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In utero exposure to maternal 
smoking is associated with DNA methylation 
alterations and reduced neuronal content in the 
developing fetal brain
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Abstract 

Background:  Intrauterine exposure to maternal smoking is linked to impaired executive function and behavioral 
problems in the offspring. Maternal smoking is associated with reduced fetal brain growth and smaller volume of 
cortical gray matter in childhood, indicating that prenatal exposure to tobacco may impact cortical development and 
manifest as behavioral problems. Cellular development is mediated by changes in epigenetic modifications such as 
DNA methylation, which can be affected by exposure to tobacco.

Results:  In this study, we sought to ascertain how maternal smoking during pregnancy affects global DNA meth‑
ylation profiles of the developing dorsolateral prefrontal cortex (DLPFC) during the second trimester of gestation. 
When DLPFC methylation profiles (assayed via Illumina, HM450) of smoking-exposed and unexposed fetuses were 
compared, no differentially methylated regions (DMRs) passed the false discovery correction (FDR ≤ 0.05). However, 
the most significant DMRs were hypomethylated CpG Islands within the promoter regions of GNA15 and SDHAP3 of 
smoking-exposed fetuses. Interestingly, the developmental up-regulation of SDHAP3 mRNA was delayed in smoking-
exposed fetuses. Interaction analysis between gestational age and smoking exposure identified significant DMRs 
annotated to SYCE3, C21orf56/LSS, SPAG1 and RNU12/POLDIP3 that passed FDR. Furthermore, utilizing established 
methods to estimate cell proportions by DNA methylation, we found that exposed DLPFC samples contained a lower 
proportion of neurons in samples from fetuses exposed to maternal smoking. We also show through in vitro experi‑
ments that nicotine impedes the differentiation of neurons independent of cell death.

Conclusions:  We found evidence that intrauterine smoking exposure alters the developmental patterning of DNA 
methylation and gene expression and is associated with reduced mature neuronal content, effects that are likely 
driven by nicotine.
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Background
Numerous studies have established that maternal smok-
ing during pregnancy is associated with impaired 

executive function and behavioral problems in the off-
spring [1–3]. Maternal smoking is associated with altered 
fetal brain development [4] and reduced volumes of corti-
cal gray matter in childhood [5], indicating that exposure 
to tobacco smoke constituents in utero may impact brain 
development and subsequently result in neurodevelop-
mental abnormalities. Offspring exposed to smoking 
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after birth does not exhibit the same adverse trajectories 
[6, 7], suggesting biologically mediated mechanisms dur-
ing gestation. Cigarette smoke is a highly complex mix-
ture of more than 5000 chemicals of which approximately 
100 are known to be hazardous [8]. Linking specific 
compound(s) with defined phenotypes has proven diffi-
cult. Indirect biological mechanisms caused by cigarette 
constituents other than nicotine have been proposed, 
including hypoxia/ischemia and DNA damage [9]. Expo-
sure to nicotine prenatally has a direct impact on brain 
development. In rodents, prenatal exposure to nicotine 
is reported to induce abnormal dendritic morphology 
and reduced synapse density in the cerebral cortex and 
nucleus accumbens [10]. Additionally, prenatal nicotine 
exposure during primate brain development up-regu-
lates nicotinic acetylcholine receptors (nAChR), causes 
cell death, and alters cell size and neurite outgrowth in a 
regionally dependent manner [11]. Furthermore, nicotine 
replacement therapy has been suggested to increase the 
risk for behavioral impairments (for review see [12–17]).

Prenatal exposure to environmental factors such as 
alcohol [18] and industrial chemicals (lead, methylmer-
cury, PCBs, reviewed in [19, 20]) often manifests as neu-
rodevelopmental disorders. Epigenetic modifications 
such as DNA methylation regulate gene activity neces-
sary for cell differentiation [21]. Exposure to tobacco 
smoke can induce alterations in epigenetic patterning 
that are associated with a wide spectrum of human dis-
eases including cardiovascular, pulmonary, neurobehav-
ioral disorders and cancer [22–28]. Maternal smoking 
during pregnancy alters DNA methylation in the blood of 
newborns [29] and can cause DNA methylation changes 
that persist into childhood [30]. In relation to neuro-
logical function, differences in DNA methylation have 
been reported between offspring of smokers and non-
smokers in the promoters of catechol-O-methyltrans-
ferase (COMT) and monoamine oxidase A (MAOA), 
genes thought to be involved in nicotine dependence 
and other neurobehavioral disorders [31, 32]. Further, 
an increase in the DNA methylation of the brain-derived 
neurotrophic factor-6 (BDNF-6) promoter/5′UTR has 
been found in adolescents exposed to maternal smok-
ing during pregnancy [33]. To our knowledge, no stud-
ies have directly examined the epigenetic changes of the 

developing human brain exposed in utero to maternal 
cigarette smoking. Here we interrogate DNA methyla-
tion patterns in the developing cortex of human fetuses 
exposed to maternal smoking on a genome scale.

