalizes circulation biases. Moreover, there are addi-
tional normalization software for other biases such as 
calCB [167] that normalizes genomic DNA copy number 
bias in tumor cells and multiHiCcompare that normal-
izes across multiple data sets [168].

Mapping genome-wide chromatin interactions by Hi-C 
and other 3C-derived methods revealed that the human 
genome consists of compartments and smaller sub-parts. 
A normalized Hi-C matrix at 1  Mb resolution revealed 
a plaid pattern, suggesting that chromosome is decom-
posed into two compartments: compartment A and com-
partment B [157]. The sequences in compartment A are 
more closely related with open, accessible, and actively 
transcribed chromatin, while the sequences in compart-
ment B are more related with closed, inactive chromatin. 
Compartment A and B partition are cell type-specific, 
and can be further broken down into sub-compartments, 
such as A1–A2 and B1–B3 [141]. High-resolution chro-
matin contact maps revealed highly self-interacting 
regions that preferentially interact within the domain, 
and they were referred to as topologically associating 
domains (TADs) [154, 169, 170]. TADs are suggested 
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Table 1  Analysis tools for Hi-C data

Software Function How to run Input Output

Distiller [163] Matrix generation Python package/Linux com-
mand line

.fastq .mcool and .cool

HiCExplorer [214] Matrix generation Linux command line .sam, .bed .cool or .mcool

Hiclib [162] Matrix generation Linux command line .fastq .hdf5

HiC-Pro [160] Matrix generation Linux command line .bed .matrix

HiCUP [215] Matrix generation Linux command line .fastq .bam

HOMER [36] Matrix generation Linux command line/Mac/
Windows

.fastq .txt with matrix information, 
or .hic 

Juicer [161] Matrix generation Linux command line .fastq .hic

TADbit [216] Matrix generation Python package/Linux com-
mand line

.fastq, .dsrc .map

Arrowhead [141] TAD calling Linux command line .hic .bedpe

CaTCH [176] TAD calling R package .hic A list of data frame with 
domain information in R

Domaincaller (Directionaliy 
Index) [169]

TAD calling Linux command line .cool .bed and .bedgraph

HiCDB [217] TAD calling R package/Linux command 
line with MATLAB

N x N matrix, or K × 3 .txt

HiCseg [175] TAD calling R package Data in r matrix format List of t_hat, J, and t_est_mat 
data in R

HOMER [36] TAD calling Linux command line/Mac/
Windows

HiC tag directory from 
HOMER

.2D.bed

TADbit [216] TAD calling Python package/Linux com-
mand line

.bam or .map List of TADs in Python

TADCompare [218] TAD calling R package N x N matrix, x (N + 3) matrix, 
or 3-column matrix

Data frame in R

TADPole [219] TAD calling R package Tab-separated matrix file TADpole object in R

TADtree [220] TAD calling Linux command line through 
Python script

Contact matrix without 
column or row labels

.txt files with three columns for 
contact domain information

TopDom [174] TAD calling R package Tab-separated matrix file with 
bin information

.binsignal and.domain

3DNetMod [221] TAD calling Linux command line through 
Python script

.bed and tab-separated 
matrix file

Genomic coordinates and 
statistics output files 

FitHiC [179] Loop calling R pacakge/Linux command 
line with Python script

Fragment file and interac-
tion file

.txt

FitHiC2 [180] Loop calling Linux command line Fragment file and matrix file .txt

GOTHiC [178] Loop calling R package .bam or bowtie2 alignment 
output

Data frame in R

HiCCUPS [141] Loop calling Linux command line .hic .bedpe

HiC-DC [222] Loop calling Linux command line through 
R script

File with Hi-C covariates and 
Hi-C counts

File with data.table and fit 
information

HiCNormCis (FIREcaller) [223] Loop calling R package N x N matrices file Object in R

HOMER [36] Loop calling Linux command line/Mac/
Windows

HiC tag directory from 
HOMER

.2D.bed

Mustache [182] Loop calling Linux command line .hic, .cool, or raw contact 
map with normalization 
vector .txt file and bias .
txt file

