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CREBBP/EP300 bromodomains are critical 
to sustain the GATA1/MYC regulatory axis 
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Abstract 

Background:  The reported antitumor activity of the BET family bromodomain inhibitors has prompted the devel‑
opment of inhibitors against other bromodomains. However, the human genome encodes more than 60 different 
bromodomains and most of them remain unexplored.

Results:  We report that the bromodomains of the histone acetyltransferases CREBBP/EP300 are critical to sustain the 
proliferation of human leukemia and lymphoma cell lines. EP300 is very abundant at super-enhancers in K562 and is 
coincident with sites of GATA1 and MYC occupancy. In accordance, CREBBP/EP300 bromodomain inhibitors interfere 
with GATA1- and MYC-driven transcription, causing the accumulation of cells in the G0/G1 phase of the cell cycle. 
The CREBBP/CBP30 bromodomain inhibitor CBP30 displaces CREBBP and EP300 from GATA1 and MYC binding sites 
at enhancers, resulting in a decrease in the levels of histone acetylation at these regulatory regions and consequently 
reduced gene expression of critical genes controlled by these transcription factors.

Conclusions:  Our data shows that inhibition of CREBBP/EP300 bromodomains can interfere with oncogene-driven 
transcriptional programs in cancer cells and consequently hold therapeutic potential.
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Background
The potential to modulate histone acetylation and its out-
comes is of increasing therapeutic interest. Levels of his-
tone acetylation are dynamically regulated by the action 
of histone acetyltransferases (HATs) and histone deacety-
lases (HDACs). Bromodomain-containing proteins are 
able to recognize acetylated lysines in histone tails and 
act as effectors of the acetylation signal [1]. Such is the 
case of the bromo and extraterminal domain (BET) fam-
ily of bromodomain-containing proteins [2]. Members 
of this family like the bromodomain-containing protein 
4 (BRD4) are recruited to acetylated sites of the genome 
and favor the recruitment of the Mediator complex and 

pTEFb-promoting transcriptional initiation and elonga-
tion [3].

Inhibitors that specifically block the interaction of 
bromodomains with acetylated residues hold therapeu-
tic promise (reviewed in [4]). Among other therapeutic 
properties, pan BET bromodomain inhibitors have been 
described to mediate important antiproliferative effects 
in cancer cell lines [5, 6]. BET inhibitors cause the down-
regulation of oncogenes that are associated with a par-
ticular class of enhancers known as super-enhancers and 
characterized by very high levels of histone acetylation 
and, in this way, block oncogene-driven proliferation of 
cancer cells [7].

CREBBP and EP300 are HATs that share several con-
served domains, among them are the HAT domain 
and a bromodomain, and likely have interchangeable 
roles. CREBBP/EP300 functions primarily as cofactors 
for a number of transcription factors. Recent evidence 

Open Access

Epigenetics & Chromatin

*Correspondence:  mjbarrero@cnio.es 
1 CNIO‑Lilly Epigenetics Laboratory, Spanish National Cancer Research 
Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13072-018-0197-x&domain=pdf


Page 2 of 15Garcia‑Carpizo et al. Epigenetics & Chromatin  (2018) 11:30 

suggests that CREBBP and EP300 are involved in the 
maintenance of super-enhancers and BRD4 recruitment. 
First, CREBBP and EP300 are highly enriched at super-
enhancers compared to regular enhancers [8] and sec-
ond, EP300 is recruited by hematopoietic transcription 
factors to mediate histone acetylation at critical regula-
tory regions and support BRD4 occupancy in mouse leu-
kemia cells 2 [9].

While the CREBBP/EP300 HAT activity has been 
widely investigated, less is known about the relevance of 
the bromodomain for their function. Recently, dual inhib-
itors of the bromodomains of CREBBP and EP300 have 
been developed [10–16]. Several biological responses to 
these inhibitors have been reported suggesting that they 
have therapeutic potential. For example, they have been 
described to inhibit human Th17 responses [17], modu-
late key inflammatory genes in primary macrophages 
[11] and interfere with the regulatory T cells lineage [15]. 
In addition, several recently developed EP300/CREBBP 
bromodomain inhibitors have been reported to medi-
ate antiproliferative responses in hematologic cancer cell 
lines, such as acute myeloid leukemia (AML) [12, 14] and 
multiple myeloma [18] cell lines and AR-positive pros-
tate cancer cell lines [16]. Importantly, EP300/CREBBP 
bromodomain inhibitors have been reported to interfere 
with relevant oncogene transcription programs such as 
MYC, IRF4 and AR [14, 16, 18].

CREBBP/EP300 bromodomain inhibitors hold prom-
ise for future therapeutic applications; however, the 
mechanism of action of these compounds is not fully 
understood. Here, we explore the antiproliferative prop-
erties of CREBBP/EP300 bromodomain inhibition in 
leukemia and lymphoma cell lines and explore the molec-
ular mechanisms responsible for such effects, using both 
chemical and genetic approaches. Our results show that 
the GATA1/MYC axis is as a key component of EP300/
CREBBP bromodomain inhibitors mechanism of action 
in chronic myeloid leukemia (CML) cell line K562.

Results
CREBBP/EP300 bromodomains are critical 
for the proliferation of K562 cells
To evaluate the potential involvement of CREBBP/
EP300 in proliferation, we evaluated the sensitivity of the 
human CML cell line K562 to the CREBBP/EP300 bro-
modomain inhibitor CBP30 [10], the EP300/CREBBP 
HAT activity inhibitor C646 [19] and as a positive con-
trol, the BET pan inhibitor JQ1 [6]. IC50  s for growth 
inhibition (Fig. 1a) show that K562 cells are sensitive to 
JQ1 (IC50 = 0.012  µM) and CBP30 (IC50 = 0.923  µM) 
and to a much lower extent to C646 (IC50 = 8 µM). Dif-
ferences in potency found between C646 and CBP30 are 
in agreement with the reduced cellular potency recently 
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Fig. 1  K562 are sensitive to CREBBP/EP300 inhibition. a Concentration-dependent (Log2 μM) growth inhibition curves of K562 cells treated with 
JQ1, C646 and CBP30 for 7 days. b EP300 and CREBBP protein levels after knock down of CREBBP or EP300 or both in K562. c Growth curves of K562 
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described for C646 due to consumption by abundant 
protein and metabolite thiol sinks [20].

To confirm that K562 cells are sensitive to CREBBP/
EP300 depletion, we altered the expression of these 
proteins using shRNA and gene editing methods. Infec-
tion of K562 cells with lentiviruses expressing shRNAs 
against EP300 or CREBBP or both reduced the expres-
sion of the targeted proteins (Fig. 1b). Depletion of EP300 
or CREBBP alone had effects in K562 proliferation, and 
effects were additive when both proteins were depleted 
(Fig. 1c). These results suggest that EP300 and CREBBP 
contribute to the proliferation of K562 cells.

Bromodomains are attractive targets due to their drug-
gability [21]. However, it is also known that a potential 
complication of bromodomain inhibitor development is 
promiscuity among different bromodomains. Despite the 
fact that CBP30 has been described to have good selec-
tivity over other bromodomains [17], we considered per-
tinent to confirm the involvement of EP300 and CREBBP 
bromodomains in the proliferation of K562 cells using an 
alternative method. For that, we used a recently reported 
method to infer the functional importance of individ-
ual protein domains of interest using the CRISPR-Cas9 
genome editing technology [22, 23]. This method is based 
on the fact that one-third of randomly introduced muta-
tions will result in in-frame mutations and generate a full-
length protein with mutations in the particular domain 
targeted by the gRNA. If a domain is relevant for prolif-
eration, more pronounced antiproliferative effects will be 
observed when targeting that domain than an irrelevant 
domain. Therefore, we interrogated the effect of intro-
ducing mutation in the EP300 and CREBBP bromodo-
mains compared to other domains in growth competition 
assays (Fig. 1d and Additional file 1: Fig. S1). As expected 
introducing mutations in EP300 and CREBBP bromodo-
mains caused antiproliferative effects when compared to 
mutations introduced in the 5′ coding region. In agree-
ment with a role of the EP300/CREBBP bromodomains 
in proliferation effects were more conspicuous when tar-
geting conserved regions of the bromodomains.

