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Asymmetric DNA methylation of CpG 
dyads is a feature of secondary DMRs associated 
with the Dlk1/Gtl2 imprinting cluster in mouse
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Abstract 

Background:  Differential DNA methylation plays a critical role in the regulation of imprinted genes. The differentially 
methylated state of the imprinting control region is inherited via the gametes at fertilization, and is stably maintained 
in somatic cells throughout development, influencing the expression of genes across the imprinting cluster. In con-
trast, DNA methylation patterns are more labile at secondary differentially methylated regions which are established 
at imprinted loci during post-implantation development. To investigate the nature of these more variably methylated 
secondary differentially methylated regions, we adopted a hairpin linker bisulfite mutagenesis approach to examine 
CpG dyad methylation at differentially methylated regions associated with the murine Dlk1/Gtl2 imprinting cluster on 
both complementary strands.

Results:  We observed homomethylation at greater than 90% of the methylated CpG dyads at the IG-DMR, which 
serves as the imprinting control element. In contrast, homomethylation was only observed at 67–78% of the methyl-
ated CpG dyads at the secondary differentially methylated regions; the remaining 22–33% of methylated CpG dyads 
exhibited hemimethylation.

Conclusions:  We propose that this high degree of hemimethylation could explain the variability in DNA methylation 
patterns at secondary differentially methylated regions associated with imprinted loci. We further suggest that the 
presence of 5-hydroxymethylation at secondary differentially methylated regions may result in hemimethylation and 
methylation variability as a result of passive and/or active demethylation mechanisms.
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Epigenetics

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic imprinting in mammals results in the parent 
of origin-specific monoallelic expression of a subset of 
genes. Achieving the appropriate balance of gene expres-
sion from the maternally and paternally contributed 
genomes via the establishment of parental allele-spe-
cific imprinting marks is crucial for normal growth and 
development. Therefore, it is critical to understand the 
mechanisms responsible for controlling the expression 
of imprinted genes. To date, approximately 150 mamma-
lian genes have been identified as imprinted [1, 2]. Most 

imprinted genes are found within clusters that contain a 
CpG-rich imprinting control region (ICR) that functions 
both to specify parental origin and to regulate imprinted 
expression of the genes within the cluster [3, 4]. Monoal-
lelic expression of imprinted genes is achieved via multi-
ple mechanisms, including epigenetic modifications such 
DNA methylation and histone modifications, as well as 
the activity of long noncoding RNAs [3, 4].

Differential DNA methylation at imprinted loci has 
been shown to play an important role in distinguishing 
the parental alleles and regulating their expression [5–9]. 
Differentially methylated regions (DMRs) associated 
with imprinted genes fall into two categories: primary 
and secondary DMRs. Primary, or gametic, DMRs serve 

Open Access

Epigenetics & Chromatin

*Correspondence:  tdavis@brynmawr.edu 
Department of Biology, Bryn Mawr College, 101 N. Merion Avenue,  
Bryn Mawr, PA 19010‑2899, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13072-017-0138-0&domain=pdf


Page 2 of 14Guntrum et al. Epigenetics & Chromatin  (2017) 10:31 

as imprinting control regions (ICRs), functioning both 
to specify parental origin and as a shared regulatory ele-
ment that controls the expression of genes throughout 
the associated imprinting cluster. Primary DMRs acquire 
DNA methylation on one of the two parental alleles dur-
ing gametogenesis and remain differentially methyl-
ated from fertilization throughout development, thereby 
marking parental origin [3]. The differentially methyl-
ated state of primary DMRs can affect expression in a 
variety of ways. For example, primary DMRs can regu-
late gene expression through their differential ability to 
bind enhancer blocking proteins, thereby influencing the 
activity of an insulator [10, 11]. In other cases, primary 
DMRs are located at promoters, where they have been 
shown to directly influence the expression of long non-
coding RNAs that subsequently regulate the expression 
of other genes in the imprinting cluster [12–15]. In con-
trast, secondary DMRs acquire parent of origin-specific 
DNA methylation after implantation [16–19]. Secondary 
DMRs are generally located at promoters or within gene 
bodies, and the acquisition of parental allele-specific 
DNA methylation at these sequences is dependent on 
differential methylation of the associated ICR, while the 
converse is not true [8, 9, 20]. While secondary DMRs do 
not function as primary imprinting marks, methylation 
of these regions frequently corresponds with gene silenc-
ing and may play a role in maintaining imprinted expres-
sion [17, 21–23].

The DNA methylation associated with primary DMRs 
is very stable, with the methylated allele displaying 
90–100% methylation at the cytosines located in CpG 
dinucleotides throughout development [5, 19, 24–27]. 
DNA methylation at secondary DMRs is less consistent. 
For example, methylation at secondary DMRs located 
at the H19 and Gtl2 promoters average 70 and 78.9%, 
respectively, as compared to methylation at their respec-
tive primary DMRs, which average ~90 and 95.8% [5, 
28]. We recently illustrated that the highly variable DNA 
methylation pattern at the secondary DMR associated 
with the imprinted Dlk1 gene is asymmetric, with 35% 
of the methylated CpG dyads displaying hemimethyla-
tion [18]. The trend that DNA methylation is more sta-
ble at primary DMRs than at secondary DMRs associated 
with imprinted genes has also been observed at human 
imprinted loci [29].