.tsv file with contact domain 
information and mustache 
scale

SIP [181] Loop calling Linux command line .hic, .mcool, or processed file 
with normalized value

Loop file that can be loaded 
into Juicebox

StripeCaller [224] Loop calling Linux command line .cool .bedpe

HiCRep [184] Reproducibility testing R package Squared matrix, 3-column 
matrix, .hic or .cool

Object in R

HiC-Spector [185] Reproducibility testing Linux command line for both 
Julia and Python imple-
mentation

.hic or text delimited matrix 
file

Reproducibility score
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to be fundamental components of genome organiza-
tion as TADs are reported to be conserved across cell 
types and tissues [171, 172] although recently developed 
higher resolution of chromatin contact maps revealed 
that smaller-size TADs (sub-TADs) can vary among cell 
types [13, 173]. Programs and software such as DI [169], 
TopDom [174], HiCseg [175], CaTCH [176], and arrow-
head [141] have been developed to identify and analyze 
TADs (Table  1). A previous study has shown that each 
TAD calling software comes with its own advantages and 
disadvantages due to their difference in algorithms [177]. 
Additionally, it is reported that one program can identify 
TADs that are different in sizes when the bin size of the 
matrix used to call TADs is changed [177].

Hi-C data sets can be further used to identify chroma-
tin loops [141]. The chromatin loops that have signifi-
cantly higher contact frequencies, compared with their 
neighbors were identified as peaks in the Hi-C contact 
matrix. Examining chromatin loops at higher resolution 
enables us to study the looping of regulatory elements 
such as promoter-enhancer loops. Examples of loop call-
ing software include HiCCUPS [141], GOTHiC [178], 
FitHiC [179], FitHiC2 [180], SIP [181], and Mustache 

[182] (Table 1). Interaction frequency is compared to the 
local or global background to determine its significance. 
Programs like GOTHiC [178], FitHiC [179], and FitHiC2 
[180] utilize global background to identify loops, while 
programs like HiCCUPS [141], SIP [181], and Mustache 
[182] utilize local background to detect loops. Global 
background methods can detect interdomain interac-
tions better than local background methods, while the 
local background methods can detect more significant 
loops than global background methods [141, 180, 182].

To compare Hi-C data sets, it is crucial to first measure 
the reproducibility of the generated data sets. However, 
common statistical methods like Pearson, Spearman or 
irreproducible discovery rate are not suitable for Hi-C 
data sets due to their dimensional nature. Therefore, 
slightly modified methods compatible for Hi-C experi-
ments such as IDR2D [183] and HiCRep [184] are devel-
oped (Table 1). IDR2D expands from one-dimensionality 
of IDR and analyze interactions in two dimensions by a 
pair of genome coordinates. HiCRep utilizes stratum-
adjusted correlation coefficient, a weighted version of 
Pearson correlation coefficient. Another program called 
HiC-spector utilizes spectral decomposition to quantify 

Table 1  (continued)

Software Function How to run Input Output

IDR2D [183] Reproducibility testing Linux command line .hic or .matrix and.bed from 
HiC-Pro

IDR and significance value

FIND [187] Differential analysis R package Three column tab-separated 
file with matrix and four-
column tab-separated file, 
or .hic

Object in R

HiCCompare [186] Differential analysis R package .hic, .cool, or .matrix, and .bed 
from HiC-Pro

Object in R

Selfish [188] Differential analysis Linux command line .hic, .cool, .bed, or .matrix Matrix of q-values in binary 
numpy file

Table 2  Normalization tools for Hi-C data

Software Function How to run

Binless [225] Normalize in resolution-agnostic way and adapt to quality and quantity of available 
data

R package

hicapp/caICB [167] Normalize genomic DNA copy number bias in tumor cells, as well as fragment length, 
GC bias, and mappability

Linux command line

HiCorr [226] Normalize GC bias, mappability, fragment explicitly, and visibility implicitly Linux command line

HiFive [155] Normalize through binning, matrix-balancing, and multiplicative-probability model Linux command line/Python package

