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Combined analysis of dissimilar promoter 
accessibility and gene expression profiles 
identifies tissue‑specific genes and actively 
repressed networks
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Abstract 

Background:  The assay for transposase-accessible chromatin (ATAC-seq) is a powerful method to examine chro-
matin accessibility. While many studies have reported a positive correlation between gene expression and promoter 
accessibility, few have investigated the genes that deviate from this trend. In this study, we aimed to understand the 
relationship between gene expression and promoter accessibility in multiple cell types while also identifying gene 
regulatory networks in the placenta, an understudied organ that is critical for a successful pregnancy.

Results:  We started by assaying the open chromatin landscape in the mid-gestation placenta, when the fetal 
vasculature has started developing. After incorporating transcriptomic data generated in the placenta at the same 
time point, we grouped genes based on their expression levels and ATAC-seq promoter coverage. We found that the 
genes with the strongest correlation (high expression and high coverage) are likely involved in housekeeping func-
tions, whereas tissue-specific genes were highly expressed and had only medium–low coverage. We also predicted 
that genes with medium–low expression and high promoter coverage were actively repressed. Within this group, 
we extracted a protein–protein interaction network enriched for neuronal functions, likely preventing the cells from 
adopting a neuronal fate. We further confirmed that a repressive histone mark is bound to the promoters of genes in 
this network. Finally, we ran our pipeline using ATAC-seq and RNA-seq data generated in ten additional cell types. We 
again found that genes with the strongest correlation are enriched for housekeeping functions and that genes with 
medium–low promoter coverage and high expression are more likely to be tissue-specific. These results demonstrate 
that only two data types, both of which require relatively low starting material to generate and are becoming more 
commonly available, can be integrated to understand multiple aspects of gene regulation.

Conclusions:  Within the placenta, we identified an active placenta-specific gene network as well as a repressed 
neuronal network. Beyond the placenta, we demonstrate that ATAC-seq data and RNA-seq data can be integrated to 
identify tissue-specific genes and actively repressed gene networks in multiple cell types.
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Background
The placenta is a transient organ, critical for fetal sur-
vival within the uterine environment. It is the only 
physical connection between the mother and fetus, 
supplying the fetus with the nutrients, oxygen, and 
hormones necessary for proper development [1, 2]. 
Rodents and primates have a hemochorial placenta [3], 
in which maternal blood is in direct contact with the 
chorion in the intervillous space. To allow for a more 
efficient exchange of oxygen and nutrients between 
maternal and fetal blood, the fetal placenta under-
goes branching morphogenesis, which increases its 
surface area and allows a complex vascular network 
to develop [4]. In mice, defects in branching morpho-
genesis or vasculature development, sometimes associ-
ated with abnormal gene expression, commonly lead to 
embryonic lethality midway through gestation [1]. For 
example, simultaneous deletion of the Hey1 and Hey2 
transcription factors results in embryonic lethality at 
approximately embryonic day (e) 9.5, due to decreased 
vascular remodeling [5]. As another example, EpCAM-
null mice show evidence of insufficient vasculogen-
esis in the fetal placenta by e9.5, which contributes to 
embryonic lethality by e12.5 [6].

In addition to gene knockout studies, transcriptome 
studies have been carried out to identify genes that are 
expressed in the placenta at e9.5, as well as at other time 
points [7–9]. However, transcriptome studies alone can-
not provide insight into tissue-specific gene networks 
when they are carried out in a single tissue, and also 
cannot provide information on genes that are actively 
repressed in a particular context. To better understand 
these aspects of gene regulation, chromatin immuno-
precipitation followed by sequencing (ChIP-seq) data 
for several histone modifications, such as H3K4me3, 
H3K27ac [10], and H3K27me3 has been integrated with 
RNA-seq data across multiple tissues [11]. However, gen-
erating multiple ChIP-seq datasets with sufficient biolog-
ical replicates and controls is costly and typically requires 
a large amount of starting material.

The assay for transposase-accessible chromatin using 
sequencing (ATAC-seq) is a promising recent technique 
that can be used to address some of these issues, requir-
ing a relatively low amount of starting material [12]. 
Additionally, since ATAC-seq data are associated with 
nucleosome depletion, it can be used to identify genomic 
regions associated with gene activation or gene repres-
sion. Several studies that have integrated ATAC-seq and 
RNA-seq data reported a positive correlation between 
the ATAC-seq signal at a gene’s promoter and its expres-
sion [13–15]. Despite this correlation, many studies find 
that changes in the chromatin landscape are not always 
associated with expected changes in transcription 

[16–18]. Still, a thorough investigation into this cor-
relation, and the genes that seem to deviate from it, is 
lacking.

In order to better understand gene regulation in the 
placenta, as well as the relationship between accessibil-
ity at a gene promoter and gene expression, we generated 
ATAC-seq data in the mouse placenta and integrated 
it with RNA-seq data generated in the same context 
[9]. We then defined gene groups based on the level of 
ATAC-seq signal at gene promoters and the correspond-
ing gene expression level, according to RNA-seq. In 
addition to identifying genes with a strong positive cor-
relation, we also identified genes with medium–low 
expression and high ATAC-seq promoter coverage, and 
genes with high expression and medium–low ATAC-seq 
promoter coverage. Investigating these gene groups fur-
ther led us to identify a neuronal network that we pre-
dict is actively repressed in the placenta, as well as a set 
of placenta-specific genes and subnetworks that are asso-
ciated with specific functions of the placenta. Finally, we 
analyzed previously published ATAC-seq and RNA-seq 
datasets generated in 10 additional contexts using our 
pipeline. We were consistently able to identify tissue-spe-
cific genes, as well as actively repressed gene networks. 
Therefore, in addition to identifying novel regulatory 
mechanisms in the placenta, we also better defined the 
relationship between promoter accessibility and gene 
expression and demonstrated how to integrate ATAC-seq 
and RNA-seq to identify tissue-specific genes.