Methods
Sample selection
Fetuses were from second-trimester elective saline abor-
tions performed for non-medical reasons. Fetal sample 
groups, exposed (N =  14) and unexposed (N =  10) to 
maternal smoking, were balanced for sex and gestational 
age (weeks since the first day of last normal menstrual 
period) (Table 1). All mothers of the exposed group were 
active smokers prior to and during pregnancy, whereas 
no mothers of the unexposed group were active smokers 
prior to or during pregnancy (Additional file 4: Table S1). 
Alcohol is a well-described teratogen that affects neuro-
anatomical development [18, 34]. No mother reported 
any alcohol abuse or dependence prior to or during preg-
nancy. A higher proportion of mothers reported con-
suming some (“any”) alcohol during pregnancy in the 
unexposed (60%) then exposed (29%) groups, although 
this difference was not significant (p value =  0.12, Chi-
Square, Additional file  4: Table S1). All samples were 
identified as Caucasians.

Sample dissection and processing
Upon delivery, the products of conception were refrig-
erated, and within hours, they were moved to a −80  °C 
freezer. For examination, they were placed at −20  °C 
overnight. Working quickly over dry ice, the brain was 
removed without thawing. The cortical plate was sam-
pled in the region that becomes the DLPFC in order to 
obtain post-migratory NeuN-immunoreactive (NeuN+) 
neurons, which normally become numerous in cortical 
layers 4–6 between 14 and 20 weeks gestational age, and 
in layers 2 and 3 between 20 and 24  weeks (Additional 
file 1: Figure S1) [35]. This region was chosen because it 
is involved in decision-making and working memory, and 
its function is compromised in neurodevelopmental and 
psychiatric conditions, including autism spectrum dis-
order (ASD). It is readily identified and accessible in sec-
ond-trimester fetal brain. During the second trimester, 
the cerebral hemispheric wall in the frontal region grows 

Table 1  Fetal cortical samples dissected from the second trimester (ST) of gestation

Fetal sample groups, exposed and unexposed to maternal smoking, were balanced for gestational age and sex

Early ST Late ST Total

N Age in wpc (mean ± SD) M/F N Age in wpc (mean ± SD) M/F

Exposed 9 16.63 ± 0.52 5/4 5 22.4 ± 1.14 3/2 14

Unexposed 6 16.67 ± 0.52 3/3 4 23.25 ± 0.96 2/2 10
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from a thickness of ~2 mm at 12 weeks to ~6–8 mm at 
18  weeks and  ~18  mm at 26  weeks, with cortical plate 
thickness of  ~0.5–1,  ~1.5, and  ~2  mm, respectively 
[36–38]. We obtained tissue from the cortical plate 
from frozen fetal brains by scraping the dorsal prefron-
tal region of the left hemisphere to a depth of approxi-
mately 0.5 mm for the youngest fetuses, where there was 
no gross demarcation between plate and subplate. In the 
older fetuses, we were guided by a change in color at the 
junction of the cortical plate and subplate at approxi-
mately the predicted depth. These sample specimens for 
DNA methylation and gene expression assays were stored 
at −80 °C for further processing.

Human induced Neuronal Precursor Cells (hiNPC)
All hiNPC lines were derived as previously described 
[39]. To match the in vivo data generated from postmor-
tem studies, hiNPC lines (NSB553-3-C, NSB2607-4-1 
and NSB690-2-1) used in this study were derived from 
three Caucasian males, and for full details of the donors 
of the fibroblasts and validation of the hiPSC and NPC 
lines, please see [40]. Cell culture; NPCs were main-
tained at high density, grown on growth factor-reduced 
Matrigel (BD Biosciences)-coated plates in NPC media 
(Dulbecco’s Modified Eagle Medium/Ham’s F12 Nutrient 
Mixture (ThermoFisher Scientific), 1× N2, 1× B27-RA 
(ThermoFisher Scientific) and 20  ng/ml−1 FGF2 and 
split 1:3 every week with Accutase (Millipore, Billerica, 
MA, USA). Neural differentiation; NPCs were dissoci-
ated with Accutase and plated at 2.0 × 105 cells per cm2 
in NPC media onto growth factor-reduced Matrigel-
coated plates. For neuronal differentiation, medium was 
changed to neural differentiation medium (DMEM/F12, 
1× N2, 1× B27-RA, 20  ng/ml−1 BDNF (Peprotech), 
20  ng/ml−1 GDNF (Peprotech), 1  mM dibutyryl-cyclic 
AMP (Sigma), 200  nM ascorbic acid (Sigma) 1–2  days 
later. NPC-derived neurons were differentiated for 3 and 
6 weeks before being assayed.