HiCNorm [164] Explicitly normalize fragment length, GC bias, and mappability Linux command line through R script

Hicpipe [165] Explicitly normalize fragment length, GC bias, and mappability Linux command line

multiHiCcompare [168] Normalize across multiple Hi-C datasets R package

oneD [227] Normalize copy number variation bias, especially for biological samples with aberrant 
karyotype

R package
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reproducibility of contact maps [185]. After measuring 
reproducibility of data sets, Hi-C data sets generated in 
different biological conditions can be further compared 
to identify regions differentially interacting using pro-
grams such as HiCCompare [186], FIND [187], and Self-
ish [188].

Visualization of Hi-C data sets facilitates data analysis 
and interpretation. Chromatin contact maps are often 
represented as a heatmap. In a heatmap, the x-axis and 
y-axis represent each position along a given chromo-
some, and each ‘contact’ is represented by a bin, with 
more frequently interacting contact having stronger 
color such as dark red, while less frequently interacting 
contact having weaker color such as white in the white to 
red color scale. Example software that generate heatmaps 
include Juicebox [189], HiGlass [190], HiCPlotter [191], 
HiTC [192], and 3D Genome Browser [193] (Table  3). 
Heatmaps are sometimes represented as a triangle to 
facilitate the comparison of Hi-C data sets with other 
next generation sequencing data sets like ChIP-seq and 
DNase-seq. Chromatin interactions can be also visual-
ized as loops in genome browsers such as UCSC genome 
browser [117]

Hi-C that uses 6-cutter restriction enzyme fragmen-
tation yields ~ 4  kb fragment size, and even 4-cutter 
restriction enzyme and multiple restriction enzyme frag-
mentation results in ~ 1  kb resolution at the best [194]. 
Therefore, to improve resolution, variations of Hi-C such 
as DNase Hi-C [195] and Micro-C [194] that use differ-
ent enzymes to fragment DNA have been recently devel-
oped. Unlike Hi-C that uses restriction enzyme to digest 
crosslinked DNA, DNase Hi-C uses DNase I and Micro-C 
uses MNase. After digestion, DNase Hi-C includes a step 

to mark chromatin fragments with biotinylated adapters 
that contain BamHI restriction enzyme cut sites, instead 
of simple addition of biotin-marked nucleotides. These 
sequences are used later to check the DNase Hi-C library 
size. Unlike Hi-C, where proximity ligation is performed 
in solution, proximity ligation step for DNase Hi-C is 
done in gel to reduce random inter-molecular collisions 
of small-sized DNase-digested fragments [196]. After 
proximity ligation and reverse-crosslinking steps, DNA 
can be optionally sonicated for DNase Hi-C if the size of 
chromatin fragments is too large for sequencing. Micro-
C does not require sonication, because MNase already 
digest DNA to a size less than 500 bp. DNase Hi-C has 
shown slightly improved resolution over Hi-C, while 
Micro-C has provided resolution up to ~ 200  bp [194, 
195]. While Hi-C bioinformatic pipeline can be used 
to analyze DNase Hi-C and Micro-C data, difference in 
fragmentating enzyme needs to be accounted during the 
steps of mapping and identifying valid pairs to create 
contact matrices since most Hi-C bioinformatic pipelines 
utilize restriction enzyme information. To increase the 
coverage, targeted sequencing methods such as Capture-
C [197] and Capture Hi-C [198] that uses oligonucleotide 
capture technology to enrich the regions of interest are 
also developed. These targeted sequencing methods can 
provide enough resolution to identify chromatin contact 
maps between selected regions of interest while requiring 
less sequencing depth.

