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Abstract 

Background:  In addition to the important roles played by 5-methylcytosine (5mC), emerging evidence suggests that 
5mC derivatives, such as 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), also 
exhibit regulatory functions in physiological and pathological processes. Four cytosine modifications (5mC, 5hmC, 
5fC and 5caC) are produced and erased by a cyclic enzymatic cascade mediated by DNA methyltransferases (DNMTs), 
ten-eleven translocation (TET) family enzymes and thymine DNA glycosylase (TDG). Stable maintenance of the DNA 
methylation profile is important for normal cell homeostasis, but its underlying mechanisms are largely unknown.

Methods:  The expression levels of 7 DNA methylation-related enzymes from normal mouse tissues were assessed 
using quantitative real-time RT-PCR (qRT-PCR). The gene expression data and related information of human normal 
tissues and tumor tissues were obtained from the Genotype-Tissue Expression (GTEx) and the Cancer Genome Atlas 
(TCGA), respectively.

Results:  We observed significant positive correlations among the expression levels of DNA methylation-related 
enzymes in various mice and human normal tissues. By contrast, we found significantly decreased correlations in vari-
ous tumor tissues compared with their corresponding normal tissues. Furthermore, we also found that alterations in 
these correlations are associated with several clinicopathological characteristics of cancer patients.

Conclusions:  These observations suggest that uncoordinated expression of DNA methylation-related enzymes is 
another epigenetic hallmark of cancer. Our work provides important insights into an additional regulatory layer of the 
DNA methylation maintenance machinery.
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Background
DNA methylation plays essential roles in regulating gene 
expression in both normal development and diseases [1, 
2]. After the establishment of methylation marks by DNA 
methyltransferases 3A and 3B (DNMT3A and DNMT3B) 
and maintenance by DNMT1 [3–8], 5-methylcytosine 
(5mC) can be successively oxidized to 5-hydroxymethyl-
cytosine (5hmC), 5-formylcytosine (5fC) and 5-car-
boxylcytosine (5caC) by the ten-eleven translocation 
(TET) family enzymes; thereafter, 5fC and 5caC can be 
excised and repaired by thymine DNA glycosylase (TDG) 

in conjunction with the base excision repair pathway to 
regenerate unmodified cytosine [8–13]. In addition to 
this pathway for active DNA demethylation, there is a 
passive DNA demethylation pathway characterized with 
loss of DNA modifications by replication and cell division 
[8].

Recently, growing evidence suggests that 5mC and 
its derivatives can recruit unique proteins with specific 
functions that may be coupled with gene expression [14–
17]. Thus, it is important to properly maintain the levels 
of 5mC and its derivatives for normal cell homeostasis. 
However, the mechanisms underlying the maintenance of 
DNA methylation profiles are largely unknown.

Aberrant DNA methylation is considered to be as an 
epigenetic hallmark of various types of diseases, includ-
ing cancer [18]. It has been shown that cancer cells 
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exhibit abnormal DNA methylation profiles character-
ized by global hypomethylation and focal hypermethyla-
tion [19]. Recently, reduced 5hmC has also been reported 
in human cancers, including kidney tumors, acute mye-
loid leukemia and liver cancer [20–22].

The alteration and maintenance of the DNA methyla-
tion status are directly regulated by DNA methyltrans-
ferases and DNA demethylases (a group of enzymes 
including Tet family enzymes and TDG). However, 
whether these functionally related enzymes are expressed 
coordinately and whether the expression patterns of 
these enzymes are consistent in normal and cancer tis-
sues have not yet been studied.

Here, we experimentally and bioinformatically show 
that significant positive correlations among the expres-
sion levels of DNA methylation-related enzymes are 
present within normal mouse and human tissues. By 
contrast, in cancer tissues, these correlations are not so 
positive.

Results
The correlations among DNA methylation‑related enzymes 
are extensive and significantly positive in normal mouse 
tissues
We first explored the correlations among the expres-
sion levels of 7 DNA methylation-related enzymes in 
5 normal tissue types (liver, cerebellum, kidney, spleen 
and lung) from 21 wild-type mice. The enzymes we 
analyzed (Fig.  1a) include direct DNA methylation 
enzymes (writers, namely, DNMT1, DNMT3A and 
DNMT3B) and direct DNA demethylation enzymes 
(erasers, namely, TET1, TET2, TET3 and TDG). The 
expression levels of these 7 DNA methylation-related 
enzymes were assessed using quantitative real-time 
RT-PCR (qRT-PCR). Strikingly, we observed signifi-
cant positive correlations between almost all DNA 
methylation-related enzyme pairs in all five tissues 
(Fig.  1b). Recently, the cooperation and competi-
tion between DNMT3A and TET2 and their ability 
to maintain methylation in hematopoietic stem cells 
have been reported [23]. Interestingly, our data also 
showed significant positive correlations between 
these two DNA methylation-related enzymes in all 5 
mouse tissues (Fig.  1c). It should be noted that posi-
tive correlations are present among all DNA methyl-
ation-related enzymes (Fig. 1, Additional file 1: Figure 
S1 and Additional file  2: Table S1) rather than just 
between the aforementioned “writers” and “erasers,” 
implying that cooperation among DNA methylation-
related enzymes may be more prevalent than one 
might have expected.