CREBBP/EP300 bromodomain inhibitors affect 
the expression of super‑enhancer‑associated genes 
and genes with high levels of EP300 occupancy
To evaluate the changes in gene expression that might be 
contributing to the antiproliferetive phenotype caused by 
CREBBP/EP300 inhibition, we carried out RNAseq anal-
ysis of K562 cells treated with 200 nM JQ1, 5 µM CBP30 
and 10  µM C646. Since all treatments are related to 
acetylation, which is involved in gene activation, we con-
sidered that downregulated genes are more likely to be 
direct targets of the action of the inhibitors. About one-
third of downregulated genes are shared by all treatments 

(Fig.  2a and Additional file  2: Table  S2), suggesting that 
there is a functional overlap between them. Gene ontol-
ogy analysis shows that shared downregulated genes are 
involved in RNA processing and translation that might 
have consequences for cell viability (Fig. 2b).

CBP30 has been reported to have 34-fold selectiv-
ity for CREBBP/EP300 over BRD4 [17]. To rule out 
that the CBP30 treatment at 5  µM might be mediating 
its effects through BRD4 inhibition, we treated K562 
cells with 2  µM CBP30, a concentration reported to 
be unlikely to affect the BET family in  vivo [17]. About 
one-third of genes significantly downregulated at 5  µM 
were also downregulated at 2  µM CBP30 treatment 
(Fig.  2c). As expected, these genes were more dramati-
cally downregulated by the 5  µM treatment than the 
2 µM CBP30 (Fig. 2d). There was also a significant over-
lap (p < 2.73 × 10−267) of genes downregulated by 2  μM 
CBP30 and the more recently described but less potent 
CREBBP/EP300 bromodomain inhibitor I-CBP112 [12] 
(Fig.  2c, d). Comparison of all genes transcriptional 
changes suggests a good overlap of responses to CBP30 
and I-CBP112 (Fig.  2e). Genes downregulated by both 
5 μM and 2 μM CBP30 were also downregulated by JQ1 
(Fig. 2d) suggesting a certain degree of overlap between 
treatments. However, the fact that the effects of JQ1 on 
these genes are more heterogeneous compared to the 
CBP30 treatments (Fig. 2d) suggests that CBP30 and JQ1 
mediate their effects through different targets.

Next, we investigated the correlation of the genome-
wide distribution of H3K27ac and EP300 with the 
changes in gene expression caused by the different treat-
ments. Since JQ1 has been described to downregulate 
the expression of genes associated with super-enhancers 
[7], we used the software ROSE [7, 24] to identify super-
enhancers in K562 according to the H3K27ac signal 
(Fig. 3a). This analysis identified 805 super-enhancers that 
were mapped to 781 genes. We also used ROSE to iden-
tify genomic locations with top levels of EP300 (Fig. 3b). 
A total of top 1682 intervals were identified which were 
mapped to 1446 genes. Most super-enhancers contained 
top levels of EP300 (Fig.  3c), suggesting that EP300 
might contribute to the high levels of acetylation found 
at super-enhancers in K562. EP300 signal density was 
high at regular enhancers and more conspicuously dense 
at super-enhancers (Fig.  3d). These results are in agree-
ment with a previous report that describes that EP300 is 
enriched in super-enhancer regions in mouse embryonic 
stem cells [8].

We next analyzed the overlap of genes downregulated 
by each treatment and associated with super-enhancers 
(Fig. 3e) or with top EP300 occupancy (Fig. 3f ). P values 
for the enrichment of downregulated genes by each treat-
ment and presence of super-enhancers and occupancy 
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by top levels of EP300 shows that all three treatments 
caused downregulation of genes associated with super-
enhancers but only CBP30 and C646 inhibitors caused 
the downregulation of genes occupied by top EP300 lev-
els. This data suggest that all treatments were mediating 

their effects through histone acetylation but only CBP30 
and C646 were mediating their effects through EP300. 
In addition, we confirmed enrichment of SE-associated 
genes and genes with top levels of EP300 in genes down-
regulated by I-CBP112 and CBP30, but not in genes 
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Fig. 2  Transcriptional profiles of K562 cells treated with JQ1, CBP30 and C646. a Overlap of downregulated genes caused by the treatment of K562 
with 200 nM JQ1, 5 µM CBP30 and 10 µM C646 for 48 h. b Gene ontology of commonly downregulated genes showing enrichment in the indicated 
categories. c Overlap of genes downregulated in K562 by CBP30 at 2 and 5 μM after 48 h of treatment. d Log2 of the fold change to DMSO caused 
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all genes comparing the indicated treatments to DMSO. On the right, the fold change of top 400 genes changing expression is shown. Genes have 
been ranked according to fold change in cells treated with 5 µM CBP30

Fig. 3  Genes associated with SE and/or occupied by EP300 are downregulated by CBP30 in K562. a Ranking of H3K27ac signal at genomic 
intervals marked with H3K27ac identifies super-enhancers in K562. b Ranking of EP300 signal at genomic intervals occupied by EP300 identifies 
top EP300 regions. c Overlap of genes associated with SE and top EP300 levels d Metagene representation of the mean of EP300 signal in regular 
enhancers (RE) and super-enhancers (SE). Mean size of regular enhancers and super-enhancers is shown. A 5 kb flanking region surrounding each 
enhancer region is also shown. e Overlap of genes downregulated by the 200 nM JQ1, 5 µM CBP30 or 10 µM C646 for 48 h and associated with 
super-enhancers. P value for the enrichment of super-enhancer associated genes in downregulated genes for each treatment is shown. f Overlap 
of genes downregulated by the individual treatments and occupied by top levels of EP300. P values for the enrichment of EP300 occupied genes 
in downregulated genes for each treatment is shown. g mRNA levels according to RNA-seq of selected genes affected by the CBP30 treatment 
and that are associated with super-enhancers and are bound by top EP300 levels, after treatment of K562 with 200 nM JQ1, 5 µM CBP30 and 10 µM 
C646 for 48 h

(See figure on next page.)
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upregulated by these treatments (Additional file  2: Fig. 
S2A). We notice that genes encoding important tran-
scription factors like MYC, GATA1 and MYB that are 
highly expressed in K562, associated with super-enhanc-
ers, prominently bound by EP300 and downregulated 
by JQ1 and CBP30 treatments (Fig.  3g). Other genes of 
interest like TET1, FOSL1 and the cell cycle regulator 
CCND1 are expressed at lower levels and downregulated 
by the CBP30, C646 and JQ1 treatments and are poten-
tial target genes of the above-mentioned transcription 
factors.