3C methods can be combined with chromatin immu-
noprecipitation to identify interactions of loci asso-
ciated with proteins. Chromatin interaction analysis 
with paired-end tag sequencing (ChIA-PET) [199] 
combines ChIP and 3C method to detect genome-wide 

Table 3  Visualization tools for Hi-C data

Software How to run Input Interactivity

DNARchitect [228] Web-based/R package .bed, .bedpe, .bedgraph, or file with custom 
headers

Interactive

gcMapExplorer [229] Linux command line to start GUI .Gcmap, .ccmap, and .hdf5 Interactive

HiCorr [226] Linux command line Anchor-to-anchor looping pairs file from 
normalization

Non-interactive

HiCPlotter [191] Python script .bedgraph, and .matrix from HiC-Pro Non-interactive

HiGlass [190] Web-based/Linux command line/Python pack-
age

.cool, .mcool, .bigwig, .bedgraphs, and .bed-like Interactive

HiTC [192] R package .matrix from HiC-Pro Non-interactive

Juicebox [189] Web-based/local installation on Linux/Win-
dows/Mac

.hic Interactive

UCSC Genome Browser [117] Web-based .hic Interactive

WashU Epigenome Browser [121] Web-based .hic, .cool, .bigInteract, and .longrange Interactive

3D Genome Browser [193] Web-based .butlr Interactive
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interactions associated with a particular protein. 
ChIA-PET wet lab protocol includes additional steps 
after performing ChIP. After performing first four 
steps of ChIP (crosslinking, nuclei isolation, chroma-
tin fragmentation, immunoprecipitation), biotinylated 
oligonucleotide half-linkers containing flanking MmeI 
restriction enzyme sites are added at the ends of DNA. 
Next, DNA fragments in proximity are ligated like 
3C. Furthermore, MmeI restriction enzyme is used to 
digest to generate a paired end tag (PET) construct, 
which includes a pair of tags and a linker between the 
tag pair. Finally, the PET sequences are purified and 
then PCR amplified for sequencing [199, 200]. MmeI 
restriction digestion and amplification steps can be 
alternatively done using Tn5 transposome digestion, 
in which sequencing adapters are added to the DNA 
ends simultaneously [201]. ChIA-PET data can be 

analyzed using bioinformatic tools such as MANGO 
[202] and ChIA-PET Tool [200] that are specifically 
designed to process ChIA-PET data sets by filtering 
linker sequences and mapping to genome to classify 
PET. Another method called HiChIP [203] is devel-
oped to detect interactions associated with proteins of 
interest. In HiChIP, the restriction enzyme-mediated 
fragmented DNA goes through in  situ proximity liga-
tion like Hi-C, and then immunoprecipitated with a 
specific antibody of the protein of interest like ChIP. 
HiChIP is reported to require fewer cells, compared 
to ChIA-PET [203]. For HiChIP data processing, Hi-C 
bioinformatic pipeline can be used. HiChIP special-
ized bioinformatic tools such as hichipper [204] and 
FitHiChIP [205] can be also used to identify significant 
chromatin loops.

Table 4  Hi-C datasets generated in human cells

Name of study Cell type Average read coverage 
(Million read pairs)

Database

Lieberman-Aiden et al. [157] Blood cell lines 30 GEO

Dixon et al. [169] ESCs and lung cell lines 700 GEO

Dixon and Selvaraj et al. [230] Blood cell line 800 GEO

Jin and Li et al. [231] Lung cell line 1500 GEO

Le Dily et al. [232] Breast cell lines 200 GEO

Rao and Huntley et al. [141] Blood cell lines 1700 4DN/GEO

Dixon and Jung et al. [233] ESCs and ESC-derived cells 750 GEO

Grubert and Zaugg et al. [234] Blood cell line 1400 GEO

Leung and Jung et al. [212] Thymus, aorta, left ventricle, and liver 300 GEO

Sanborn and Rao et al. [235] Blood cell lines, lung cell line, and breast cell line 100 4DN

Schmitt and Hu et al. [236] ESCs, ESC-derived cells, heart, spleen, adrenal gland, brain, lung, 
pancrea, liver, bladder, ovary, muscle, intestine, and blood and 
lung cell lines