Results
Identifying accessible regions in the mid‑gestation mouse 
placenta
To define the chromatin landscape in mouse placenta at 
e9.5, we carried out ATAC-seq for three biological repli-
cates, as described in the methods. Because ATAC-seq is 
infrequently carried out in whole tissue, we first assessed 
data quality. The fragment length distributions showed 
the expected periodicity before and after sequencing, 
with an abundance of fragments falling within nucleo-
some-free regions [≤ 140 base pairs (bp)] (Fig. 1a; Addi-
tional file 1: Figure S1a–c). We then aligned the reads to 
the mouse genome and calculated the coverage in gene 
promoters, defined as 500 bp surrounding the transcrip-
tion start site (TSS). We found a high correlation between 
biological replicates [R2 = 0.99 (Pearson)] (Fig. 1b; Addi-
tional file 1: Figure S1d, e) and therefore combined reads 
across replicates for further analysis.

As expected, we observed a pileup of ATAC-seq reads 
(a peak) in the promoters of genes that are expressed in 
the placenta (Fig.  1c). A peak was observed in the pro-
moters of many housekeeping genes, including Psmd4, 
Rpl37, and Eif3f, [19] as well as in the promoters of 
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Fig. 1  ATAC-seq analysis of e9.5 mouse placenta. a Distribution of ATAC-seq data fragment lengths from a representative sample (biological 
replicate 1). Small fragments correspond to open chromatin while peaks at larger fragment sizes represent fragments that span one or more 
nucleosomes. b Scatter plot representing promoter accessibility for each gene in replicate 1 plotted against the promoter accessibility for the 
corresponding gene in replicate 2. Biological replicates show a strong correlation, indicated in the red box (Pearson Correlation Coefficient). c 
Representative genes with a pileup of ATAC-seq reads in the promoter region. d Heatmap (total number of reads at the start site normalized by 
library size) and density plot of ATAC-seq fragments showing enrichment at gene TSSs (plot includes all knownGenes from the UCSC genome 
browser)
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genes with known regulatory roles in multiple tissues 
including the placenta, such as Arnt [20], Hif1a [21], and 
Setd2 [22]. Finally, we found that in general, there is a 
strong ATAC-seq signal centered at gene TSSs (Fig. 1d). 
Together, these data demonstrate a high signal-to-noise 
ratio in the ATAC-seq data generated from whole mouse 
placenta.

ATAC‑seq signal at promoters is correlated with gene 
expression
Previous studies have reported a significant correlation 
between gene expression and the ATAC-seq signal at a 
gene’s promoter (the promoter accessibility) [13–15]. 
Therefore, we calculated the correlation of promoter 
accessibility with gene expression. Gene expression was 

measured using transcripts per million (TPM), calcu-
lated from previously published e9.5 placenta RNA-seq 
data [9]. In agreement with other studies, we found a 
strong correlation between accessibility and expression 
[R2 = 0.705 (Spearman); p value < 2.2e−16] (Fig. 2a). It is 
likely that a higher correlation is typically not observed 
because accessible regions are not always associated 
with gene activity. They can also be associated with gene 
repression or genes that are poised to become active 
[23–25]. Although some aspects of this correlation have 
been investigated, the majority of studies have not fully 
explored the relationship between ATAC-seq and RNA-
seq data, especially with respect to genes that have low 
accessibility and a high level of expression. Therefore, to 
further understand the relationship between ATAC-seq 

a b
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Fig. 2  Promoter accessibility is strongly correlated with gene expression. a Scatter plot showing a strong positive correlation between promoter 
accessibility and gene expression. The correlation coefficient is shown in the red box (Spearman). b Genes are grouped based on the level of 
promoter accessibility and gene expression. The number of genes in each group is shown in the boxes. c Genes in the MA–ME group are enriched 
for biological processes related to sensory perception. The triangle at the end of the bar represents an FDR of 0. d Genes in the HA–HE group are 
enriched for biological processes related to housekeeping functions
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and RNA-seq, we divided genes into groups based on 
their level of expression and promoter accessibility (see 
“Methods”). We found that the majority of genes (8237) 
had medium–low accessibility and medium–low expres-
sion (MA–ME), and the second largest group (3527 
genes) had high accessibility and high expression (HA–
HE) (Fig.  2b). To determine the biological functions 
associated with these groups, we carried out a functional 
enrichment analysis using the Genomic Regions Enrich-
ment of Annotation Tool (GREAT) [26]. As expected, we 
found clear distinctions between the biological processes 
enriched in each group. For example, MA–ME genes are 
strongly enriched for terms related to sensory percep-
tion (Fig.  2c), whereas HA–HE genes are enriched for 
general cell functionality terms such as “cell cycle” and 
“RNA processing” (Fig. 2d). These findings are in agree-
ment with previous studies. One such study, carried out 
in human T-helper cells, found that genes with acces-
sible promoters and high expression were enriched for 
housekeeping functions, whereas those with inaccessi-
ble promoters were enriched for olfactory terms [27]. A 
more recent study also found that genes with accessible 
promoters in three different types of hematopoietic stem 
cells (HSCs) were enriched for terms related to regulating 
the cell cycle and DNA damage and repair [28].