CREBBP/EP300 bromodomain inhibitors downregulate 
the expression of GATA‑1 and GATA‑1‑target genes
We next interrogated which potential transcription factor 
might be recruiting EP300 to chromatin in K562 cells. We 
used the motif analysis tool MEME ChIP [25] to identify 
motifs at 400 bp centered peaks of the top EP300 constitu-
ent intervals. A motif that matches GATA1 binding sites 
was identified with a good e-value and a distribution that 
peaks at the center of the EP300 sites (Fig. 4a). Importantly, 
GATA1 has been previously described to interact and be 
acetylated by EP300 increasing its transcriptional activ-
ity [26]. Moreover, CREBBP can serve as a co-activator 
for GATA-1 [27]. To confirm co-occupancy of EP300 and 
GATA1 in K562, we analyzed the GATA1 ChIP-seq signal 
at the constituent intervals of top EP300 regions. Figure 4b 
shows that levels of EP300 and GATA1 correlate at the ana-
lyzed genomic locations. GATA1 shows maximum density 
at the center of EP300 sites and intervals with higher lev-
els of EP300 located at the top of the density plot also have 
higher levels of GATA1. As expected, H3K27ac was also 
prominent at the center of EP300 binding sites (Fig. 4b, c). 
GATA1 mRNA levels reached a maximum downregulation 
at 6 h after treatment with both 2 and 5 µM CBP30 (Fig. 4d 
upper panel) and accordingly protein levels started to 
decrease at 6 h but showed minimum levels at 48 h (Fig. 4d 
lower panel). We further confirmed that CBP30 interferes 
with GATA1 transcriptional activity by performing Gene 
Set Enrichment Analysis (GSEA) [28]. Figure 4e and Addi-
tional file 1: Fig. S2B show that CBP30 and I-CBP112 cause 
the downregulation of genes downregulated after siRNA of 
GATA1 in K562 [29], including MYC and CCND1, which 
is consistent with the concept that the effects of CBP30 are 
at least in part due to defects on GATA1-mediated tran-
scriptional activation. Importantly, according CCLE data, 
GATA1 is highly expressed in K562 cells as well in other 
CML and AML cell lines (Fig.  4f and Additional file  1: 
Fig. S3A). High expression of GATA1 is also detected in a 
subset of AML patients compared to other cancer types, 
according to TCGA (Additional file 1: Fig. S3B).

Interestingly, a shorter form of GATA1 (GATA1 s) that 
lacks the transactivation domain is expressed in K562 

resulting from translation initiation at methionine 84 
caused by the alternative splicing to exon 2 [30, 31] (Addi-
tional file 1: Fig. S4A). GATA1 s is frequently expressed in 
acute megakaryoblastic leukemia in patients with Down 
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syndrome due to mutations in exon 2 that affect splicing 
and might be relevant for the development of this dis-
ease [31]. We analyzed the expression of GATA1 splicing 
variants in K562 and the effects of compounds in their 
expression (Additional file 1: Fig. S4B). Most abundantly 
expressed variants contained exon 2 and were downregu-
lated by CBP30, while the variant with exon 2 skipping 
that gives rise to GATA1  s was expressed at low levels 
and was not significantly altered by CBP30. Eventually, 
the effects of CREBBP/EP300 bromodomain inhibitors 
on GATA1  s expression could be more precisely evalu-
ated in a cell line that expresses high levels of GATA1 s.

CREBBP/EP300 bromodomain inhibitors downregulate 
the expression of MYC and MYC‑target genes
Previous reports have demonstrated that CREBBP/EP300 
bromodomain inhibitors can affect the expression of 
MYC [14, 18]. GSEA analysis shows that all treatments 
result in the downregulation of genes typically upregu-
lated when MYC is overexpressed (Fig. 5a and Additional 
file 1: Fig. S2B). Treatment of K562 cells with 2 µM CBP30 
for 48 h caused downregulation of MYC expression at the 
mRNA and protein level (Fig.  5b). C646 did not affect 
the levels of MYC expression (Fig.  5b) but caused the 
downregulation of the expression of MYC target genes 
(Fig. 5a), suggesting that C646 mediates its action mainly 
by blocking the ability of transcription factors such as 
MYC to stimulate transcription. We next explored the 
timeline of response to CBP30 regarding MYC downreg-
ulation. MYC mRNA levels were rapidly downregulated 
after 30-min treatment reaching a maximum downreg-
ulation at 2 h followed by a return to basal levels and a 
secondary decrease seen again at 48 h (Fig. 5c). Protein 
levels were clearly downregulated at two hours of treat-
ment and followed similar cyclical regulation as the 
mRNA levels. Cyclical responses of MYC regulation have 
been also described in response to 4-hydroxynonenal 
treatment in K562 [32] although the nature of such fluc-
tuations remains poorly understood. In order to titrate 

CBP30 dose response, the expression of MYC was moni-
tored after 2-hour treatment using increasing concentra-
tions of CBP30. At 500 nM, the levels of MYC started to 
decrease both at the mRNA (Fig.  5d) and protein level 
(Fig.  5e). Importantly, the effects in MYC expression 

MYC
ACTB

0
0.2
0.4
0.6

0.8
1

1.2

D
M

SO
C

B
P3

0
C

64
6

JQ
1

m
R

N
A 

le
ve

ls

MYC
ACTB

D
M

SO

1n
M

5n
M

10
nM

50
nM

10
0n

M

D
M

SO

50
0n

M

1µ
M

2µ
M

5µ
M

10
µM

CBP30 CBP30

a

b c

d

e

f
72h

G2M
S
G0G1

0%

20%

40%

60%

80%

100%

120% 48h

%
 o

f c
el

ls

CBP30CBP30

0
0.2
0.4
0.6
0.8

1
1.2
1.4

M
Y
C

m
R

N
A 

le
ve

ls

CBP30

NES:-2.9
:0

<0.001

En
ric

hm
en

t S
co

re

CBP30 vs. DMSO C646 vs. DMSO

MYC_UP.V1_UP

NES:-2.13
:0

<0.001

NES:-2.84
:0

<0.001

JQ1 vs. DMSO

MYC_UP.V1_UP MYC_UP.V1_UP

-0.7

-0.0

0
0.2
0.4
0.6
0.8

1
1.2

0 0.5 1 2 6 12 24 48

M
YC

 m
R

N
A 

le
ve

ls

2µM CBP30
5µM CBP30

hrs
MYC
ACTB

2µM

5µMMYC
ACTB
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expression caused by CBP30, JQ1 and C646 treatments shows 
enrichment in genes that are upregulated after MYC overexpression 
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correlated with an increase in the percentage of cells in 
G0/G1 after treatment with increasing concentrations of 
CBP30 for 48 or 72 h (Fig. 5f ).

Our results suggest that the antiproliferative effects of 
CBP30 in K562 could be at least partially mediated by 
MYC, potentially in collaboration with other transcrip-
tion factors. Therefore, we speculated that cell lines that 
express high levels of MYC could be also sensitive to 
CBP30. We selected lymphoma cell lines that express 
high levels of MYC due to amplifications (MM1S) or 
rearrangements (KMS11). Both MMS1 and KMS11 were 
sensitive to C646, CBP30 and JQ1 inhibitors (Additional 
file  1: Fig. S5A). In correlation with sensitivity, both 
CBP30 and JQ1 had significant effects on MYC expres-
sion both at the mRNA and protein levels, while C646 
had more modest effects (Additional file  1: Fig. S5B). 
These findings are in agreement with previous reports 
describing the ability of EP300/CREBBP bromodomain 
inhibitors to modulate MYC expression in AML cell lines 
[14].