The correlations among DNA methylation‑related enzymes 
are significantly positive in various human tissues
To investigate whether the aforementioned positive cor-
relations were also present in normal human tissues, we 
downloaded expression data of the 7 genes in 31 human 
tissues from the Genotype-Tissue Expression (GTEx) 
project. Three tissues, including the bladder, cervix uteri 
and fallopian tube, were excluded due to their limited 
number of samples (there were only 9, 11 and 7 sam-
ples, respectively); additionally, the testis and ovary were 
excluded because gametes possess unique DNA methyla-
tion profiles [8]. The final 26 tissues used in this study are 
listed in Additional file 4: Table S2. The number of sam-
ples analyzed in each tissue ranged from 27 (kidney) to 
1146 (brain). A total of 7554 tissue samples were analyzed 
(Additional file 4: Table S2). We found significant positive 
correlations among DNA methylation-related enzymes in 
nearly all 26 tissues (Fig. 2a and Additional file 4: Table 
S2). In particular, the correlations between TET2 and 
TDG; TET1 and DNMT3A; and TDG and DNMT1 were 
stronger than the others (Fig. 2a, b, Additional file 3: Fig-
ure S2 and Additional file  4: Table S2). In addition, the 
correlations in the blood, brain, breast, kidney and pan-
creas were stronger than those in other tissues (Fig.  2b 
and Additional file 4: Table S2).

We also analyzed the expression data of the 7 genes 
in testis and ovary tissues which possess unique DNA 
methylation profiles [8]. Interestingly, some correlations 
(for example, TET1-DNMT1 and TET2-DNMT1 in both 
tissues) were significantly negative (Additional file  5: 
Table S3), although most of the correlations were still sig-
nificantly positive.

To exclude the possibility that the observed posi-
tive correlations between the DNA methylation-related 
enzymes were just the overall transcriptional activity that 
was measured in GTEx, we also analyzed the expression 
level of other 3 unrelated genes: β-actin (ACTB), ADH1A 
and CYP4B1. We first normalized the expression data 
of the 7 DNA methylation-related genes, ADH1A and 
CYP4B1 from GTEx to β-actin mRNA expression. We 
found that the overall results of the correlation between 
the DNA methylation-related genes were improved after 
normalization, while the correlations between ADH1A 
or CYP4B1 and DNA-related enzymes were largely not 
significant in most of tissues (Additional file 6: Table S4). 
Taken together with the mouse results obtained from the 
real-time PCR data (Fig.  1, Additional file  1: Figure S1 
and Additional file 2: Table S1), we conclude that correla-
tions among DNA methylation-related enzymes are sig-
nificantly positive in various normal mouse and human 
tissues.
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Lower correlations among the expression levels of DNA 
methylation‑related enzymes in human cancer tissues
Given the positive correlations among DNA methyla-
tion-related enzymes in normal tissues and the abnor-
mal 5mC and 5hmC content in cancer [19–22], we next 
asked whether the correlations among the expression 
levels of DNA methylation-related enzymes are altered 
in cancer tissues. Expression data of the 7 genes in nor-
mal and tumor tissues were obtained from the Genotype-
Tissue Expression (GTEx) and the Cancer Genome Atlas 
(TCGA) databases. Data on twelve solid tissues from 
both databases were evaluated in our study. The corre-
lations among the 7 genes in normal and tumor tissues 