Our current study investigates the nature of second-
ary DMRs associated with imprinted loci and poten-
tial causes of methylation instability, such as a failure to 
maintain DNA methylation and/or active demethyla-
tion catalyzed by the TET enzymes [30–34]. To test the 
hypothesis that variably methylated secondary DMRs dis-
play higher levels of hemimethylation than stably meth-
ylated primary DMRs, we analyzed DNA methylation 

at two additional DMRs associated with the Dlk1/Gtl2 
imprinting cluster: the IG-DMR, a primary DMR, and 
the Gtl2-DMR, a secondary DMR [14, 28]. We also quan-
tified the level of 5-hydroxymethylation (5-hmC) at the 
IG-, Gtl2- and Dlk1-DMRs to determine whether there is 
a correlation between high levels of hemimethylation and 
high levels of 5-hydroxymethylation. Our results support 
the hypothesis that high levels of 5-hmC may contribute 
to methylation instability at secondary DMRs associated 
with imprinted genes.

Results
CpG dyads within the Gtl2‑DMR display high levels 
of hemimethylation
To determine whether asymmetric methylation is 
unique to the Dlk1-DMR or is a feature of other second-
ary DMRs associated with imprinted loci, we examined 
CpG dyad methylation at the linked Gtl2-DMR. We had 
previously analyzed DNA methylation on the coding 
strand of the Gtl2-DMR and observed moderate vari-
ability in the methylation status, with the 5′ half of the 
region analyzed displaying lower average DNA methyla-
tion levels than the 3′ half [28]. We therefore assessed 
the DNA methylation status of cytosines located in 22 
pairs of complementary CpG dinucleotides spanning 
this region to determine whether these CpG dyads were 
homomethylated versus hemimethylated (Fig.  1). All of 
our experiments were conducted using F1 hybrid tissues 
collected from crosses between C57BL/6 (B6) and a spe-
cially derived strain containing Mus musculus castaneus 
(CAST)-derived sequences from chromosome 12 on an 
otherwise C57BL/6 genetic background (CAST12) [18, 
28], allowing us to distinguish paternally inherited alleles 
from maternally inherited alleles based on sequence pol-
ymorphisms (detailed in the “Methods”).

We analyzed CpG dyad methylation in DNA derived 
from four developmental stages: 7.5 d.p.c. embryo, 14.5 
d.p.c. embryo, 5 d.p.p. liver and adult liver. The DNA 
methylation patterns on each parental allele were con-
sistent throughout development and were also similar 
in tissues obtained from reciprocal crosses (Figs.  2, 3). 
Across all four developmental stages, cytosines in CpG 
dinucleotides were methylated 80-93% of the time on 
paternal alleles and 6–10% of the time on maternal alleles 
(Table 1). We assessed the significance of these results at 
each developmental stage using a Mann–Whitney U test 
and found that the median level of DNA methylation was 
significantly higher on the paternal alleles as compared to 
the maternal alleles in all of the tissues examined, with 
P values ranging from <0.0001 to 0.0147 (Table 2; Addi-
tional File 1). Furthermore, P values derived from Mann–
Whitney U tests illustrate that median DNA methylation 
levels did not vary significantly across development on 
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either the paternal or the maternal allele (Additional File 
1). Average DNA methylation levels did not vary substan-
tially between the 5′ half versus the 3′ half of the analyzed 
region. These results confirm that the Gtl2-DMR is dif-
ferentially methylated throughout development.   

Homomethylation was observed at 68–78% of the 
CpG dyads containing methylated cytosine, while hemi-
methylation was detected at 22–32% of these CpG dyads 
(Table  1). The levels of homo- and hemimethylation at 
the Gtl2-DMR were similar to the overall average of 65% 
homomethylation and 35% hemimethylation observed 
at the Dlk1-DMR [18]. When we restricted our analysis 
to the same four developmental stages assessed in this 
study, we observed 69–74% homomethylation at meth-
ylated CpG dyads within the Dlk1-DMR and 26–31% 
hemimethylation (Table  1). We tested the homo- and 
hemimethylation levels at the Gtl2- and Dlk1-DMRs 
for statistical independence by performing Chi-squared 
analysis and determined that hemimethylation levels 
are not significantly different at these loci (P =  0.1318). 
Therefore, we conclude that hemimethylation levels are 
similar at two distinct secondary DMRs located within 
the Dlk1/Gtl2 imprinting cluster.

CpG dyads within the IG‑DMR display low levels 
of hemimethylation
We next assessed hemimethylation levels at the IG-
DMR, which serves as the imprinting control region for 
the Dlk1/Gtl2 imprinting cluster [19, 35]. We analyzed 
22 CpG dyads located within the IG-DMR (Fig.  1). We 
had previously analyzed DNA methylation on the coding 