We next carried out binding site enrichment analy-
sis on the promoters of genes in the MA–ME and HA–
HE groups, using promoters of genes in the other three 
groups as background. We identified multiple enriched 
motifs in the MA–ME group (Additional file 2: Table S1), 
including those for Pou2f1 and Foxj2, which are associ-
ated with olfactory gene regulation and development 
[29, 30]. Many more motifs  were enriched in the HA–
HE group (Additional file 2: Table S1), including several 
E2F and Ets motifs, which were previously found to be 
enriched in the promoters of housekeeping genes [31, 
32].

Based on the enrichment of general cellular function-
ality terms and motif enrichment results, we predicted 
that a large number of housekeeping genes were in the 
HA–HE group. We therefore determined the percent 
overlap of MA–ME and HA–HE gene groups with 4781 
housekeeping genes identified across 17 tissues [33]. We 
found that 57% of the HA–HE group were annotated as 
housekeeping, while only 0.2% of the MA–ME group 
were annotated as housekeeping genes (Additional file 1: 
Figure S2).

In addition to MA–ME genes and HA–HE genes, we 
found 783 genes that had medium–low accessibility 
and high expression (MA–HE), and 854 genes that had 
high accessibility and medium–low expression (HA–
ME) (Fig.  2b). Because HA–ME and MA–HE genes are 

generally less understood, we further investigated how 
these two groups contribute to gene regulation in the 
placenta.

HA–ME genes reveal a potentially repressed neuronal 
network
Previous studies have identified regions of high acces-
sibility that are also marked by a histone modification 
associated with gene repression, H3K27me3 [23, 34]. 
Therefore, we hypothesized that HA–ME genes may be 
actively repressed in the placenta. To identify potential 
transcription factors that may repress HA–ME genes, we 
scored motifs for transcription factors expressed in e9.5 
placenta in HA–ME promoters using the PRISM [35] 
pipeline (see “Methods”). Three motifs were significantly 
enriched in HA–ME gene promoters relative to a back-
ground set of all gene promoters from each of the other 
three groups (Fig. 3a; Additional file 2: Tables S1, S2). The 
first enriched motif was for Sp2, a transcription factor 
that can repress cholesterol synthesis genes [36] and can 
form a repression complex with Klf6 to repress Mmp9 
[37]. The second enriched motif was for Setdb1, a histone 
methyltransferase that trimethylates lysine 9 on histone 
H3. Setdb1 is known to interact with Oct4 in embryonic 
stem cells (ESCs) to repress genes involved in differentia-
tion [38, 39]. The third enriched motif was for the Rest/
Nrsf transcription factor. Rest/Nrsf is well known to be 
involved in preventing neuronal differentiation and func-
tion in nonneuronal tissues [40–42]. To further investi-
gate potential repression networks in HA–ME genes, 
we used the STRING database [43] (see “Methods”) and 
identified a large protein–protein interaction (PPI) sub-
network of 50 genes (Fig.  3b). Interestingly, the most 
highly connected genes in this subnetwork were Fzd4, 
Egf, and Syt1, of which Fzd4 and Egf are each known to 
be involved in neuronal differentiation [44–47]. To con-
firm the potential repression of genes in this network, 
we performed ChIP-qPCR for H3K27me3 on nine target 
genes from the network. We included genes that have a 
known role in neuronal differentiation, as well as those 
that have no known role in this process. All nine tar-
gets were bound by H3K27me3 (fold-change ≥ 1.5) and 
five were strongly bound (fold-change ≥ 10), indicating 
the genes are in a repressed state (Additional file 1: Fig-
ure S3a). Next, we performed GO analysis of this net-
work, which showed strong enrichment for terms such as 
“regulation of cell communication” and “cell–cell signal-
ing” (Fig.  3c), which could be related to neuronal func-
tion. Using a randomization analysis (see “Methods”), 
we determined that these terms are more significant in 
the subnetwork than in random sets of 50 HA–ME genes 
(Additional file 1: Figure S3b–d).
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Fig. 3  Analysis of HA–ME genes. a Motifs that are enriched in HA–ME gene promoters compared to background gene promoters in e9.5 placenta. 
b The largest PPI network in the HA–ME group, identified using STRING. Green nodes correspond to genes associated with the GREAT terms 
shown in c. c Bar plot of the enriched GO biological process terms for the subnetwork from b. Enriched terms are related to neuronal functions. 
d Tissue-specific gene enrichment analysis for genes in the subnetwork presented in b showing enrichment for genes expressed in brain-related 
tissues. Green colored bars correspond to tissues with an adjusted p value ≤ 0.01
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Finally, we used TissueEnrich [48] to determine 
whether the subnetwork was enriched for tissue-specific 
genes. We found the strongest enrichment for brain tis-
sues, including the cortex and cerebellum (Fig.  3d). 
Together, these data provide strong evidence that a neu-
ronal network is actively repressed in the placenta.