Nicotine treatment
Nicotine (N0267-100MG, Sigma) was diluted at three 
different concentrations [100 nM (low), 10 μM (med) and 
1  mM (high)] in neuronal media and added every 2nd 
day with a complete media change. Control wells were 
treated with equal volume of vehicle (ethanol) added to 
neuronal media.

hiNPC assays
Toxicity
The cell impermeant nuclei dye TO-PRO3® (Ther-
moFisher Scientific, T3605) was added at week 3 of dif-
ferentiation. Three plates, each containing triplicates of 
a hiNPC line, were imaged with an Odyssey® infrared 

imaging system (LI-COR). TO-PRO3® fluorescence 
intensity was normalized to control (vehicle treated) 
wells.

Immunofluorescence analysis
At 3 and 6  weeks of differentiation, cells were washed 
once with 1× PBS and then fixed in 4% paraformalde-
hyde (Electron Microscopy Services) for 15 min. Follow-
ing 3 washes with 1× PBS, cells were then blocked and 
permeabilized with 1% v/v BSA Fraction V (BSA, Ther-
moFisher Scientific) with 0.3% v/v Triton-X 100 (T-100X, 
Sigma). Primary antibodies (Rb-Ki67, 1:500, Abcam, 
ab15580 and Ms-TUJ1, 1:1000, Covance, MMS-435P) 
were added overnight in 1%BSA/0.5%T-100X. Appro-
priate secondary antibodies (AlexaFluor Dk secondar-
ies, Ms-680 and Rb-800) were incubated for 2.5  h in 
1%BSA/0.5%T-100X. Following 3 washes with 1× PBS, 
plates were imaged with an Odyssey® infrared imaging 
system (LI-COR). Fluorescence intensity was normalized 
to control wells. Statistical differences between nicotine-
treated and vehicle-treated controls were determined by 
Student’s ttest using R Language 3.03 [41].

Illumina Infinium Human Methylation BeadChip sample 
processing
DNA from fetal brains and hiNPCs were isolated and 
bisulfite converted (Zymo Research), and CpG meth-
ylation was determined using Illumina Infinium Human 
Methylation BeadChip microarrays (HM450), as 
described previously [42].

DNA methylation data preprocessing
The analyses were performed using R Language 3.03 [41] 
an environment for statistical computing and Biocon-
ductor 2.13 [43]. Raw data files (.idat) were processed by 
minfi package [44]. All samples displayed a mean probe-
wise detection call for the 485,512 array probes <0.0005. 
The data were normalized, background subtracted and 
further normalized by SWAN [45]. M values were used 
in feature selection models. Beta values (logistic trans-
formed M values) were used for sample sex determina-
tion and DNA methylation reporting. Probes mapping to 
multiple locations (N =  19,834), Infinium type I probes 
with a SNP at the interrogated CpG (N =  13,708) and 
probes mapping to the X- and Y-chromosomes were 
removed from analysis (N =  11,648), as described [46], 
leaving 452,930 analyzable probes.

DNA methylation analysis
Differentially methylated probes (DMPs) display a mean 
difference in DNA methylation of  at least 20%, corre-
sponding to a methylation difference detectable by the 
HM450 with 99% confidence [47]. DMPs were mapped 
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to refSeq gene annotations and analyzed using Ingenu-
ity Pathways Analysis (IPA) software (Ingenuity Systems, 
www.ingenuity.com). Differentially methylated regions 
(DMR) were found using the bumphunter algorithm 
applied to DNA methylation M values [48]. Specifically, 
for each CpG site, we estimate the difference between 
the M values for the exposed and unexposed adjusting 
for gestational age, sex and sample chip assignment. An 
interaction term was included between smoking expo-
sure and gestational age for interaction DMR analysis. 
The methylation difference estimates are smoothed based 
on the predefined CpG clusters where the maximal gap 
between neighboring CpG sites is 500 bp, while the larg-
est cluster size is set to 1500 bp. The smoothed regional 
methylation difference estimates were obtained using a 
predefined threshold to identify the putative DMRs, with 
associated significance levels obtained empirically based 
on 1000 permutations. Cell-proportion estimates were 
performed using the methods described in Jaffe et  al. 
[49]. Briefly, publicly available HM450 data from ESC-
derived NPC (H9) [50], adult cortical NeuN+ and NeuN− 
cells [51] were quantile normalized together [44] and 227 
unique probes that separated the 3 cell types were used in 
a nonlinear mixed modeling [52] to estimate the propor-
tion of each of the 3 cell types within our HM450 fetal 
dataset. Cell-proportion estimates were also generated 
for publicly available HM450 data from dissected post-
natal DLPFC aged 4, 6 and 10 months, produced by the 
BrainSpan Consortium [53].