CREBBP/EP300 bromodomain inhibitors displace CREBBP 
and EP300 from MYC‑GATA1‑occupied enhancers 
and reduce the levels of histone acetylation at these sites
Interestingly, both GATA1 and MYC-mediated tran-
scriptional responses were affected by the CBP30 treat-
ment in K562 cells. Density plot of GATA1 and MYC 
signal on EP300 binding sites suggests co-presence of 
both transcription factors at these sites in K562 (Fig. 6a). 
Most genes with top EP300 binding sites were also occu-
pied by MYC (p value = 8.42  ×  10−162) and GATA1 
(p value = 0) (Fig.  6b). Figure  6c shows the regulatory 
regions of GATA1, CCND1 and MYC containing super-
enhancers (in red) and top EP300 levels (in gray). Over-
lapping peaks of GATA1 and EP300 appear obvious and 
those overlap to a lesser extend with MYC peaks and 
peaks of acetylation. EP300 and GATA1 peaks coincide 
with valleys of acetylation (see regions B and C magni-
fications) that likely correspond to nucleosome clear-
ance. We next asked if CBP30 could be displacing EP300 
and CREBBP from its binding sites. Importantly, we 

interrogated enhancer regions A and C that have been 
previously described to be relevant to sustain the expres-
sion of GATA1 or MYC in K562 and that their disruption 
affects the proliferation of K562 [33]. To rule out that the 
CREBBP/EP300 displacement from these regions could 
be due to a decrease in the expression of GATA1 or MYC 
and consequent decrease in the occupancy of their bind-
ing sites, we conducted ChIP experiments after one hour 
of CBP30 treatment. At this time, protein levels of MYC 
and GATA1 are yet not significantly affected by the treat-
ment (Figs. 4d, 5c). Our results show that CBP30 was able 
to displace EP300 and CREBBP from the interrogated 
genomic locations (Fig.  6d) resulting in lower levels of 
histone acetylation (Fig.  6e). These results suggest that 
the binding of the bromodomain to acetylated histones is 
needed to stabilize EP300 or CREBBP on GATA1/MYC 
binding sites and sustain histone acetylation.

The CREBBP/EP300 catalytic inhibitor A‑485 has similar 
effects to CREBBP/EP300 bromodomain inhibitors in K562
During the course of our investigation, additional 
CREBBP/EP300 inhibitors have been developed by oth-
ers, most remarkable the catalytic inhibitor A-485 with 
improved cellular potency compared to C646 [34]. We 
tested the sensitivity of K562 to this new inhibitor and 
to two recently developed inhibitors of the CREBBP/
EP300 bromodomain CPI644 [15] and GNE-272 [14]. 
K562 cells were found to be proliferation sensitive to 
A-485 (IC50 = 1.18  µM), CPI644 (IC50 = 2.37  µM) and 
GNE-272 (IC50 = 2.6 µM). Importantly, A-485 and GNE-
272 have been shown to have antiproliferative properties 
in xenograft mouse models without causing significant 
toxicity [14, 34]. Therefore, we compared the transcrip-
tional and phenotypic effects of these two inhibitors with 
CBP30. Figure  7a shows that transcriptional changes in 
CREBBP/EP300 target genes are very similar between 
compounds but more dramatic changes are observed for 
A-485 that also correlate with more drastic effects in the 
cell cycle profile (Fig. 7b). The main observed effect of all 
inhibitors is an increase of the percentage of cells in G0/
G1. In addition, after A-485 treatment a small percentage 

(See figure on next page.)
Fig. 6  CBP30 displaces CREBBP and EP300 from chromatin at GATA1/MYC binding sites in K562 cells. a Heat map of the density of EP300, H3K27ac, 
GATA1 and MYC signals at 10 Kb centered of all EP300-occupied intervals (n = 76,018) and ranked according to EP300 signal. b Overlap of genes 
occupied by GATA1, MYC and top levels of EP300. c ChIP-seq profiles of H3K27ac, EP300, GATA1 and MYC at given genomic regions. Red lines show 
the location of super-enhancers. Gray lines show the genomic intervals with top EP300 occupancy. Regions A, B and C were used for ChIP-qPCR. 
Magnifications of regions B and C are also shown. d ChIP-qPCR showing enrichment of CREBBP and EP300 in K562 cells treated with vehicle (DMSO) 
and 5 µM CBP30 for one hour in regions A, B and C. Levels were normalized to the input and plotted relative to the IgGs levels in the vehicle-treated 
condition. The position of the amplicons relative to the transcription start site of each gene is indicated. A region downstream of the gene HMGA2 
was used as a negative control. e ChIP-qPCR showing enrichment of H3K27ac in K562 cells treated with vehicle (DMSO) and 5 µM CBP30 for one 
hour in regions A, B and C. Levels were normalized to the input and plotted relative to the IgGs levels in the vehicle-treated condition. The position 
of the amplicons relative to the transcription start site of each gene is indicated. A region downstream of the gene HMGA2 was used as a negative 
control. *p value < 0.05, **p value < 0.005 and ***p value < 0.0005 determined by t test
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of cells (around 3%) in subG0 could be detected. This 
prompted us to investigate molecular events indicative 
of apoptosis. Figure 7c shows that after 48 h of treatment 
cleaved forms of PARP and Caspase3 can be detected, 
suggesting that some cells are undergoing apoptosis.

These results show that CREBBP/EP300 bromodomain 
and catalytic inhibitors have similar transcriptional and 

phenotypic effects in K562 and that the effects that we 
are observing are very likely to be on target.

Discussion
We describe the molecular mechanisms by which 
CREBBP/EP300 bromodomain inhibition mediates anti-
proliferative effects in human CML. Our data show that 
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inhibition of CREBBP/EP300 bromodomains can inter-
fere with transcriptional outputs driven by oncogenes, 
such as GATA1 and MYC that function as transcription 
factors in cancer cells.

Bromodomain inhibitors typically show promiscu-
ity between members of their family. We provide sev-
eral lines of evidence that indicate that the reported 
effects of CREBBP/EP300 bromodomain inhibition are 
on target and not through inhibition of the BET fam-
ily. First, we provide genetic evidence that disruption of 
CREBBP or EP300 bromodomains affects the prolifera-
tion of K562. Second, we found that CBP30 specifically 
downregulates the expression of genes bound by top lev-
els of EP300 while JQ1 causes downregulation of genes 
associated with super-enhancers suggesting that the 
CBP30 effects are on target. Third, phenotypic effects of 
CBP30 treatment can be detected at concentrations as 
low as 0.5  µM. A previous report has estimated, taking 
into account the in vitro dissociation constants and cel-
lular transcriptional responses to CBP30 and BET inhibi-
tors, that treatment with CBP30 at concentrations lower 
than 3.3  µM are unlikely to affect the BET family [17]. 
Finally, the four unrelated CREBBP/EP300 bromodomain 
inhibitors cause similar phenotypic and gene expression 
effects. These effects are also shared by the potent cata-
lytic inhibitor A-485. All these results strongly suggest 
that the observed effects are on target.

Our results indicate that the direct effect of CREBBP/
EP300 bromodomain inhibition is blocking the ability of 
GATA1 and MYC to stimulate transcription by impairing 
the proper recruitment of CREBBP/EP300 to their bind-
ing sites and reducing the levels of H3K27ac (Fig.  7d). 
This in turn might prevent the recruitment of bromodo-
main-containing proteins such as BRD4 to target regu-
latory regions. Some of the affected regulatory regions 
are important enhancers that control the expression of 
GATA1 or MYC and are critical for the proliferation of 
K562 cells [33]. Since GATA1 and MYC regulate their 
own transcription, downregulation of the expression of 
these transcription factors by CREBBP/EP300 bromo-
domain inhibitors is likely a consequence of their own 
impaired transactivation ability. These auto-inhibitory 
loops will further reinforce the effect of the inhibitors on 
target genes. Interestingly, MYC have been described to 
regulate the expression ribosomal genes and translation 
initiation factors [35] which is one of the main categories 
that we found downregulated by the inhibitors. GATA1 is 
a major regulator of chromatin accessibility in K562 cells 
[36], and it might facilitate the recruitment of MYC and 
HATs such as CREBBP/EP300 to its binding sites.