Placenta‑specific genes have medium–low promoter 
accessibility and high expression
A large number of genes (783) were found to have 
medium–low promoter accessibility and high expres-
sion (Fig. 2b; Additional file 1: Figure S4a). GO analysis 
of these genes showed enrichment for terms associated 

with placental functions, including “vasculature develop-
ment” and “response to nutrient levels” (Fig. 4a). In order 
to determine whether these terms are enriched in the 
MA–HE group but not the HA–HE group because the 
HA–HE group is much larger, we performed a randomi-
zation analysis in which we sampled 783 genes from the 
HA–HE group 10,000 times and determined the enrich-
ment of a subset of terms from Fig. 4a. We found that the 
FDR of these terms is consistently more significant in the 
MA–HE group than in the random sets from HA–HE, 
indicating that the large size of the HA–HE group is not 
masking the signal of these terms (Additional file 1: Fig-
ure S4b–d). Since the GO terms were related to, but not 
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Fig. 4  Analysis of MA–HE genes. a Bar plot of the enriched GO biological process terms in the MA–HE group, showing terms related to placental 
functions. b Tissue-specific gene enrichment analysis shows enrichment of placenta-specific genes in the MA–HE group. Colored bars correspond 
to tissues with an adjusted p value ≤ 0.01. c A network from GLay clustering of MA–HE genes. Orange nodes correspond to genes associated with 
the GREAT terms shown in d. d Bar plot of the enriched GO biological process terms in the network from c showing enrichment of lipid metabolism 
terms
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specific to, placental functions, we also used TissueEn-
rich to perform tissue-specific gene enrichment analysis 
on the MA–HE group, which showed strong enrichment 
for placenta-specific genes (Fig. 4b).

Nucleosome formation potential has been found to be 
significantly higher in the 5′ regions of tissue-specific 
genes compared to housekeeping genes [49]. Therefore, 
we predicted that MA–HE genes would have higher 
nucleosome formation potential than HA–HE genes. We 
randomly chose 250 genes from each group and deter-
mined the nucleosome positioning scores using Recon 
[50]. We found that the MA–ME group had the highest 
formation potential, followed by the MA–HE group, and 
that the HA–HE group showed the lowest nucleosome 
formation potential [Additional file  1: Figure S4e (left)]. 
To more thoroughly compare the HA–HE and MA–
HE groups, we repeated the analysis using the entirety 
of the two groups and found a similar pattern and, as 
we predicted, MA–HE genes have significantly higher 
nucleosome positioning scores than HA–HE genes (p 
value < 2.2E−16) [Additional file  1: Figure S4e (mid-
dle)]. This result was further confirmed using nuScore 
[51] to predict the average deformation energy across all 
sequences within a group. In agreement with the Recon 
results, we found that the MA–HE group has a higher 
deformation energy than the HA–HE group [Additional 
file 1: Figure S4e (right)].

Because the placenta has many roles and is com-
posed of cell types with diverse functions, we wanted to 
determine whether the MA–HE group could be further 
divided into regulatory networks associated with spe-
cific placental processes. Using the STRING database, 
we identified a highly connected network of 318 genes, 
after which we implemented GLay community clustering 
[52] through Cytoscape [53]. GLay community clustering 
is an algorithm used to break up large, dense networks 
into highly connected clusters of interacting genes. GLay 
clustering resulted in 10 clusters of at least 10 genes. One 
such cluster (Fig.  4c) was enriched for terms related to 
lipid metabolism (Fig.  4d) and contained the lipopro-
tein lipase (Lpl) gene and several members of the apoli-
poprotein family including Apob, Apoa1, Apoa4, and 
Apoe. Many lipoproteins act as transporters for choles-
terol throughout the body and across the placenta [54]. 
Lpl is mainly expressed in syncytiotrophoblast in humans 

[55] and decomposes lipoproteins into fatty acids. Inter-
estingly, overexpression of Lpl affects nutrient transport 
and may result in severe intrauterine growth restriction 
[56]. In another cluster, Trp53, a gene which encodes the 
tumor-suppressing p53 protein and has been found to 
be increased in preeclamptic placentas [57], was the hub 
node (Additional file  1: Figure S4f ). Many insulin-like 
growth factor-binding proteins were also in this cluster, 
such as Igfbp4 and Igfbp5, which have been associated 
with preeclampsia and extra-villous trophoblast invasion 
[58]. These results  demonstrate that integrating ATAC-
seq data and RNA-seq data in the placenta can lead to the 
identification of distinct networks associated with differ-
ent placental functions. These networks could be used to 
identify novel genes involved in the functions.

Groups defined by accessibility and expression have 
consistent functions in multiple cell types
To determine whether the functions we identified for 
the accessibility/expression groups can be generalized to 
other cell types, we ran our analysis pipeline on data from 
eight other mouse cell types: alpha cells [59], beta cells 
[59], embryonic stem cells (ESC) [60, 61], hematopoietic 
stem cells (HSC) [62], neuronal cells extracted from the 
dentate gyrus [63], retinal rods [64], lymphocytes from 
the spleen [65], and trophoblast stem cells (TSC) [66, 67]. 
First, we checked the correlation between the ATAC-seq 
promoter accessibility and RNA-seq TPM, which ranged 
from 0.658 to 0.799 (Additional file 1: Figure S5). Based 
on the results from the placenta data, we predicted that 
sensory perception genes would be enriched in the MA–
ME group in tissues and cells not associated with such 
functions and that genes important for general cellular 
functionality would be enriched in the HA–HE group 
of all of the cell types. Because of this, we expected that 
the  MA–ME and HA–HE groups would have the high-
est number of common genes between the datasets. 
We compared the MA–ME genes between all nine of 
the datasets (including e9.5 placenta) and found a high 
degree of gene overlap, with a median pairwise overlap 
value of 83.5% (7295 genes) (Fig. 5a, b; Additional file 1: 
Figure S6). Further, the top 20 enriched GO biological 
process terms for each dataset are similar and related to 
“sensory perception” and “G-protein coupled receptor 
protein signaling pathway” (Fig. 5c). A similar analysis of 