strand of this region and had found it to lack variability, 
with paternally inherited alleles showing near 100% DNA 
methylation and maternally inherited alleles displaying 
less than 10% DNA methylation [28]. Consistent with 
our previous findings, we observed methylation at 96 
and 12% of paternally versus maternally inherited CpG 
dinucleotides located within the IG-DMR, respectively 
(Fig. 4; Table 1). The median levels of DNA methylation 
were significantly higher on paternally derived alleles 
as compared to maternally derived alleles for all tissues 
analyzed, with P values ranging from <0.0001 to <0.01 
(Table 2; Additional File 1), confirming that this region is 
differentially methylated throughout development. There 
were no significant differences in the DNA methylation 
profile of maternal alleles across development (Additional 
File 1). In contrast, while median DNA methylation levels 
on paternal alleles was not significantly different between 
the 14.5 d.p.c. embryo, 5 d.p.p. liver or adult liver sam-
ples, the distribution of DNA methylation on paternal 
alleles derived from 7.5 d.p.c. embryos was different from 
the distribution in 14.5 d.p.c. embryos (P =  0.0021), 5 
d.p.p. liver (P = 0.0178) and adult liver (P = 0.0006). The 
significance of these results may be attributed to the fact 
that paternal alleles derived from 7.5 d.p.c. embryos con-
tain more unmethylated cytosines than paternal alleles 
derived from other developmental stages (Fig.  4; Addi-
tional File 1).

Of the CpG dyads displaying cytosine methylation 
within the IG-DMR, 92% were homomethylated, while 
8% were hemimethylated (Table  1). The frequency of 
hemimethylation was higher on maternally inherited 

10,000 bp

Dlk1 Gtl2

2ltG1klD

200 bp

*

RMD-RMD-

coding strand CpGs analyzed

complementary CpG dyads analyzed

36 CpGs 32 CpGs

16 CpG dyads 22 CpG dyads

29 CpGs

22 CpG dyads

IG-DMR

a

b

* * * **sites analyzedMspI/HpaIIc

++++ +

Fig. 1  Schematic representing sequences analyzed within the Dlk1/Gtl2 imprinting cluster. a Dlk1/Gtl2 imprinting cluster on mouse chromosome 
12, including transcriptional start sites (arrows), transcription units (gray boxes) and differentially methylated regions (black boxes). b Regions of the 
Dlk1-, IG- and Gtl2-DMRs analyzed by bisulfite mutagenesis and DNA sequencing. Information regarding coding strand CpGs, which were analyzed 
in previous studies [18, 28] provides context for the current analyses. The regions in which complementary CpG dyads were analyzed at the Dlk1-, 
IG- and Gtl2-DMRs are 156 bp, 126 bp and 520 bp, respectively, and correspond to positions 109,459,709-109,459,865, 109,528,345-109,528,471 
and 109,541,256-109,541,776 (GenBank Accession Number NC_000078.6). Sequence polymorphisms used to distinguish the parental alleles (+); 
genomic coordinates are listed in the Methods. c MspI/HpaII sites analyzed for 5-methylcytosine and 5-hydroxymethylcytosine (*); genomic coordi-
nates are listed in “Methods”



Page 4 of 14Guntrum et al. Epigenetics & Chromatin  (2017) 10:31 

alleles, which were much more sparsely methylated than 
paternally inherited alleles (Table  1). On average, the 
level of hemimethylation we observed at the IG-DMR at 
each developmental stage and across development was 
lower than the level we observed at either the Dlk1-DMR 
or the Gtl2-DMR (Fig. 5). We assessed the significance of 
this result using a Chi-squared test of independence. The 
level of hemimethylation at the primary IG-DMR is sig-
nificantly different than the level at either of the second-
ary DMRs (IG- vs. Dlk1-DMR, P-5.93 ×  10−65; IG- vs. 
Gtl2-DMR, P = 8.76 × 10−57), supporting our hypothesis 

that high levels of hemimethylation are characteristic 
of secondary, but not primary, DMRs associated with 
imprinted loci.

For all of our DNA methylation analyses, we employed 
a conservative approach whereby we grouped subclones 
that were derived from the same PCR amplification and 
had identical sequence and DNA methylation patterns, 
as it is not possible to determine whether these ampli-
cons are derived from the same or different template 
molecules. As it is possible that some of the grouped 
subclones actually represent independent samples, we 
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Fig. 2  DNA methylation in the 5′ portion of the Gtl2-DMR displays a high level of hemimethylation. Bisulfite mutagenesis and sequencing of F1 
hybrid DNA derived from 7.5 d.p.c. B6 × CAST embryos, 14.5 d.p.c. B6 × CAST12 embryos, 5 d.p.p. B6 × CAST12 liver and adult B6 × CAST12 liver. 
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subclones. Subclones derived from the same amplification that have identical sequence and methylation patterns are grouped together, as it was 
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performed the same analyses for ungrouped data sets 
in which each subclone was treated as an independent 
sample. Ungrouping the identical subclones resulted 
in greater significant differences between the parental 
alleles at both the Gtl2-DMR and the IG-DMR, confirm-
ing their differentially methylated status (Table  2; Addi-
tional File 1). While ungrouping identical subclones 

reduced hemimethylation values at both the Gtl2- and 
IG-DMRs, from 31.8 to 29.8 and 8.4 to 6.1%, respectively 
(Additional file  3: Table  S2, Additional file  4: Table  S3), 
the difference in hemimethylation levels between the 
primary IG-DMR and the secondary Gtl2-DMR remains 
highly significant as assessed using a Chi-squared test of 
independence (P = 2.81 × 10−59).
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High levels of hemimethylation correlate with high levels 
of 5‑hydroxymethylcytosine at the Dlk1‑DMR, but not 
at the Gtl2‑DMR
We hypothesized that hemimethylation at the Dlk1- and 
Gtl2-DMRs could arise as a result of sequential oxida-
tion of 5-methylcytosine (5-mC) by the TET enzymes 
followed by either passive depletion of methylation 
following DNA replication or thymine DNA glycosy-
lase-mediated base excision repair, ultimately result-
ing in demethylation of that residue [30–34]. If the TET 
enzymes are responsible for demethylation of cytosines 
leading to high levels of hemimethylation at secondary 