GATA1 is a multifaceted zinc finger transcription fac-
tor that is essential for the regulation of a set of genes 
related to the proliferation, differentiation and cell 

survival of erythroid progenitor cells. Inadequate GATA1 
gene expression disturbs the balance of erythroid prolif-
eration, survival and differentiation. Importantly, GATA1 
is highly expressed in K562 cells and is a critical tran-
scription factor that mediates proliferation and chroma-
tin accessibility in this cell line [33, 36]. Paradoxically, 
while structural mutations in GATA1 that are found in 
almost all megakaryoblastic leukemia in patients with 
Down syndrome, overexpression of GATA1 has been 
reported in a subset of AML patients [37, 38] and high 
levels of GATA1 expression have been suggested to con-
fer resistance to chemotherapy in acute megakaryocytic 
leukemia [39]. Further studies will be needed to evaluate 
the relevance of GATA1 overexpression in hematologic 
cancers.

Our study suggests that the sensitivity to CREBBP/
EP300 inhibition can rely on multiple transcriptional 
programs existing in one given cell type rather that one 
single transcription factor. Given the large number of 
described interactions between CREBBP/EP300 and 
transcription factors, it is likely that CREBBP/EP300 
bromodomain inhibitors can be effective in reducing 
the tumorigenesis of other cancer cell lines governed by 
other oncogenic transcription factors that depend on 
CREBBP/EP300 to stimulate transcription. Additionally, 
other histone acetyltransferases involved in supporting 
the expression of oncogenic transcription factors could 
be also candidates for therapeutic intervention.

Conclusions
Our study shows that several hematologic cancer cell 
lines are sensitive to inactivation of CREBBP/EP300 bro-
modomains. Targeting CREBBP/EP300 bromodomains 
with small molecules displaces these histone acetyltrans-
ferases from chromatin reducing the levels of acetyla-
tion at critical regulatory elements and compromises 
cell proliferation. Our results suggest that CREBBP/
EP300 bromodomain inhibitors might be able to reduce 
the tumorigenesis of cancers governed by oncogenic 
transcription factors that depend on CREBBP/EP300 to 
stimulate transcription and therefore hold therapeutic 
potential.

Methods
Cell lines and reagents
Human cancer cell lines K562, KMS11 and MM1S were 
purchased from ATCC. Antibodies were obtained from 
the following sources: EP300 (C-20) sc-585 from Santa 
Cruz, CREBBP (A-22) sc-369 from Santa Cruz, H3K27ac 
ab4729 from Abcam, MYC (N-262) sc-764 from Santa 
Cruz, GATA1 (N6) sc-265 from Santa Cruz, ACTB 
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(Ac-15) A5441 from Sigma-Aldrich, PARP 9542 and Cas-
pase3 9662 from Cell Signaling. CBP30 and I-CBP112 
were purchased from Tocris Bioscience. C646 was pur-
chased from Sigma-Aldrich. JQ1 was purchased from 
Selleck Chemicals. GNE-272 and CPI644 were synthe-
sized in house. A-485 was obtained from the Structural 
Genomics Consortium.

RNA interference, establishment of stable cell lines 
and proliferation assays
Non-inducible pGIZP and doxycycline inducible pTRIPZ 
vectors containing shRNAs against CREBBP or EP300, 
respectively, were purchased from Dharmacon. Target 
sequences were the following; shCREBBP TAA​GTG​ATA​
ATA​TTC​ATC​C and shEP300 TTT​CTT​TGA​CTG​TCC​
TGG​A. Lentiviral infections were performed as previ-
ously described [40]. Stable K562 cell lines infected with 
shNT (nontarget) and shCREBBP were stablished after 
2 weeks of selection with 2 µg/ml puromycin. Cells were 
re-infected with doxycycline inducible shEP300, and 
cells expressing RFP after the addition of doxycycline 
were sorted. Downregulation of CREBBP and EP300 was 
assessed by western blot after 6  days of treatment with 
0.5 µg/ml doxycycline. For proliferation curves, cells were 
counted using a hemocytometer and plated at day 0 in 
triplicate for each condition and treated with 0.5  µg/ml 
doxycycline. To determine IC50  s, cells were grown in 
96-well plates in the presence of increasing amounts of 
compound. At day seven, viability was determined using 
the CellTiter-Glow Luminescent Assay. IC50 values were 
calculated with a four-parameter variable-slope dose 
response curve using the GraphPad Prisms software.

CRISPR‑Cas9 gene editing and growth competition assays
gRNAs (Additional file 1: Table S1) were designed using 
the web tool cripsr.mit.edu with a quality score thresh-
old above 80 to minimize off-target effects. Nontarget 
gRNAs sequences were previously described [41]. gRNAs 
were cloned into pKLV-U6gRNA(BbsI)-PGKpuro2ABFP 
(Addgene plasmid # 50946). Lentiviral particles were 
generated as previously described [40] and K562 cells 
previously modified to express Cas9 using pLentiCas9 
Blast (Addgene plasmid # 52962) [42] were infected. Four 
days post-infection, growth competition assays were 
carried out by mixing an equal number of BFP +/gRNA 
expressing cells and non-gRNA transduced parental Cas9 
expressing cells (BFP-). The percentage of BFP + cells 
was determined by flow cytometry at different days 
starting the day of the mixing (day 0) and the fold deple-
tion of the percentage of BFP + cells compared to day 0 
was calculated (d0%BFP +/dN   %BFP +). Introduction 
of mutations for each gRNA was confirmed by Sanger 
sequencing at day 4 post-infection. gRNAs targeting 

EP300 did not introduce mutations in CREBBP and 
vice versa. For the statistical analysis, the percentage of 
growth inhibition at day 14 compared to day 0 for each 
gRNA was calculated and adjusted to the percentage of 
growth inhibition of the nontarget gRNAs. The adjusted 
percentages of growth inhibition for each gRNA obtained 
in up to 4 independent experiments were pooled into cat-
egories (NT, 5′ coding region, non-conserved aminoacids 
of the bromodomain and conserved aminoacids of the 
bromodomain), and the categories were compared using 
the Tukey–Kramer test [43].

Cell cycle analysis
Cell pellets were fixed with 70% ethanol in PBS at 4 °C for 
at least 1 h and stained with propidium iodide (100 ug/
ml) in the presence of RNase A and 0.1% Triton X-100 at 
4 °C for at least 30 min. Cell cycle distribution was meas-
ured using a BD LSRFortessa flow cytometer (BD Bio-
sciences) and data analyzed using the FlowJo software. 
Three replicates were used per condition.

RNA‑seq
Cells were treated for 48 h, and total RNA was extracted 
using the RNeasy kit (Qiagen). Two biological replicates 
were used per condition. Library construction, sequenc-
ing, alignment to human genome hg19 transcript assem-
bly and differential expression were done as previously 
described [44] using Nextpresso [45]. Genes changing 
expression with a FDR < 0.05 were considered as differen-
tially expressed. For the detection GATA1 splicing vari-
ants, Cufflinks was run without annotation reference.