Fig. 5  Integrating accessibility and expression data identifies tissue-specific genes in multiple cell types. a, d, g, j Bar plots showing the number of 
genes in each group for all tissues. The horizontal line marks the number of common genes between all tissues for each group, MA–ME (a), HA–HE 
(d), HA–ME (g), or MA–HE (j). b, e, h, k Heatmap showing all genes of a particular group for all tissues as well as their corresponding group in other 
tissues. c, f, i, l The top 20 GO terms for each group in each tissue were identified. Then, the number of tissues each term appears in was calculated. 
The FDR of the term in all tissues in which it appeared was averaged. The terms contained in the top 20 of the most tissues and with the lowest FDR 
were plotted. The average FDR is shown, and the number of tissues the term appears in is indicated by the intensity of the bar color

(See figure on next page.)
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HA–HE genes again showed high gene overlap between 
all datasets, with a median pairwise overlap value of 
63.4% (2374.5 genes) (Fig. 5d, e; Additional file 1: Figure 
S6). For HA–HE genes, the top 20 GO biological process 
terms for each set are similar and related to “RNA pro-
cessing” and “protein transport” (Fig. 5f ).

For the HA–ME genes, the median pairwise 
overlap across all datasets was only 33.7% (177 
genes), which is significantly lower than MA–ME 
genes (p value = 2.28e−13) and HA–HE genes (p 
value = 4.335e−12) (Fig.  5g, h; Additional file  1: Fig-
ure S6). However, some of the datasets are enriched for 
terms related to “DNA packaging” (Fig. 5i). Interestingly, 
in addition to the placenta, only ESC and TSC HA–ME 
genes showed tissue-specific gene  enrichment for brain 
tissues (cortex, cerebellum, olfactory bulb, e14.5 brain) 
(Additional file 1: Figure S7a, b). As before, we used the 
STRING database to look at the protein–protein interac-
tion networks within the HA–ME group from ESC and 
TSC. For ESC genes, we identified a large subnetwork of 
121 genes, enriched for neuron related terms such as “cell 
communication” and “signal transduction” (Additional 
file 1: Figure S7c, d). A smaller subnetwork, comprised of 
22 genes, was found in TSC HA–ME genes and was also 
enriched for signaling and neurotransmitter terms (Addi-
tional file 1: Figure S7e, f ). In addition to the subnetworks 
enriched for neuron associated functions, we found that 
Rest/Nrsf is as highly expressed in placenta and TSC as it 
is in ESC (Additional file 1: Figure S7g). While Rest/Nrsf 
has been well characterized in ESC, where it prevents 
neuronal differentiation by repressing neuronal genes in 
order to promote stem cell pluripotency [68–70], its role 
in trophoblast cells and placenta is not well understood. 
Based on these results, we predict that similar repression 
mechanisms are shared in early placental cells and ESC 
in order to prevent these cells from adopting a neuronal 
cell fate.

We next compared the MA–HE genes between datasets 
to determine whether genes with medium–low acces-
sibility and high expression are always enriched for tis-
sue-specific genes. For these genes, the median pairwise 
tissue overlap was only 21.5% (88 genes) which is signifi-
cantly lower than MA–ME genes (p value = 2.815e−13) 
and HA–HE genes (p value = 2.381e−12) (Fig. 5j; Addi-
tional file  1: Figure S6). Interestingly, of the 2836 genes 
that are MA–HE in at least one tissue, 1727 (~ 61%) are 
MA–ME in at least one other tissue, indicating that tis-
sue-specific genes have low accessibility and expression 
in other tissues (Fig. 5k). We next determined which GO 
biological process terms and tissue-specific genes were 
enriched in the MA–HE group of each tissue. The low 
similarity between the biological process terms (Fig.  5l) 
and the high enrichment of tissue-specific genes in many 

of the tissues (Additional file  1: Figure S8) support our 
previous result in the placenta, indicating that tissue-spe-
cific genes and processes are frequently enriched in the 
MA–HE group.

To determine whether our findings uphold when ana-
lyzing human data, we repeated the analysis described 
above using primary human alpha and beta cells [24]. As 
with the other datasets, we found a positive correlation 
between the ATAC-seq promoter accessibility and RNA-
seq TPM for both the alpha cells (0.636) and the beta cells 
(0.616). Similar to what we found in mouse, the MA–
ME groups were enriched for sensory perception terms 
(Additional file 1: Figure S9a, b), and the HA–HE groups 
were enriched for housekeeping functions (Additional 
file 1: Figure S9c, d). Finally, we found that MA–HE genes 
from both cell types were enriched for pancreas-specific 
genes (Additional file 1: Figure S9e, f ), further supporting 
the conclusions that tissue-specific genes can be identi-
fied using this approach.

Discussion
In this study, we generated ATAC-seq data in the mouse 
placenta at e9.5, a time point shortly after branching 
morphogenesis has been initiated, when the vasculature 
is developing and nutrient transport is active. In order to 
identify regulatory networks that activate or repress gene 
transcription at this time point, we integrated ATAC-seq 
data with RNA-seq data that were generated in the same 
context. Because previous studies have reported unex-
pected patterns with respect to promoter accessibility 
and the corresponding level of gene expression, we inves-
tigated this relationship more thoroughly in the placenta 
as well as in other tissues.

In all tissues, we found a strong positive correlation 
between the promoter accessibility of a gene and its 
expression. Although there was a large set of genes con-
tributing to that correlation, which showed consistent 
expression and accessibility patterns across the tissues, 
there were other genes that showed opposite patterns of 
promoter accessibility and expression. To further inves-
tigate this, we assigned genes to groups according to 
their expression and accessibility. We found that MA–
ME genes, which have medium–low accessibility and 
medium–low expression, were enriched for sensory per-
ception terms, not only in the placenta but in all of the 
cell types we analyzed. Genes with high accessibility and 
expression were enriched for terms important for general 
cellular functionality. Previous work has also found that 
genes with high accessibility in the promoter and high 
expression are frequently associated with housekeeping 
functions [27].