DMRs associated with imprinted loci, we would expect 
to see 5-hydroxymethylcytosine (5-hmC), an oxidation 
intermediate in this pathway, at these loci [30, 31]. We 
therefore assessed the relative levels of 5-mC and 5-hmC 
at the Dlk1-, Gtl2- and IG-DMRs in genomic DNA iso-
lated from 9.5 and 14.5 d.p.c. embryos and from 5 d.p.p. 
and adult liver. To conduct this analysis, we glucosylated 
genomic DNA derived from each of the four develop-
mental stages listed above, digested glucosylated and 
unglucosylated samples with MspI, HpaII or no enzyme, 
amplified the resulting products using qPCR and calcu-
lated percent 5-hmC based on the method previously 

Table 1  Average levels of DNA methylation on paternal and maternal alleles at the Dlk1-, IG- and Gtl2-DMRs across four 
developmental stages

Percent methylation and number of sites analyzed on the paternal and maternal alleles in DNA derived from individual developmental stages (7.5 and 14.5 d.p.c. 
embryos and 5 d.p.p. and adult liver) are given in Additional file 2: Table S1. Data for the Dlk1-DMR were calculated from Gagne et al. [18]

Dlk1-DMR IG-DMR Gtl2-DMR, 5′ Gtl2-DMR, 3′

BxC CxB BxC CxB BxC BxC CxB

% methylation 
(# methyl-
ated/total)

P 42.5% 
(510/1199)

42% (541/1287) 96.1% 
(2960/3080)

95.5% 
(2982/3123)

79.5% (699/879) 92.7% (306/330) 85.9% (878/1034)

M 16.6% 
(251/1516)

28.4% 
(367/1292)

11.2% (110/918) 12.2% (75/616) 9.5% (64/671) 6.2% (76/1231) 6.4% (59/923)

total 28% (761/2715) 35.2% 
(908/2579)

76.8% 
(3070/3998)

81.8% 
(3057/3739)

49.2% 
(763/1550)

24.5% 
(382/1561)

47.9% (937/1957)

% homometh-
ylation (# 
homomethyl-
ated/total)

P 79.5% (221/278) 70.6% (223/316) 94.2% 
(1436/1524)

92.9% 
(1436/1545)

76.3% (302/396) 88.9% (144/162) 82.5% (397/481)

M 63.4% (97/153) 65.7% (140/213) 39.7% (31/78) 70.5% (31/44) 12.2% (7/57) 35.7% (20/56) 31.1% (14/45)

total 73.8% (318/431) 68.6% (363/529) 91.6% 
(1467/1602)

92.3% 
(1467/1589)

68.2% (309/453) 75.2% (164/218) 78.1% (411/526)

% hemimeth-
ylation (# 
hemimethyl-
ated/total)

P 20.5% (57/278) 29.4% (93/316) 5.8% (88/1524) 7.1% (109/1545) 23.7% (94/396) 11.1% (18/162) 17.5% (84/481)

M 36.6% (56/153) 34.3% (73/213) 60.3% (47/78) 29.5% (13/44) 87.7% (60/57) 64.3% (36/56) 68.9% (31/45)

total 26.2% (113/431) 31.4% (166/529) 8.4% (135/1602) 7.7% (122/1589) 31.8% (144/453) 24.8% (54/218) 21.9% (115/526)

Table 2  Average levels of  DNA methylation on  the paternal and  maternal alleles are significantly different at  the Gtl2- 
and IG-DMRs

Percent methylation and number of sites analyzed on the paternal and maternal alleles in DNA derived from 7.5 and 14.5 d.p.c. embryos and 5 d.p.p. and adult 
liver. Grouped data were derived when subclones from the same PCR with identical DNA methylation patterns and sequences were grouped as a single sample, as 
illustrated in Figs. 2, 4. Ungrouped data were derived when subclones from the same PCR with identical DNA methylation patterns and sequences were treated as 
independent samples. P values were calculated using a Mann–Whitney U test

Genomic DNA 
sample

Grouped Ungrouped

% methylation, 
paternal alleles

% methylation, 
maternal alleles

P value % methylation, 
paternal alleles

% methylation, 
maternal alleles

P value

Gtl2-DMR, 5′, BxC 7.5 d.p.c. embryo 82.2% (217/264) 11.7% (25/214) 0.0001 83.4% (257/308) 9.2% (32/346) <0.0001

14.5 d.p.c. embryo 82.5% (235/285) 1.5% (2/132) 0.0024 84.8% (279/329) 0.9% (2/220) 0.0001