Cell lines: 800
Tissues: 200

GEO

Taberlay and Achinger-Kawecka et al. [237] Prostate cell line 500 GEO

Won et al. [238] Cortical tissues 2000 GEO/dbGaP

Fritz and Ghule et al. [239] Breast cell lines 400 GEO

Haarhuis and van der Weide et al. [240] Blood cell lines 150 4DN

Phanstiel and Van Bortle et al. [241] Blood cell line 5000 Bioproject

Rao et al. [242] Colon cell lines 1000 4DN

Rubin and Barajas et al. [243] Keratinocyte and derived cells 400 GEO

Li and He et al. [244] Blood cell line 400 GEO

Lin et al. [245] Blood cell lines 750 GEO

Vian and Pękowska et al. [224] Blood cell line 300 4DN

Abramo et al. [246] Cervix adenocarcinoma cell lines 300 4DN

Gorkin and Qiu et al. [247] Blood cell lines 700 GEO/4DN

Greenwald et al. [211] iPSCs and iPSC-derived cells 300 GEO/dbGAP

Johnston et al. [29] Brain cell lines 900 GEO

Ray and Munn et al. [248] Blood cell line 200 4DN

Rhie et al. [13] Prostate cell lines 1000 GEO

Zhang et al. [249] ESCs and ESC-derived cells 3000 4DN

Akdemir et al. [250] Blood cell lines, lung cell line, and breast cell line 350 GEO
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Recently, single-cell Hi-C is developed to analyze 
genome organization and variability in individual cells. 
The first single-cell Hi-C relied on physical separation 
of cells and resulted in low throughput [206]. How-
ever, it is reported that combinatorial cellular index-
ing to single-cell Hi-C led to significant improvement 
in genome coverage and throughput [207]. Moreover, 
SPRITE (Split-pool recognition of interactions by tag 
extension) method, which measures high-order inter-
actions within an individual nucleus but does not use 
proximity ligation, is developed to identify chromatin 
interactions [208]. SPRITE is reported to able to detect 
interactions that occur at larger spatial distances than 
the interactions found in Hi-C. Besides these, DNA 
fluorescence in situ hybridization (DNA FISH) that uti-
lizes imaging method allows for the study of chromo-
somal organization [209].

Data sets that mapped chromatin interactions
Because chromatin interaction method is a relatively new 
technique, there are currently few studies that have gen-
erated genome-wide chromatin contact maps in human 
cells. The 4D Nucleome (4DN) consortium [210] aims to 
develop experimental and computational approaches to 
study spatial organization of the genome and its effect on 
gene regulation and other biological functions (https://​
www.​4dnuc​leome.​org/). Currently, 4DN Data Portal 
encompasses hundreds of experimental data sets, includ-
ing Hi-C, Micro-C and DNA FISH data. ENCODE [126] 
has also generated Hi-C, ChIA-PET, 5C, and SPRITE 
data, but relatively few data sets compared to other data 
types. Most of the Hi-C data sets that are currently avail-
able are from cell lines and cancer cells. Only few stud-
ies have focused on tissues from organs [211, 212], and 
most of them have a small number of read pairs, which 
cannot identify all chromatin loops but only identifies 
large TADs (Table 4). Higher genome coverage is recom-
mended to perform comparison analyses between Hi-C 
data sets and call chromatin loops for regulatory ele-
ments [177, 213]. Therefore, additional higher resolution 
data sets using Hi-C or 3C-derived methods are greatly 
needed.

Conclusions
There have been striking improvements in both molec-
ular and computational methods to analyze regulatory 
elements over the last decade. Chromatin immunopre-
cipitation, chromatin accessibility, and DNA methylation 
assays have annotated regulatory elements and revealed 
interactions between TFs and regulatory elements. 
Recently developed 3C-based methods have shown 
how these regulatory elements interact with each other 

genome-wide. Moreover, new methods enable further 
research of regulatory elements and their interactions 
in single cell and single molecule resolution. Although 
thousands of epigenomic data sets have been generated 
up until now, profiling of regulatory elements and chro-
matin structures in additional normal and diseased cells 
is in great demand, because 3D epigenetic signatures are 
distinct among cell types and cell populations. Further 
identification and characterization of regulatory elements 
that control transcription in a cell-type specific manner 
will enlighten novel molecular mechanisms of gene regu-
lation and diseases.
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