were calculated. As shown in Fig. 3a, b, the 7 genes were 
less correlated in tumor tissues than in normal tissues, 
which was observed in 10 tissue pairs out of 21 pairs 
(Fig.  3a), and the difference was significant in 11 DNA 
methylation-related enzyme pairs (Fig.  3b). Unsuper-
vised clustering was performed, and we found that the 
correlations of the gene expression levels among the 7 
DNA methylation-related enzymes had distinct patterns 
between normal tissues and tumor tissues (Fig. 3c). The 
network showed that the top 3 most different correla-
tions between normal and tumor tissues among all 21 
DNA methylation-related enzyme pairs were DNMT1-
DNMT3A, TET2-DNMT3A and TET1-TET2 (Fig. 3d).
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Fig. 1  Significant positive correlations among DNA methylation-related enzymes in 5 normal mouse tissues. a Schematic overview of the cyclic dis-
tribution of different forms of cytosine. After establishment by DNA methyltransferases (DNMTs), 5mC undergoes stepwise oxidation to 5hmC, 5fC 
and 5caC via the TET family enzymes (TETs), and 5fC and 5caC can be then replaced with unmodified cytosine by TDG in conjunction with the base 
excision repair pathway (not shown). b The value of the correlations between each DNA methylation-related enzyme pair in 5 normal mouse tis-
sues is shown. The balls in different colors represent the Pearson correlation coefficients among the expression levels of 7 DNA methylation-related 
enzymes (one ball refers to one enzyme pair). The DNA methylation-related enzyme pairs are indicated below. In this study, when the correlation 
coefficient r was higher than 0.3 (dotted line), the correlation was significantly positive (p < 0.05). The detailed Pearson correlation coefficient values 
and their corresponding p values are shown in Additional file 2: Table S1. c The correlations between DNMT3A and TET2 in 5 normal mouse tissues 
are shown. For each tissue type, the normalized mRNA levels of TET2 (y-axis) versus the normalized mRNA levels of DNMT3A (x-axis) are shown (one 
ball refers to one sample). The Pearson correlation coefficient and p value are also shown
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Additionally, given the most notable DNA methylation 
effects in leukemia [21], we also compared specially these 
correlations between in blood and leukemia. We found 
that the correlations among DNA methylation-related 
enzymes in leukemia were significantly lower or even 
negative (Additional file 7: Table S5).

We further investigated whether the changed correla-
tion level was associated with the clinical characteristics 
of cancer patients. We focused on 3 important clinical 
characteristics: recurrence; tumor, node and metastasis 
(TNM) staging; and the lymph node examined. Patients 
were classified into 2 groups according to the 3 clinical 
characteristics, respectively, and the difference of the cor-
relation between the DNA methylation-related enzymes 
in the 2 groups was calculated. (Detailed information is 
in “Methods” section.) As shown in Fig. 4, the differences 
in the correlations between several DNA methylation-
related enzyme pairs, especially TET2-DNMT3A and 
TET2-DNMT1, were related to these 3 clinical character-
istics across various cancer types.

Discussion
Here, we experimentally and bioinformatically proved 
the presence of extensive and significant positive correla-
tions among DNA methylation-related enzymes in nor-
mal mouse and human tissues. This is consistent with the 
need for these enzymes to not only functionally cooper-
ate but also functionally compete, and these relationships 
are likely required to properly maintain relatively stable 
levels of 5mC and its derivatives. More importantly, we 
also observed significantly decreased correlations among 
DNA methylation-related enzymes in cancer tissues.

The exact function of oxidized 5mC derivatives remains 
elusive; however, it is increasingly clear that the oxidized 
forms of 5mC represent important dynamic epigenetic 
states in the modulation of transcriptional programs 
and serve as signals for several specific “binders,” “read-
ers” or “erasers.” It has been demonstrated that 5mC and 
its derivatives recruit distinct transcriptional regulators, 
polymerases and a large number of DNA repair proteins 
[14–17]. Even a single copy of 5fC can markedly increase 
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Fig. 2  Significant positive correlations among DNA methylation-related enzymes in 26 normal human tissues. a Box plots (box and whiskers, 
10–90%) illustrating the distribution of the correlation values among the expression levels of 21 DNA methylation-related enzyme pairs in 26 
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DNA flexibility [24]. Conceivably, maintenance of the 
appropriate levels of 5mC and its derivatives is essential 
for cell homeostasis. Indeed, the DNA methylation pro-
file is stably maintained in somatic cells [8, 25, 26]; how-
ever, its underlying mechanisms are still elusive.

Since the total amount of cytosine (modified and 
unmodified cytosine) is constant, and its cyclic conver-
sion to different modification states is achieved by an 
enzymatic cascade of DNA methylation-related enzymes 
(Fig.  1a), the cyclic distribution of different forms of 
cytosine is cooperatively and competitively determined 

by the enzymatic activities of DNA methylation-related 
enzymes. An influential model of maintenance methyla-
tion is that DNA methylation at CpG sites is maintained 
by the specific activity of DNMT1 enzymes [8]. However, 
a revised model proposed that the DNA methylation at 
each site is maintained by DNMT enzyme, TET enzymes 
and the DNA replication rate [27].

It has been shown that many factors can influence the 
catalytic activities of DNA methylation-related enzymes, 
such as chemical modifications, cellular metabolites 
and cofactors [8, 28–31]. Regardless, the expression of 
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Fig. 3  Lower correlations among the expression levels of 7 DNA methylation-related enzymes in human cancer tissues. a Heat map of the correla-
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DNA methylation-related enzymes represents a funda-
mental layer of their methylation maintenance regula-
tory mechanisms. Thus, we investigated whether there 
are correlations at the transcriptional level among DNA 
methylation-related enzymes.