5 d.p.p. liver 69.7% (92/132) 8% (14/176) 0.0024 69.7% (92/132) 6.4% (14/220) 0.0014

adult liver 78.3% (155/198) 15.4% (23/149) 0.0021 78.3% (155/198) 9.7% (23/237) 0.0004

IG-DMR, BxC 7.5 d.p.c. embryo 94.2% (912/968) 1.5% (2/132) <0.01 94.5% (1621/1716) 1.1% (2/176) <0.01

14.5 d.p.c. embryo 96.9% (597/616) 11.1% (39/352) 0.0002 97.6% (816/836) 9.8% (39/396) <0.0001

5 d.p.p. liver 96.8% (852/880) 17.4% (45/258) 0.0003 97.6% (1159/1188) 16.8% (58/346) <0.0001

adult liver 97.2% (599/616) 13.6% (24/176) <0.01 97.7% (1333/1364) 13.6% (24/176) <0.01
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described by Magalhães et  al. [36]. We used 9.5 d.p.c. 
embryos as our earliest developmental time point, rather 
than 7.5 d.p.c., in order to have sufficient DNA for these 
analyses.

At the IG-DMR, where we observed low levels of hemi-
methylation, we detected correspondingly low levels of 
5-hmC in DNA derived from 9.5 to 14.5 d.p.c. embryos 
and from 5 d.p.p. liver: 3–4% of the methylation detected 
at the MspI site located within the IG-DMR was 5-hmC 
(Table  3). Higher 5-hmC levels were detected in adult 
liver, which also had more variation between biological 
replicates (Additional file  5: Table  S4). In contrast, our 
analysis of two MspI sites located within the Dlk1-DMR 
detected 5-hmC levels ranging from 7 to 40% in embryos 
and neonatal liver, with highest levels observed in 14.5 
d.p.c. embryos (Table 3). This higher level of 5-hmC at the 
Dlk1-DMR correlates with the high levels of hemimeth-
ylation detected at this locus. We therefore anticipated 
that we would observe similarly high levels of 5-hmC at 
the Gtl2-DMR, which also displays high hemimethylation 

levels. However, the level of 5-hmC at the Gtl2-DMR 
inversely correlated with hemimethylation levels at this 
locus. While we detected high levels of hemimethylation 
at the Gtl2-DMR, we observed very low levels of 5-hmC 
at three MspI sites located within this locus (Table 3).

5‑hmC is absent at the Dlk1‑, Gtl2‑ and IG‑DMRs in triple 
TET knockout ES cells
To validate the assay used to assess 5-hmC levels in the 
Dlk1-, Gtl2- and IG-DMRs, we conducted an analy-
sis of 5-hmC in DNA derived from wild-type and triple 
TET knockout embryonic stem (ES) cells [37]. In wild-
type ES cells, we detected 5-hmC at 12, 14 and 10% of 
the methylated cytosines located within MspI sites at the 
Dlk1-, Gtl2- and IG-DMRs, respectively (Table 4). In ES 
cells with a triple knockout of the TET genes, 5-hmC was 
undetectable at all three loci (Table 4). These data validate 
that the assay employed to detect 5-hmC and confirm 
that the presence of 5-hmC at these loci is dependent on 
functional TET enzyme activity.
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Fig. 5  Hemimethylation levels are higher at the Dlk1- and Gtl2- secondary DMRs than at the primary IG-DMR. a Hemimethylation levels at the Dlk1-, 
IG- and Gtl2-DMRs in DNA from 7.5 and 14.5 d.p.c. embryos and from 5 d.p.p. and adult liver. b Across development, average hemimethylation levels 
at the IG-DMR are less than 8.5%, while hemimethylation averages range from 22 to 34% at the Dlk1- and Gtl2-DMRs. Error bars represent the 95% 
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Table 3  Average 5-hydroxymethylation levels at MspI sites located in the Dlk1-, IG- and Gtl2-DMRs

n = number of biological replicates; each biological replicate was composed of three technical replicates; data for individual biological replicates are given in 
Additional file 5: Table S4

Dlk1, site A Dlk1, site B IG-DMR Gtl2, site A Gtl2, site B Gtl2, site C

9.5 d.p.c. embryo (n) 21.5% (4) 6.6% (3) 2.9% (3) 0% (4) 1.4% (4) 0.79% (1)

14.5 d.p.c. embryo (n) 39% (3) 10% (3) 3.1% (3) 0.8% (3) 1.6% (3) 1.2% (1)

5 d.p.p. liver (n) 10.2% (8) 6.5% (8) 3.7% (3) 2.5% (4) 0.9% (6) 1.4% (1)

Adult liver (n) 8.1% (3) 1.7% (3) 8.7% (3) 1.9% (3) 0.4% (3) 2.4% (1)
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Discussion
Differential DNA methylation plays an important role in 
the regulation of imprinted genes, directly affecting the 
activity of ICRs as well as directly or indirectly regulat-
ing the expression of genes within imprinting clusters [34 
and references therein]. Stably maintaining DNA meth-
ylation at imprinted loci is critical for normal growth 
and development, and aberrant DNA methylation pat-
terns are associated not only with abnormal expression of 
imprinted genes, but also with multiple imprinting disor-
ders [38, 39]. Therefore, understanding the normal meth-
ylation patterns and how they are altered are important 
for elucidating the regulation of imprinted genes.