Despite the positive correlation between promoter 
accessibility and gene expression, many studies have 
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indicated that low or decreasing expression is not always 
due to a lack of accessibility [18, 65, 66]. Others have 
also found an enrichment of ATAC-seq peaks not only 
in active regions, but in repressed regions, such as those 
marked by H3K27me3 [23, 24]. When we investigated 
genes with high accessibility and medium–low expres-
sion (HA–ME), we identified a neuronal network in the 
placenta, ESC, and TSC, potentially repressed by Rest/
Nrsf. Rest/Nrsf is a well-studied transcription factor 
which, in addition to repressing neuronal gene expres-
sion, has also been described to protect against neurode-
generation [71]. In embryonic stem cells, Rest/Nrsf has 
been found to help maintain pluripotency [70]. Using our 
pipeline, we were able to identify genes that are poten-
tial targets of Rest/Nrsf repression as well as validate 
H3K27me3 activity within the promoter of nine of these 
targets. Future work could focus on the identification and 
validation of Rest/Nrsf targets in the placenta.

While we also identified additional transcription fac-
tor motifs that were enriched in promoters of HA–ME 
genes or other gene groups, the true identity of the fac-
tors binding to these motifs would need to be confirmed 
with follow-up experiments, as many transcription fac-
tors have similar motifs. In general, ChIP-seq experi-
ments for transcription factors identified in our analysis 
would allow in vivo identification of binding sites in gene 
promoters, as well as in distal regulatory regions, provid-
ing more insight into the mechanisms of gene regulation.

Perhaps one of the most surprising results was that 
by integrating the level of accessibility at the promoter 
with the level of gene expression, we are able to distin-
guish between genes associated with housekeeping func-
tions and genes associated with tissue-specific functions. 
Ontology enrichment analysis and tissue-specific gene 
enrichment analysis indicate that many genes within the 
MA–HE group are important for placental functions. 
There are multiple reasons that highly expressed genes 
could have medium–low accessibility. One is that tissue-
specific genes have higher nucleosome forming potential 
than housekeeping genes, because they are more selec-
tively accessible, as has been previously proposed [50]. 
This would likely result in lower ATAC-seq signal. To test 
this, we used Recon [50] and nuScore [51] and indeed 
found that MA–HE genes have higher nucleosome form-
ing potential and greater deformation energy in the pro-
moter than HA–HE genes. A second possibility is that the 
ATAC-seq signal may be low due to the signal only being 
present in a subset of cells in a heterogeneous tissue, like 
the placenta. Therefore, we also investigated more homo-
geneous populations of cells, such as dentate gyrus neu-
rons and TSC. These analyses also identified MA–HE 
genes that are enriched for tissue-specific functions, indi-
cating results are not specific to heterogeneous tissues. A 

third possibility is that large regulatory complexes bind-
ing at certain promoters prevent the transposase from 
accessing the DNA. Daugherty et  al. [23] investigated 
binding sites of the EOR-1 transcription factor and found 
it occupying accessible and inaccessible regions. They 
hypothesized that EOR-1 may bind near nucleosomes, 
or as part of a larger complex preventing the transposase 
from accessing the DNA, causing the low signal at the 
binding regions. It is feasible that such mechanisms could 
lead to the low signal near the promoter regions of tis-
sue-specific genes. Along similar lines, it is possible that 
large regulatory complexes formed by enhancer–pro-
moter interactions would make the promoter less acces-
sible to transposase cutting. In general, further research 
incorporating additional data sets, as well as distal regu-
latory information, could help our understanding of the 
observed signal at tissue-specific genes.

Conclusion
In summary, we described a pipeline that is not only 
capable of identifying tissue-specific genes, but also 
networks of genes that may be actively repressed. This 
pipeline only requires two types of data, ATAC-seq and 
RNA-seq. Although many studies focus ≥ strong ATAC-
Seq peak, here we discover that a weaker signal of acces-
sibility at the promoter may provide information about 
the gene’s role in a tissue-specific function. By applying 
this pipeline to the placenta at one time point, we were 
able to identify networks of genes associated with spe-
cific placental functions, as well as a potential actively 
repressed neuronal network. We also demonstrated 
that this analysis can be used in multiple tissues and cell 
types, in both mouse and human, to similarly identify 
actively repressed and tissue-specific genes.

Methods
ATAC‑seq library preparation and sequencing
ATAC-seq was performed as previously described [72]. 
Briefly, two e9.5 placentas were microdissected from 
timed-pregnant CD-1 mice (Charles Rivers Labs) for 
each biological replicate (3 replicates in total). After 
tissue homogenization and cell lysis, we followed the 
transposition and purification steps as described pre-
viously [72]. We amplified the purified DNA for 12 
cycles following conditions specified in [72] using 
adapters from the Nextera index kit (Illumina) (Addi-
tional file 2: Table S3). PCR purification was performed 
using AMpure XP beads (Beckman Coulter) in order to 
remove large fragments and remaining primers. Library 
quality was assessed using the Bioanalyzer High Sen-
sitivity DNA Analysis kit (Agilent) to check for proper 
periodicity, and the DNA concentrations were esti-
mated using the Qubit and Bioanalyzer (Additional 
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file  1: Figure S1a). Libraries were sequenced by Elim 
Biopharmaceuticals, Inc. using the Illumina HiSeq2500 
Rapid run platform with 50 bp paired-end sequencing. 
Before filtering, there was an average of about 82 mil-
lion reads (73–93 million), and after filtering there was 
an average of about 18.8 million reads (16–20 million) 
(Additional file 2: Table S4).