Consistently, we found the presence of extensive and 
significant positive correlations among DNA methyl-
ation-related enzymes in various normal mouse and 
human tissues. Of note, we found that there were posi-
tive correlations not only between the expression lev-
els of the “writers” and “erasers” (DNMTs and TETs or 
TDG and DNMTs) but also among DNMT enzymes and 
among TET enzymes. Our data may provide insights into 
an alternative manner of cooperation and competition at 
the transcriptional level among DNA methylation-related 
enzymes in methylation maintenance. Our findings may 
also provide additional evidence for a recently proposed 
modified DNA maintenance methylation model [27].

Aberrant DNA methylation characterized by global 
hypomethylation and focal hypermethylation has long 
been considered as an epigenetic hallmark of cancer 

cells [18]. Although it has been demonstrated that loss 
of or mutations in DNMTs and/or TETs are associated 
with aberrant DNA methylation [23, 32, 33], the detailed 
mechanisms are still not well understood.

In this work, we observed uncoordinated expression 
levels of DNA methylation-related enzymes in various 
types of cancer tissues. These observations suggest that 
aberrant DNA methylation profiles in cancers may be 
partly due to altered cooperativity among DNA methyl-
ation-related enzymes in addition to the deregulation of 
a specific enzyme. Additionally, we also observed that 
the decreased correlations were associated with several 
clinicopathological characteristics and diagnostic mark-
ers, as evidenced in various types of cancers (Fig.  4). 
Taken together, our results indicate that the uncoordi-
nated expression of DNA methylation-related enzymes 
is another epigenetic hallmark of cancer. Additional 
studies will be required to better understand the under-
lying mechanisms of the extensive positive correlations 
among DNA methylation-related enzymes and to under-
stand how the altered correlations are associated with 
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the clinicopathological characteristics and prognosis of 
cancer.

Conclusions
Our data not only provide important insights into an 
additional regulatory layer of the DNA modification 
maintenance machinery but also demonstrate that the 
positive correlations among DNA methylation-related 
enzymes are disrupted in cancer cells, which may con-
tribute to aberrant DNA methylation. Moreover, we 
found associations between the aforementioned altered 
correlations and the clinicopathological characteristics 
of patients. These findings suggest that uncoordinated 
expression of DNA methylation-related enzymes is 
another epigenetic hallmark of cancer.

Methods
Mouse tissue specimens
Cerebellum, kidney, spleen, lung and liver tissues were 
collected from 21 wild-type Balb/c mice (8–10  weeks 
old). The mice were obtained from the Chinese Science 
Academy in Shanghai, China. The study was approved 
by the Eastern Hepatobiliary Surgery Hospital Ethics 
Committee.

Gene expression analysis
Total RNA was isolated from tissues with TRIzol rea-
gent (Invitrogen). After DNase I treatment, com-
plementary DNA was synthesized according to the 
manufacturer’s instructions (Takara). qRT-PCR was car-
ried out using SYBR Green Mix according to the manu-
facturer’s instructions (Roche). Expression data were 
normalized to β-actin mRNA expression. The obtained 
data are presented in arbitrary units and were calcu-
lated using the formula: 2(−  ΔCt β-actin −  gene of interest). The 
sequences of the primers are listed in Additional file  8: 
Table S6.

Datasets
The expression data of the 7 genes across tissue types 
were obtained from the Genotype-Tissue Expression 
(GTEx) Project [34] (normal human tissues) and TCGA 
database [35] (tumor samples). The normalized gene-
level RNA-Seq data were downloaded from UCSC Xena 
(http://xena.ucsc.edu/). The clinical information of tumor 
patients was accessed from the TCGA public access web 
portal (https://cancergenome.nih.gov/).

Clinical characteristics relationship analysis
To investigate the potential roles of the correlations 
among the 7 genes in cancer development, we studied 
the relationship between the gene correlations and clini-
cal characteristics of cancer patients, and 3 important 
and common clinical characteristics were analyzed in 11 
cancers. For recurrence analyses, we divided the patients 
into two groups for each cancer type. Patients who were 
dead or recurrence within 3  years were placed into the 
early group, and the remaining patients were placed into 
the non-early recurrence group. For the TNM staging 
analysis, patients with TNM stages I and II were classi-
fied into group 1, and patients with TNM stages III and 
IV were classified into group 2. For lymph node analyses, 
lymph node-positive patients were classified into group 
1, and lymph node-negative patients were classified into 
group 2. The correlations among the 7 genes between the 
two groups were determined.

Statistical analysis
The correlations among the expression levels of DNA 
methylation-related enzymes were assessed by Pearson’s 
correlation analysis. A value of p  <  0.05 after multiple-
testing correction using Benjamini–Hochberg procedure 
was considered statistically significant. All analyses were 
performed using the professional statistical software 
GraphPad Prism version 5.01.

http://xena.ucsc.edu/
https://cancergenome.nih.gov/
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