Investigation of DNA methylation at imprinted loci 
has identified a difference in methylation stability at pri-
mary versus secondary DMRs: methylation patterns at 
primary DMRs appear to be very stable and consistent, 
while methylation at secondary DMRs is more variable 
in both mice and humans [5, 18, 19, 24–29]. Our previ-
ous analyses identified a correlation between variable 
methylation patterns and high levels of hemimethyla-
tion at CpG dyads at the secondary DMR associated with 
the imprinted Dlk1 gene [18]. To test the hypothesis that 
hemimethylation is a normal characteristic of second-
ary DMRs associated with imprinted loci, we utilized a 
hairpin bisulfite mutagenesis approach to examine CpG 
dyad methylation at another secondary DMR (the Gtl2-
DMR) as well as at a primary DMR that serves as an ICR 
(the IG-DMR associated with the Dlk1/Gtl2 imprint-
ing cluster). We found high levels of hemimethylation at 
the Gtl2-DMR, but not at the IG-DMR, supporting our 
hypothesis (Figs. 2, 3, 4).

It is possible that some of the hemimethylation we 
observed resulted from errors associated with bisulfite 
mutagenesis, including failed conversion of unmethyl-
ated cytosines and inappropriate conversion of methyl-
ated cytosines [40]. Either one of these errors could lead 
to a hemimethylated CpG dyad. It is unlikely that these 
errors had an appreciable effect on the hemimethylation 
levels we observed, as the high molarity, high tempera-
ture, short reaction time methodology we employed have 
been shown to result in low bisulfite conversion error 

rates [40, 41]. To test this assumption, we directly calcu-
lated the failed conversion rate by examining 20,868 non-
CpG cytosine locations in our bisulfite-treated samples. 
We identified 291 cytosines, some of which may have 
arisen as a result of PCR-induced error rather than failed 
conversion (Additional file  6: Table  S5). The failed con-
version rate we observed of 1.39% is similar to the error 
rate reported by Genereux et  al. [40] for hairpin-linked 
molecules treated under high molarity, high temperature, 
90-min reaction time mutagenesis conditions. We there-
fore conclude that the predicted and observed error rates 
are unlikely to account for an appreciable amount of the 
hemimethylation we observed, particularly at the sec-
ondary DMRs, where hemimethylation levels range from 
22 to 35%. Furthermore, even if hemimethylation levels 
vary slightly due to conversion errors, it would not affect 
our overall conclusion that the difference in hemimeth-
ylation levels between primary and secondary DMRs is 
highly significant.

Based on the observation that secondary DMRs have 
high levels of hemimethylation, we further proposed that 
oxidation of 5-methylcytosine by the TET enzymes could 
result in hemimethylation either by impeding the activ-
ity of DNMT1, resulting in replication-dependent passive 
demethylation, or by further processing of the oxidized 
products 5-fC and 5-caC and their removal via base exci-
sion repair, a mechanism of active demethylation [30–
34]. In support of this hypothesis, we found low levels of 
5-hmC at the IG-DMR, which had correspondingly low 
levels of hemimethylation, and high levels of 5-hmC at 
the Dlk1-DMR, which had correspondingly high levels 
of hemimethylation. However, at the Gtl2-DMR, where 
we observed high levels of hemimethylation, we detected 
low levels of 5-hmC.

The fact that we observed low levels of 5-hmC at the 
Gtl2-DMR may be a consequence of our experimental 
approach. The earliest developmental stage at which we 
assessed 5-hmC was embryonic day 9.5, when methyla-
tion of the Gtl2-DMR is already relatively stable as com-
pared to methylation at earlier embryonic stages such 
as 6.5 and 7.5 d.p.c. [28]. While we detected very little 
5-hmC in DNA derived from 9.5 to 14.5 d.p.c. embryos 
and from neonatal and adult tissues, it is possible that 
the Gtl2-DMR contains high levels of 5-hmC earlier in 
development, when DNA methylation patterns at this 
locus are more labile. Alternatively, the absence of 5-hmC 
at the Gtl2-DMR may point to the relative importance 
of maintaining DNA methylation at this locus in order 
to appropriately silence Gtl2 expression on the paternal 
allele and achieve appropriate imprinted expression pat-
terns across the Dlk1/Gtl2 imprinting cluster. Indeed, 
studies have shown that loss of methylation on the 

Table 4  5-Hydroxymethylation at  the Dlk1-, IG- and  Gtl2-
DMRs in embryonic stem cells is dependent on the activity 
of TET enzymes

WT ES cells (%) TET-KO ES cells (%)

Dlk1-DMR, site A 12.0 0

IG-DMR 9.9 0

Gtl2-DMR 13.6 0



Page 10 of 14Guntrum et al. Epigenetics & Chromatin  (2017) 10:31 

paternally inherited Gtl2-DMR correlates with expres-
sion of Gtl2 from this allele [42, 43]. In contrast to the 
substantiated role of differential DNA methylation at the 
Gtl2-DMR, we and others have questioned whether dif-
ferential methylation at the Dlk1-DMR, which is located 
in the 5th exon of Dlk1, plays an important regulatory 
role [18, 19].