Mouse data curation
Mouse data were compiled from previous studies pub-
lished until Dec. 2017. Mouse data were considered for 
analysis if they had at least two biological replicates and 
had RNA-seq data available in the same cell line and tis-
sue. Only paired-end ATAC-seq data were considered.

ATAC‑seq data processing
Additional ATAC-seq data used for analysis were 
obtained from the Gene Expression Omnibus (GEO) 
(Additional file  2: Table  S5). For all samples, read qual-
ity was assessed using FastQC [73]. Trimmomatic [74] 
(default settings) was used to remove adapters and low-
quality base pairs and reads identified by FastQC. Reads 
for each mouse sample were aligned to the mouse genome 
(mm9) and reads for human samples were aligned to the 
human genome (hg19), using Bowtie2 [75] (v.2.3.1; very-
sensitive, maxins 2000, no-discordant). Each sample had 
high overall alignment rates, with an average alignment 
of 93% for all mouse samples (Additional file 2: Table S5). 
After alignment, we removed reads with a mapping qual-
ity lower than 20, with more than two mismatches, and 
those mapping to the mitochondrial genome. We also 
removed duplicate reads using Picard tools v.2.2.4 (http://
broad​insti​tute.githu​b.io/picar​d) and offset the reads to 
account for the transposon dimer [76]. Final read counts 
for all mouse datasets ranged from 4 to 53 million reads 
(Additional file 2: Table S4).

Fragments that were less than the length of one nucleo-
some (140  bp—previously described as subnucleosome 
sized [77]) were considered as aligning to nucleosome-
free, or “open regions” of the genome. After confirming 
replicates were highly correlated with each other, reads 
aligning to open regions were combined for all replicates. 
We then determined the maximum number of overlap-
ping reads (scaled by the library size) in the promoter of 
each gene. Gene promoters were defined as 500  bp up 
or downstream of a transcription start site (TSS), and 
TSS coordinates were obtained from the UCSC Genome 
Browser knownGene (mm9) [78] table. For genes with 
multiple isoforms, the isoform promoter with the maxi-
mum number of overlapping reads was retained for fur-
ther analysis.

RNA‑seq data processing
RNA-seq datasets were downloaded from GEO (Addi-
tional file  2: Table  S6). FastQC was used to check the 
quality of reads and presence of adapters, and Trimmo-
matic (default settings) was used to remove adapters and 
low-quality reads and base pairs. Reads for mouse sam-
ples were then aligned to the mouse genome (mm9), and 
reads for the human samples were aligned to the human 
genome (hg19), using HISAT2 [79] (v.1.0.4; default 
parameters). Reads aligning to the mitochondrial genome 
were removed. Transcript abundance was calculated 
using htseq-count from the HTseq [80] software package. 
Transcripts per million (TPM) values were calculated as 
previously described [81], by normalizing the transcript 
count by the gene length followed by the library size. Val-
ues were then averaged across biological replicates for 
each gene.

Integration of ATAC‑seq and RNA‑seq
Genes were defined as highly accessible (HA) if the 
maximum number of overlapping ATAC-seq reads 
within their promoter (accessibility) was higher than 
the 70th percentile of the data, and were defined as hav-
ing medium–low accessibility (MA) if the coverage 
was below the 50th percentile. Genes were defined as 
highly expressed (HE) if their TPM was higher than the 
70th percentile of the data, and were defined as having 
medium–low expression (ME) if the TPM was below 
the 50th percentile. Each gene was then evaluated to 
determine whether it could be assigned to one of four 
groups: MA–ME (medium–low accessibility and expres-
sion), HA–HE (high accessibility and expression), HA–
ME (high accessibility and medium–low expression), or 
MA–HE (medium–low accessibility and high expression) 
based on its accessibility and expression values. Genes 
that did not fall into one of the four described categories 
were not used in the analysis, in order to maintain strin-
gent gene groups.

Gene ontology and network analysis
Gene ontology enrichment analysis was performed using 
the Genomic Regions Enrichment of Annotations Tool 
[26] (GREAT) using the GO biological process ontology. 
Terms were considered significantly enriched if they had 
at least 5 genes from the input set, a fold of at least 2, and 
a false discovery rate (FDR) less than 0.05 according to 
the hypergeometric statistic [26]. For all analyses, the top 
5 terms (ranked by FDR) are displayed unless otherwise 
indicated.

Protein–protein interaction networks were built using 
the STRING database [43] (v.10.5). The STRING data-
base provides protein–protein associations determined 

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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through experimental data, text-mining, and other data-
bases. The database includes direct and indirect inter-
actions. In a STRING network analysis, a line is drawn 
between two genes if they are predicted to have an inter-
action with a certain confidence. We used a confidence 
threshold of 0.70 and the default parameters in order to 
build protein–protein interaction networks. STRING 
networks were downloaded and hub nodes were identi-
fied using Cytoscape [53] (v.3.5.1) based on the number 
of connections between nodes. Clustering of subnet-
works was performed using the Cytoscape GLay plugin 
[52] (default parameters).