Real‑time qPCR
RNA was obtained as described above, cDNA synthe-
sized using the SuperScript First-Strand Synthesis System 
(ThermoFisher) and real-time qPCR performed using the 
following primers GATA1.F GGA​TCC​CGT​GTG​CAA​
TGC​, GATA1.R GGT​CAG​TGG​CCG​GTT​CAC​, MYC.F 
5′AGG​GTC​AAG​TTG​GAC​AGT​GTCA, MYC.R 5′TGG​
TGC​ATT​TTC​GGT​TGT​TG, CCND1.F CAC​GCG​CAG​
ACC​TTC​GTT​, CCND1.R ATG​GAG​GGC​GGA​TTG​
GAA​, GAPDH.F GCA​CCG​TCA​AGG​CTG​AGA​AC and 
GAPDH.R AGG​GAT​CTC​GCT​CCT​GGA​A. Reactions 
were carried out in triplicate and expression levels nor-
malized to GAPDH.

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) assays were 
performed according to the Millipore protocol. Cells 
were treated with 5  µM CBP30 and fixed with 2  mM 
DSG (Di(N-succinimidyl) glutarate for 45  min and 1% 
formaldehyde for 20  min. Cross-linking was stopped 
with 0.125  M glycine for 10  min, and chromatin was 
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obtained and immunoprecipitated as previously 
described [44]. Immunoprecipitated chromatin was 
purified and used for qPCR amplification using the fol-
lowing oligonucleotides: GATA1_P.F 5′TCT​CCC​CCA​
AAG​CCT​GAT​C and GATA1_P.R 5′ CAG​CTG​GGA​
GTG​GGC​AGA​TA, MYC_P.F 5′GGT​GGC​AGA​AGC​
CAG​ATC​TC and MYC_P.R 5′GAC​CAG​GGA​GGC​AAA​
TGG​A, CCND1_P.F 5′GCC​TGT​CCA​CTG​GGA​ATC​
C and CCND1_P.R 5′AGC​CCT​CAC​TGG​CAT​TCT​
CTT. HMGA2_P.F GAG​TGG​GCG​GGT​GAG​AAA​A and 
HMGA2_P.R GTT​TGC​ATG​CAG​TGC​AGT​GA.

Gene set enrichment analysis (GSEA)
For GSEAPreranked [28], genes were pre-ranked accord-
ing to the statistic test of fold change for each treatment 
obtained in the RNA-seq analysis, setting ‘gene set’ as the 
permutation method and with 1000 permutations.

ChIP‑seq analysis
Super-enhancers and top EP300 occupied regions were 
identified using ROSE [7, 24]. Briefly, H3K27Ac and 
EP300 intervals were stitched together if they were 
within 12.5  kb and ranked by their ChIP-seq signal. 
Super-enhancers and top EP300 regions were mapped to 
the nearest gene using GREAT [46]. Metagene represen-
tations at regular enhancers and super-enhancers were 
calculated using bamToGFF (https​://githu​b.com/bradn​
erCom​putat​ion/pipel​ine/blob/maste​r/bamTo​GFF.py). 
Heat maps of ChIP-seq signals at given genomic loca-
tions were calculated using the Heat map tool from Gal-
axy Cistrome [47]. ChIP-seq data were visualized at the 
UCSC genome browser using the hg19 human genome 
build [48].

Statistical methods
The enrichment of differentially expressed genes in 
super-enhancers or top EP300 associated genes was cal-
culated according to Xi-squared test. Benjamini p values 
for gene ontology were calculated using DAVID [49, 50].

Source of public data
GATA1 gene expression was obtained from The Cancer 
Cell Line Encyclopedia (CCLE) website (http://www.
broad​insti​tute.org/ccle/home) and from the TCGA 
cBioPortal website (http://www.cbiop​ortal​.org) [51]. 
ChIP-seq data were from the ENCODE project [52] and 
downloaded from the UCSC Genome Browser web-
site (http://genom​e.ucsc.edu) and have the following 
GEO accessions numbers: H3K27ac (GSM733656) and 
EP300 (GSM935401), GATA1 (GSM1003608) and MYC 
(GSM935516).

Authors’ contributions
VG-C performed most experiments with technical help from JS. SR-L per‑
formed the CRISPR-Cas9 growth competition assays. OG-C, DGP and MJB 
performed the bioinformatics analysis. MJB wrote the manuscript with input 
from all authors. All authors read and approved the final manuscript.

Author details
1 CNIO‑Lilly Epigenetics Laboratory, Spanish National Cancer Research Center 
(CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain. 2 Bioinformatics 
Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernandez 
Almagro 3, 28029 Madrid, Spain. 

Acknowledgements
We thank M. Serrano for critical reading of the manuscript. A-485 was a gift 
from the Structural Genomics Consortium. We also thank the Flow Cytometry 
and Genomics Units at the CNIO.

Competing interests
This work was funded by Eli Lilly.

Availability of data and materials
The RNA-seq data have been deposited in the GEO repository with accession 
numbers GSE77295 and GSE110229.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was funded by Eli Lilly.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Additional files

Additional file 1: Table S1. gRNAs used for gene editing. Fig. S1. Statisti‑
cal analysis of the CRISPR-Cas9 growth competition experiments. Tukey 
Kramer analysis of the adjusted percentages of growth inhibition caused 
by gRNAs targeting different regions of CREBBP (A) or EP300 (B). 5′ coding 
region (5′), non-conserved aminoacids of the bromodomain (ncBD), 
conserved aminoacids of the bromodomain (cBD) and non-target (NT). 
Fig. S2. Enrichment of gene expression changes after treatment with 
CBP30 and I-CBP112. (A) p-values for enrichment of SE-associated genes 
(SE) and genes with top levels of EP300 (EP300) in genes upregulated and 
downregulated by CBP30 and I-CBP112 treatments. (B) GSEA analysis of 
changes in gene expression caused by the indicated treatments and gene 
sets. Fig. S3. GATA1 mRNA expression in cancer cell lines and patients. (A) 
mRNA levels of GATA1 determined by microarray in CCLE lines grouped 
by cancer type. (B) GATA1 mRNA levels determined by RNAseq in cancer 
patients according to TCGA. Fig. S4. Expression of GATA1 splicing variants 
in K562 (A) Three variants are expressed in K562 according to the analysis 
of the RNA-seq experiment (B) Graph shows the levels of expression of the 
different variants in K562 cells treated with vehicle or two concentrations 
of CBP30. P-values for significant changes (p ≤ 0.05) are shown. Fig. S5. 
Human myeloma cell lines with MYC amplifications or translocations are 
sensitive to CBP30. (A) IC50s of growth inhibition in KMS11 or MM1S cells 
treated with JQ1, C646 and CBP30 for 7 days. (B) mRNA (upper panel) and 
protein (lower panel) levels of MYC in KMS11 or MM1S cells treated with 
2 µM CBP30, 10 µM C646 and 150 nM JQ1 for 48 hours.

Additional file 2: Table S2. Genes downregulated by the indicated 
treatments. Presence of super-enhancers and top EP300 occupancy is also 
indicated.

https://github.com/bradnerComputation/pipeline/blob/master/bamToGFF.py
https://github.com/bradnerComputation/pipeline/blob/master/bamToGFF.py
http://www.broadinstitute.org/ccle/home
http://www.broadinstitute.org/ccle/home
http://www.cbioportal.org
http://genome.ucsc.edu
https://www.doi.org/10.1186/s13072-018-0197-x
https://www.doi.org/10.1186/s13072-018-0197-x


Page 14 of 15Garcia‑Carpizo et al. Epigenetics & Chromatin  (2018) 11:30 

Received: 24 March 2018   Accepted: 27 May 2018

References
	1.	 Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Struc‑

ture and ligand of a histone acetyltransferase bromodomain. Nature. 
1999;399:491–6.