To further investigate the hypothesis that 5-hmC con-
tributes to DNA methylation instability at secondary 
DMRs associated with imprinted genes, we are currently 
examining CpG dyad methylation patterns and 5-hmC 
levels at additional imprinted loci. The work described 
herein focused on analyses of primary and secondary 
DMRs associated with the Dlk1/Gtl2 imprinting cluster 
on mouse chromosome 12. Our current inquiries include 
an examination of CpG dyad methylation patterns at 
imprinted loci distributed across multiple genomic loca-
tions, including both paternally and maternally methyl-
ated DMRs, and our preliminary results suggest that the 
relationship between 5-hmC and DNA methylation vari-
ability at secondary DMRs may be generalizable (Davis 
Laboratory, unpublished data).

The presence of 5-hmC at secondary DMRs associated 
with imprinted genes suggests that the TET proteins 
play a role in modulating DNA methylation stability at 
these loci. Several studies have shown that the TET pro-
teins play a role in epigenetic reprogramming through-
out development [44 and references therein]. For 
example, the presence of 5-hmC at repressed promot-
ers and in the gene bodies of expressed genes in ES cells 
is concomitant with the association of TET1 and TET2, 
respectively, with these sequences [45–48]. Recent 
reports have also illustrated the role of TET enzymes 
in epigenetic reprogramming during primordial germ 
cell development, including the erasure of imprinting 
marks [49–51], and that a double knockout of TET1 and 
TET2 disrupts normal methylation and expression pat-
terns at imprinted loci [52]. Liu and colleagues further 
reported that some imprinted loci, such as H19, appear 
to be more sensitive to TET activity based on methyla-
tion patterns in wild-type vs. TET knockout (TET-KO) 
ES cells, suggesting that the TET proteins may have dif-
ferent effects at different imprinted loci [53]. Interest-
ingly, the study conducted by Liu et al. [53] also showed 
that there were no substantial changes in methylation 
at the IG-DMR in the TET-KO ES cells as compared to 
wild-type ES cells, consistent with our observation that 
there is very little 5-hmC at the IG-DMR in embryos 
and neonatal liver (Table 3). Indeed, the IG-DMR has a 
very stable allele-specific DNA methylation pattern, in 
accordance with its role as an imprinting control ele-
ment critical for normal growth and development [9, 

54]. In contrast, the consistently higher levels of 5-hmC 
across we observed across development at the Dlk1-
DMR suggests that 5-hmC may be a more stable epige-
netic mark as this locus, as it is in the developing brain 
[data herein; 55].

We have yet to determine whether the high levels 
of hemimethylation at secondary DMRs plays a func-
tional role. Arand et  al. [56] illustrated a correlation 
between the reduction in DNA methylation levels and 
concomitant increase in hemimethylation levels dur-
ing embryogenesis and primordial germ cell develop-
ment, and suggested that hemimethylation plays a role 
in impairing maintenance methylation in order to keep 
methylation levels low. Similarly, Jin et  al. [57] sug-
gested that TET1 may act to reduce DNA methylation 
levels at hypomethylated CpG islands. Therefore, it 
would be interesting to look at allele-specific distribu-
tion of 5-hmC at imprinted loci to see whether TETs 
play a role in keeping unmethylated DMRs unmethyl-
ated. The assay we used for the 5-hmC studies described 
herein was not allele-specific, as that would have 
required a strain-specific polymorphism in close prox-
imity to an MspI site within the regions of analysis. The 
development of methods to assess 5-hmC in an allele-
specific way would allow us to address this question in 
order to determine the significance of this epigenetic 
modification.

Conclusions
Secondary DMRs associated with imprinted loci have 
low DNA methylation fidelity as compared to primary 
DMRs that serve as imprinting control regions. Our 
current analyses illustrate that the variable DNA meth-
ylation patterns at secondary DMRs correlate with high 
levels of hemimethylation at CpG dyads and high levels 
of 5-hmC. Our work therefore supports the hypoth-
esis that secondary DMRs have a unique epigenetic 
profile that distinguishes them from primary DMRs. 
Our studies further provide insight into the molecular 
mechanisms responsible for methylation instability at 
secondary DMRs, as oxidation of 5-mC to 5-hmC by the 
TET enzymes ultimately leads to a loss of DNA meth-
ylation passively due to reduced DNMT1 fidelity and/
or actively via further oxidation followed by DNA repair. 
These results are significant as they highlight the com-
plexities associated with the maintenance of the epi-
genetic profile at secondary DMRs: Differential DNA 
methylation is maintained at these loci despite activi-
ties that function to reduce methylation levels. Further 
investigation is warranted to understand how parent 
of origin-specific DNA methylation is established and 
maintained at secondary DMRs.
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Methods
Mice
C57BL/6J (B6) and Mus musculus castaneus (CAST) 
mice were purchased from the Jackson Laboratory. To 
facilitate the isolation of F1 hybrid mice, a strain of mice 
that served as the source of the M. m. castaneus allele 
(CAST12) was constructed as previously described [28]. 
Natural matings between B6 and CAST were used to 
generate F1 hybrid males for spermatozoa collection; all 
other F1 hybrid tissues used for bisulfite analyses were 
generated from natural matings between B6 and CAST12 
mice. For all F1 hybrid tissues, the maternal allele is 
located on the left.