Motif enrichment analysis
The library of position weight matrices used to score 
binding sites in promoters was obtained by curating data 
from multiple resources described in [35]. We removed 
motifs with a low information content (< 10) and those 
corresponding to genes that had low expression in e9.5 
placenta (TPM ≤ 5), leaving 681 motifs. Binding sites 
were predicted using the PRISM phylofootprint approach 
[35]. This method has been shown to predict transcrip-
tion factor binding sites with high accuracy, using an 
excess conservation metric that measures the likelihood 
for a binding site to be conserved in a particular region 
[35]. Binding sites that are conserved more strongly than 
surrounding sequences are favored [35]. Predictions were 
required to have a match threshold ≥  0.8 (80% similar-
ity), a significance of ≤ 0.05 (when compared to shuffled 
motifs predicted in similar sequences), and had to be 
conserved in the human genome (hg19).

Similar motifs in the library were identified as previ-
ously described [82, 83], using a similarity threshold 
of 0.8. The motif with the highest number of predicted 
binding sites was kept for further analysis (Additional 
file 2: Table S1). For each transcription factor motif, a fold 
was calculated as the ratio of the proportion of promoters 
containing the motif in the target gene set to the propor-
tion of promoters containing the motif in a background 
set of genes. A transcription factor motif was considered 
to be enriched in the gene set if it had a fold ≥ 2 and a q 
value ≤ 0.05. Significance was determined using the Bon-
ferroni-corrected hypergeometric p value.

Tissue‑specific gene enrichment analysis
We used TissueEnrich [48] to carry out tissue-specific 
gene enrichment analysis, using all of the tissue-specific 
genes from the mouse ENCODE dataset and default 
parameters. The enrichment was calculated by using the 
hypergeometric test. Tissue-specific gene sets were con-
sidered enriched if they had an adjusted p value ≤ 0.01.

H3K27me3 chromatin immunoprecipitation (ChIP)
Placentas were microdissected from e9.5 timed-pregnant 
CD-1 mice (Charles Rivers Labs). Three placentas were 
combined per biological replicate, and three biological 
replicates were carried out. Chromatin isolation was car-
ried out as previously described in [84] except that the 
final nuclear lysis was performed in 0.5% of TritonX-100, 
1 mM EDTA, 10 mM Tris–Cl, pH 8.1 and the chroma-
tin was sheared using the Bioruptor Pico for a total of 6 
cycles (30  s on/30soff). The H3K27me3 ChIP was car-
ried out with 10ug of chromatin and 4ug of H3K27me3 
antibody (Millipore 17-622, lot:3070997) as per manu-
facturer’s recommendation following the ChIP protocol 
as previously described in [84]. We quantified the level 
of H3K27me3 activity with Real-Time qPCR. Gapdh and 
sheared genomic DNA (input DNA) were used for nor-
malization and enrichment calculation, using the ∆∆Ct 
method. Primer sequences and efficiency values, calcu-
lated after testing 1:4 dilutions of input DNA, are listed in 
Additional file 2: Table S7.

Randomization analysis
Randomization analysis was performed to determine the 
significance of specific ontology terms within subnet-
works or gene groups. We generated 10,000 gene sets that 
matched the size of the group or subnetwork of interest. 
For each of the random sets, we obtained the FDR of a 
specific term using GREAT. The p value is equivalent to 
the number of random sets that have a lower FDR than 
our original term, divided by 10,000.

Comparison of gene groups between tissues
The pairwise comparison of genes in each group for all 
tissues (Additional file  1: Figure S6) was calculated by 
comparing the genes of the same group between each 
pair of tissues. The Mann–Whitney U test was used to 
check whether the set of overlap counts was significantly 
different between groups.

Recon and nuScore analysis
For each gene, we created a fasta file for the region 500 bp 
upstream of the TSS. These sequences were used as input 
to the Recon (http://wwwmg​s.bione​t.nsc.ru/mgs/progr​
ams/recon​/) or the nuScore (http://compb​io.med.harva​
rd.edu/nuSco​re/) web-tools [50, 51], to obtain nucleo-
some position scores or deformation energy, respectively. 
NuScore was run using the 2cv5 human template and 
default parameters. Recon was also run with the default 
parameters. Nucleosome position scores for each posi-
tion were averaged across all sequences within a par-
ticular group. Similar averaging was also done on the 
deformation energy across all sequences within a group. 

http://wwwmgs.bionet.nsc.ru/mgs/programs/recon/
http://wwwmgs.bionet.nsc.ru/mgs/programs/recon/
http://compbio.med.harvard.edu/nuScore/
http://compbio.med.harvard.edu/nuScore/
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To determine whether the mean nucleosome posi-
tion score was significantly different between the tested 
groups, we used the Mann–Whitney U test.

Additional files

Additional file 1. Includes supplemental figures S1–S9. Figure S1. ATAC-
seq on whole tissues shows expected periodicity and correlations. Figure 
S2. The HA–HE group contains a large number of housekeeping genes. 
Figure S3. The HA–ME group is marked by H3K27me3 and is associated 
with neuronal functions. Figure S4. The MA–HE group is enriched for 
tissue-specific genes. Figure S5. ATAC-seq and RNA-seq show high cor-
relation in all tested cell types. Figure S6. Pairwise comparison of genes in 
each group for all tissues. Figure S7. HA–ME genes in ESC and TSC have 
potentially repressed neuronal networks. Figure S8. Tissue-specific gene 
expression in MA–HE groups. Figure S9. Group analysis of human alpha 
and beta cells.

Additional file 2. Includes the supplemental tables S1–7. Table S1. 
Enriched Binding Motifs. Table S2. Enriched Motifs in HA–ME promoters. 
Table S3. Nextera adapters used for ATAC-seq. Table S4. Read counts for 
ATAC-seq data. Table S5. Datasets used for ATAC-seq analysis. Table S6. 
Datasets used for RNA-seq analysis. Table S7. H3K27me3 primers.
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