	2.	 Florence B, Faller DV. You bet-cha: a novel family of transcriptional regula‑
tors. Front Biosci. 2001;6:D1008–18.

	3.	 Jang MK, Mochizuki K, Zhou M, Jeong H-S, Brady JN, Ozato K. The 
bromodomain protein Brd4 is a positive regulatory component of P-TEFb 
and stimulates RNA polymerase II-dependent transcription. Mol Cell. 
2005;19:523–34.

	4.	 Muller S, Filippakopoulos P, Knapp S. Bromodomains as therapeutic 
targets. Expert Rev Mol Med. 2011;13:e29.

	5.	 Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan 
W-I, Robson SC, Chung C, Hopf C, Savitski MM, Huthmacher C, Gudgin E, 
Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet 
O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJP, 
Kouzarides T. Inhibition of BET recruitment to chromatin as an effective 
treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33.

	6.	 Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse 
EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, 
Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La 
Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE. Selective 
inhibition of BET bromodomains. Nature. 2010;468:1067–73.

	7.	 Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee 
TI, Young RA. Selective inhibition of tumor oncogenes by disruption of 
super-enhancers. Cell. 2013;153:320–34.

	8.	 Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, 
Young RA. Super-enhancers in the control of cell identity and disease. 
Cell. 2013;155:934–47.

	9.	 Roe J-S, Mercan F, Rivera K, Pappin DJ, Vakoc CR. BET bromodomain 
inhibition suppresses the function of hematopoietic transcription factors 
in acute myeloid leukemia. Mol Cell. 2015;58:1028–39.

	10.	 Hay DA, Fedorov O, Martin S, Singleton DC, Tallant C, Wells C, Picaud S, 
Philpott M, Monteiro OP, Rogers CM, Conway SJ, Rooney TPC, Tumber A, 
Yapp C, Filippakopoulos P, Bunnage ME, Müller S, Knapp S, Schofield CJ, 
Brennan PE. Discovery and optimization of small-molecule ligands for the 
CBP/p300 bromodomains. J Am Chem Soc. 2014;136:9308–19.

	11.	 Chekler ELP, Pellegrino JA, Lanz TA, Denny RA, Flick AC, Coe J, Langille J, 
Basak A, Liu S, Stock IA, Sahasrabudhe P, Bonin PD, Lee K, Pletcher MT, 
Jones LH: Transcriptional profiling of a selective CREB binding protein 
bromodomain inhibitor highlights therapeutic opportunities. Chem Biol 
2015:1588–1596.

	12.	 Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J, 
Olzscha H, Monteiro O, Martin S, Philpott M, Tumber A, Filippakopoulos P, 
Yapp C, Wells C, Hing Che K, Bannister A, Robson S, Kumar U, Parr N, Lee K, 
Lugo D, Jeffrey P, Taylor S, Vecellio ML, Bountra C, Brennan P, O’Mahony A, 
Velichko S, Muller S, Hay D, et al.: Generation of a selective small molecule 
inhibitor of the CBP/p300 bromodomain for leukemia therapy. Cancer 
Res 2015, 44.

	13.	 Xu M, Unzue A, Dong J, Spiliotopoulos D, Nevado C, Caflisch A: Discovery 
of CREBBP bromodomain inhibitors by high-throughput docking 
and hit optimization guided by molecular dynamics. J Med Chem 
2015:150716130846002.

	14.	 Crawford TD, Romero FA, Lai KW, Tsui V, Taylor AM, De Leon Boenig G, 
Noland CL, Murray J, Ly J, Choo EF, Hunsaker TL, Chan EW, Merchant M, 
Kharbanda S, Gascoigne KE, Kaufman S, Beresini MH, Liao J, Liu W, Chen 
KX, Chen Z, Conery AR, Côté A, Jayaram H, Jiang Y, Kiefer JR, Kleinheinz 
T, Li Y, Maher J, Pardo E, et al. Discovery of a potent and selective in vivo 
probe (GNE-272) for the bromodomains of CBP/EP300. J Med Chem. 
2016;59:10549–63.

	15.	 Ghosh S, Taylor A, Chin M, Huang HR, Conery AR, Mertz JA, Salmeron A, 
Dakle PJ, Mele D, Cote A, Jayaram H, Setser JW, Poy F, Hatzivassiliou G, 
DeAlmeida-Nagata D, Sandy P, Hatton C, Romero FA, Chiang E, Reimer 
T, Crawford T, Pardo E, Watson VG, Tsui V, Cochran AG, Zawadzke L, 
Harmange JC, Audia JE, Bryant BM, Cummings RT, et al. Regulatory T 

cell modulation by CBP/EP300 bromodomain inhibition. J Biol Chem. 
2016;291:13014–27.

	16.	 Jin L, Garcia J, Chan E, de la Cruz C, Segal E, Merchant M, Kharbanda S, 
Raisner R, Haverty PM, Modrusan Z, Ly J, Choo E, Kaufman S, Beresini MH, 
Romero FA, Magnuson S, Gascoigne KE. Therapeutic targeting of the CBP/
p300 bromodomain blocks the growth of castration-resistant prostate 
cancer. Cancer Res. 2017;77:5564–75.

	17.	 Hammitzsch A, Tallant C, Fedorov O, O’Mahony A, Brennan PE, Hay DA, 
Martinez FO, Al-Mossawi MH, de Wit J, Vecellio M, Wells C, Wordsworth 
P, Müller S, Knapp S, Bowness P. CBP30, a selective CBP/p300 bromodo‑
main inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci. 
2015;112:10768–73.

	18.	 Conery AR, Centore RC, Neiss A, Keller PJ, Joshi S, Spillane KL, Sandy P, Hat‑
ton C, Pardo E, Zawadzke L, Bommi-Reddy A, Gascoigne KE, Bryant BM, 
Mertz JA, Sims RJ. Bromodomain inhibition of the transcriptional coacti‑
vators CBP/EP300 as a therapeutic strategy to target the IRF4 network in 
multiple myeloma. Elife. 2016;5:e10483.

	19.	 Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, Crump NT, 
Hazzalin CA, Liszczak G, Yuan H, Larocca C, Saldanha SA, Abagyan R, Sun 
Y, Meyers DJ, Marmorstein R, Mahadevan LC, Alani RM, Cole PA. Virtual 
ligand screening of the p300/CBP histone acetyltransferase: identification 
of a selective small molecule inhibitor. Chem Biol. 2010;17:471–82.

	20.	 Shrimp JH, Sorum AW, Garlick JM, Guasch L, Nicklaus MC, Meier JL. Char‑
acterizing the covalent targets of a small molecule inhibitor of the lysine 
acetyltransferase P300. ACS Med Chem Lett. 2016;7:151–5.

	21.	 Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers 
of lysine acetylation. Nat Rev Drug Discov. 2014;13:337–56.

	22.	 Munoz DM, Cassiani PJ, Li L, Billy E, Korn JM, Jones MD, Golji J, Ruddy DA, 
Yu K, McAllister G, Deweck A, Abramowski D, Wan J, Shirley MD, Neshat 
SY, Rakiec D, De Beaumont R, Weber O, Kauffmann A, Robert McDonald E, 
Keen N, Hofmann F, Sellers WR, Schmelzle T, Stegmeier F, Schlabach MR. 
CRISPR screens provide a comprehensive assessment of cancer vulner‑
abilities but generate false-positive hits for highly amplified genomic 
regions. Cancer Discov. 2016;6:900–13.

	23.	 Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of 
cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat 
Biotechnol. 2015;33:661–7.

	24.	 Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl 
PB, Lee TI, Young RA. Master transcription factors and mediator establish 
super-enhancers at key cell identity genes. Cell. 2013;153:307–19.

	25.	 Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. 
Bioinformatics. 2011;27:1696–7.