DNA purification and bisulfite analysis
DNA was isolated from 7.5 d.p.c. embryos using the 
DNeasy Blood & Tissue Kit (Qiagen, Germantown, MD, 
cat#69504). DNA was isolated from 9.5 to 14.5 d.p.c. 
embryos and from 5 d.p.p. and adult liver following pro-
teinase K digestion and a series of phenol/chloroform 
extractions as described previously [58]. Prior to bisulfite 
mutagenesis, complementary strands of DNA were cova-
lently attached as follows: for IG-DMR analyses, 0.5  µg 
of genomic DNA was digested with 1  µl SpeI (NEB, 
Ipswich, MA, cat#R0133) and ligated to 1  µg of phos-
phorylated hairpin linker IG-DMR-HP (5′-CTAGAGC-
GATGCGTTCGAGCATCGCT-3′) [59]; for Gtl2-DMR 
analyses, 0.5 µg of genomic DNA was digested with 1 µl 
BanI (NEB, Ipswich, MA, cat#R0118) and ligated to 1 µg 
of phosphorylated hairpin linker Gtl2-HP-3 (5′-GTA-
CAGCGATGCGTTCGAGCATCGCT-3′). 0.5  µg of 
hairpin-linked, ligated DNA was denatured by incubat-
ing in freshly prepared 3 M NaOH for 20 min at 42  °C, 
and then subjected to bisulfite mutagenesis using an EZ 
DNA Methylation-Direct kit (Zymo Research, Irvine, 
CA, cat#D5020). All mutagenized DNAs were subjected 
to multiple independent PCR amplifications to ensure 
analysis of different strands of DNA; subclones derived 
from independent PCR amplifications are distinguished 
by different letters of the alphabet. PCR contamination 
was ruled out via analysis of no template negative con-
trol amplifications for both the first and second rounds 
of PCR. Data from multiple independent tissue samples 
derived from the same developmental stage were com-
bined, as we did not detect variation between biological 
replicates. Primer pairs used for nested amplification of 
the mutagenized DNA were designed to incorporate at 
least one SNP as well as CpG dinucleotides within the 
previously analyzed DMRs [28]. All base pair numbers 
are from GenBank Accession Number NC_000078.6. 

Primers and PCR cycling conditions for the IG-DMR 
and for two adjacent regions within the Gtl2-DMR are 
detailed in Additional file  7: Table  S6. Expected sec-
ond round PCR products for the IG-DMR and the two 
regions of the Gtl2-DMR are 412 bp, 721 bp, and 695 bp, 
respectively. Subcloning of amplified products was 
achieved using a pGEM-T Easy vector (Promega Cor-
poration, Madison, WI, cat#A1360). Sequencing reac-
tions were outsourced to Genewiz (South Plainfield, NJ) 
or were performed using a Thermo Sequenase Cycle 
Sequencing Kit (Affymetrix, Cleveland, OH, cat#78500) 
and analyzed on a 4300 DNA Analyzer (LI-COR Bio-
sciences, Lincoln, NE). Sequence polymorphisms used 
to distinguish B6 vs. CAST DNA (B/C): IG-DMR, G/A 
at bp#109,528,369; Gtl2-DMR, G/A at bp#109,541,531, 
A/G at bp#109,541,671, AA/GC at bp#109,541,820-
109,541,821. Percent methylation was calculated based 
on data obtained from both complementary strands. 
Percent hemimethylation was calculated by dividing the 
number of hemimethylated CpG dyads by the number of 
hemimethylated plus homomethylated CpG dyads.

5‑hydroxymethylation analysis
For 5-hydroxymethylation analyses, DNA was isolated 
from 9.5 d.p.c. embryos, 14.5 d.p.c. embryos, 5 d.p.p. 
liver and adult liver as described above. DNA derived 
from three different genetic backgrounds [C57BL/6  J, 
B6x(CAST or CAST12) and (CAST or CAST12)xB] was 
used to ensure that genetic background did not affect 
the outcome. In addition, DNA was isolated from wild-
type and TET triple knockout embryonic stem cells [37]. 
5-hydroxymethylation levels were assessed using an Epi-
Mark 5-hmC and 5-mC Analysis Kit (NEB, Ipswich, MA, 
cat#E3317). Briefly, 2.5 µg genomic DNA or 2 µg ES cell 
DNA was glucosylated using 30 units of T4 ß-glucosyl-
transferase at 37  °C overnight. Glucosylated and unglu-
cosylated control DNAs were treated with MspI, HpaII 
or no restriction endonuclease at 37  °C overnight. Fol-
lowing treatment with proteinase K, products were 
amplified via PCR and quantitative PCR (StepOnePlus, 
Applied Biosystems). Primers and PCR cycling condi-
tions used are detailed in Additional file  8: Table  S7. 
qPCR was performed in triplicate for each of three inde-
pendent biological samples. Amount of 5-mC and 5-hmC 
in each sample was calculated according to Magal-
hães et  al. [36]. Genomic coordinates for MspI/HpaII 
sites are: Dlk1-DMR-A, bp#109,459,830; Dlk1-DMR-B, 
bp#109,460,017; IG-DMR, bp#109,528,624; Gtl2-DMR-
A, bp#109,541,314; Gtl2-DMR-B, bp#109,541,776; Gtl2-
DMR-C, bp#109,541,811.
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labelled “ungrouped”.
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