	26.	 Boyes J, Byfield P, Nakatani Y, Ogryzko V. Regulation of activity of the 
transcription factor GATA-1 by acetylation. Nature. 1998;396:594–8.

	27.	 Blobel GA, Nakajima T, Eckner R, Montminy M, Orkin SH. CREB-binding 
protein cooperates with transcription factor GATA-1 and is required 
for erythroid differentiation (transcriptional activation GATA factors 
adenovirus E1A protein protein–protein interaction). Biochemistry. 
1998;95:2061–6.

	28.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL. Gene set 
enrichment analysis: a knowledge-based approach for interpreting 
genome-wide. Proc Natl Acad Sci USA. 2005;102:15545–50.

	29.	 Lan X, Witt H, Katsumura K, Ye Z, Wang Q, Bresnick EH, Farnham PJ, Jin VX. 
Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin 
linkages. Nucleic Acids Res. 2012;40:7690–704.

	30.	 Calligaris R, Bottardi S, Cogoi S, Apezteguia I, Santoro C. Alternative trans‑
lation initiation site usage results in two functionally distinct forms of the 
GATA-1 transcription factor. Biochemistry. 1995;92:11598–602.

	31.	 Rainis L, Bercovich D, Strehl S, Teigler-Schlegel A, Stark B, Trka J, Amariglio 
N, Biondi A, Muler I, Rechavi G, Kempski H, Haas OA, Izraeli S. Mutations in 
exon 2 of GATA1 are early events in megakaryocytic malignancies associ‑
ated with trisomy 21. Blood. 2003;102:981–6.

	32.	 Fazio VM, Barrera G, Martinotti S, Farace MG, Giglioni B, Frati L, Manzari V, 
Dianzani MU. 4-Hydroxynonenal, a product of cellular lipid peroxidation, 
which modulates c-myc and globin gene expression in K562 erythroleu‑
kemic cells. Cancer Res. 1992;52:4866–71.

	33.	 Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, 
Kane M, Cleary B, Lander ES, Engreitz JM: Systematic mapping of func‑
tional enhance-promoter connections with CRISPR interference. Science 
80 2016, 6056(September):aag2445.



Page 15 of 15Garcia‑Carpizo et al. Epigenetics & Chromatin  (2018) 11:30 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	34.	 Lasko LM, Jakob CG, Edalji RP, Qiu W, Montgomery D, Digiammarino EL, 
Hansen TM, Risi RM, Frey R, Manaves V, Shaw B, Algire M, Hessler P, Lam LT, 
Uziel T, Faivre E, Ferguson D, Buchanan FG, Martin RL, Torrent M, Chiang 
GG, Karukurichi K, Langston JW, Weinert BT, Choudhary C, De Vries P, Van 
Drie JH, McElligott D, Kesicki E, Marmorstein R, et al. Discovery of a selec‑
tive catalytic p300/CBP inhibitor that targets lineage-specific tumours. 
Nature. 2017;550:128–32.

	35.	 van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome bio‑
genesis and protein synthesis. Nat Rev Cancer. 2010;10:301–9.

	36.	 Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, 
Chang HY, Greenleaf WJ. Single-cell chromatin accessibility reveals princi‑
ples of regulatory variation. Nature. 2015;523:486–90.

	37.	 Ahmed M, Sternberg A, Hall G, Thomas A, Smith O, O’Marcaigh A, 
Wynn R, Stevens R, Addison M, King D, Stewart B, Gibson B, Roberts I, 
Vyas P. Natural history of GATA1 mutations in Down syndrome. Blood. 
2004;103:2480–9.

	38.	 Ayala RM, Martínez-López J, Albízua E, Diez A, Gilsanz F. Clinical signifi‑
cance of Gata-1, Gata-2, EKLF, and c-MPL expression in acute myeloid 
leukemia. Am J Hematol. 2009;84:79–86.

	39.	 Caldwell JT, Edwards H, Dombkowski AA, Buck SA, Matherly LH, Ge Y, 
Taub JW. Overexpression of GATA1 confers resistance to chemotherapy in 
acute megakaryocytic Leukemia. PLoS ONE. 2013;8:e68601.

	40.	 Wiznerowicz M, Trono D. Conditional suppression of cellular genes: 
lentivirus vector-mediated drug-inducible RNA interference. J Virol. 
2003;77:8957–61.

	41.	 Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells 
using the CRISPR-Cas9 system. Science. 2014;343:80–4.

	42.	 Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide 
libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

	43.	 Tukey JW. Comparing individual means in the analysis of variance. Biom‑
etrics. 1949;5:99.

	44.	 García-Carpizo V, Sarmentero J, Han B, Graña O, Ruiz-Llorente S, Pisano 
DG, Serrano M, Brooks HB, Campbell RM, Barrero MJ. NSD2 contributes 
to oncogenic RAS-driven transcription in lung cancer cells through long-
range epigenetic activation. Sci Rep. 2016;6:32952.

	45.	 Graña O, Rubio-Camarillo M, Fdez-Riverola F, Pisano DG, Glez-Peña D. 
Nextpresso: Next Generation Sequencing Expression Analysis Pipeline. 
Curr Bioinform 2016, (ext 3062):1–10 (in press).

	46.	 McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, 
Bejerano G. GREAT improves functional interpretation of cis-regulatory 
regions. Nat Biotechnol. 2010;28:495–501.

	47.	 Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y, Shin H, Wong SS, Ma J, 
Lei Y, Pape UJ, Poidinger M, Chen Y, Yeung K, Brown M, Turpaz Y, Liu XS. 
Cistrome: an integrative platform for transcriptional regulation studies. 
Genome Biol. 2011;12:R83.

	48.	 Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, 
Haussler D. The human genome browser at UCSC. Genome Res. 
2002;12:996–1006.

	49.	 Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: 
paths toward the comprehensive functional analysis of large gene lists. 
Nucleic Acids Res. 2009;37:1–13.

	50.	 Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis 
of large gene lists using DAVID bioinformatics resources. Nat Protoc. 
2009;4:44–57.

	51.	 Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen 
A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander 
C, Schultz N. The cBio cancer genomics portal: an open platform for 
exploring multidimensional cancer genomics data. Cancer Discov. 
2012;2:401–4.

	52.	 Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An inte‑
grated encyclopedia of DNA elements in the human genome. Nature. 
2012;489:57–74.


	CREBBPEP300 bromodomains are critical to sustain the GATA1MYC regulatory axis in proliferation
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	CREBBPEP300 bromodomains are critical for the proliferation of K562 cells
	CREBBPEP300 bromodomain inhibitors affect the expression of super-enhancer-associated genes and genes with high levels of EP300 occupancy
	CREBBPEP300 bromodomain inhibitors downregulate the expression of GATA-1 and GATA-1-target genes
	CREBBPEP300 bromodomain inhibitors downregulate the expression of MYC and MYC-target genes
	CREBBPEP300 bromodomain inhibitors displace CREBBP and EP300 from MYC-GATA1-occupied enhancers and reduce the levels of histone acetylation at these sites
	The CREBBPEP300 catalytic inhibitor A-485 has similar effects to CREBBPEP300 bromodomain inhibitors in K562

	Discussion
	Conclusions
	Methods
	Cell lines and reagents
	RNA interference, establishment of stable cell lines and proliferation assays
	CRISPR-Cas9 gene editing and growth competition assays
	Cell cycle analysis
	RNA-seq
	Real-time qPCR
	Chromatin immunoprecipitation
	Gene set enrichment analysis (GSEA)
	ChIP-seq analysis
	Statistical methods
	Source of public data

	Authors’ contributions
	References