Gene expression analysis
Total RNA was isolated from the same 24 fetal samples 
used for DNA methylation analysis (ToTALLY RNA™ 
Total RNA Isolation Kit, Ambion). Fetal mRNA was ana-
lyzed using Nanostring nCounter Elements technology. 
Gene expression analysis of fetal DLPFC samples was 
performed for the 2 most significant smoking-DMRs 
(SDHAP3 and GNA15) and 3 of the 5 genes annotated 
to the most significant interaction DMRs (C21orf56, 
POLDIP3 and SYCE3). Housekeeping gene selection: We 
used the Nanostring nCounter Elements technology and 
selected 4 housekeeping genes for expression normaliza-
tion. Previously, Penna et al. [54] investigated the stability 
of a panel of housekeeping genes for mRNA normaliza-
tion in human postmortem brain samples. Additionally, 
Madden et  al. [55] described a subset of ubiquitously 
expressed transcripts ideal for using as housekeeping 
genes within brain tissue. We selected 4 housekeeping 
genes, 3 of which were identified by both Penna et  al. 
and Madden et  al. (GAPDH, YWHAZ and CYC) and 
SDHA, identified by the former group and that we have 

previously used successfully in Nanostring interrogation 
of rat mRNA [56]. Negative control subtraction and nor-
malization to housekeeping genes was performed using 
the nSolver Analysis Software. Sample fold-changes (FC) 
were calculated relative to sample FS5777 (one of the 24 
fetal samples analyzed chosen at random) gene expres-
sion levels for each gene independently. Any expression 
values of 3 standard deviations from the group mean 
were deemed outliers and removed from the analysis. No 
more than 1 result for any assay was removed.

Results
Cortical sampling
Fetal samples exposed to maternal smoking were 
matched to unexposed fetal samples by age and sex when 
available (Table  1). Fetal brain weight and total weight 
were highly correlated (R2 = 0.94, Additional file 1: Fig-
ure S1a), and within either early or late second-trimester 
samples, no significant difference in brain weight was 
observed between exposure groups (p value =  0.3 and 
0.8, respectively, Student’s t test) (Additional file  1: Fig-
ure S1b, c). The cortical plate was sampled from the pre-
sumptive DLPFC in an effort to obtain post-migratory 
NeuN+ neurons, which normally become numerous in 
cortical layers 4–6 between 14 and 20 weeks gestational 
age, and in layers 2 and 3 between 20 and 24 weeks [57].

Maternal smoking‑associated differential DNA methylation 
in the fetal cortex
To examine DMRs associated with maternal smoking 
exposure in the fetal cortex, we performed DNA meth-
ylation microarray analysis among exposure groups 
(“Methods” section). Across the 452930 CpG sites exam-
ined, no DMRs passed multiple testing correction (family 
wise error rate, fwer, cutoff ≤0.05, Fig. 1a). This was likely 
due to the small number of fetal brains available for anal-
ysis. Notably, smoking exposure DMRs with the high-
est point-wise significance was found within the gene 
promoters of SDHAP3 and G protein subunit Alpha 15 
(GNA15) (Fig.  1b, c). Both DMRs were hypomethylated 
in smoking exposed (Fig. 1b, c). Gene expression analysis 
of SDHAP3 and GNA15 (Fig. 1d, e) did not reveal expo-
sure-related differences. However, we observed up-regu-
lation of mRNA between early and late second-trimester 
samples that were restricted to smoking-exposed fetuses 
for expression of SDHAP3 and larger for exposed than 
for unexposed for expression of GNA15 (p value = 0.005 
vs 0.02, Fig. 1e). These observations led us to hypothesize 
that maternal smoking exposure has temporal effects on 
gene expression and DNA methylation during fetal corti-
cal development.

http://www.ingenuity.com
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Developmental interaction with maternal smoking 
exposure
To explore the effects of smoking exposure on fetal devel-
opment, we performed an interaction DMR analysis 

between gestational age and smoking exposure (“Meth-
ods” section). Four significant DMRs (fwer p value ≤ 0.05) 
located within the promoters of synaptonemal com-
plex central element protein 3 (SYCE3), chromosome 

Fig. 1  Differentially methylated regions associated with fetal smoking exposure. a Manhattan plot shows the most significant smoking exposure 
DMRs identified between smoking-exposed and unexposed fetal cortical samples, red line; adjusted p value = 0.05. DNA hypomethylation of 
fetal cortical samples exposed to maternal smoking was found within the promoter regions of the two most significant smoking exposure DMRs b 
SDHAP3 and c GNA15. CGI CpG Island. Gene expression of d SDHAP3 and e GNA15 shows temporal up-regulation in the fetal cortex, particularly in smok-
ing exposed
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21 open reading frame 56 (C21orf56/LSS), sperm-asso-
ciated antigen 1 (SPAG1) and RNA, U12 Small Nuclear 
(RNU12/POLDIP3) (Fig.  2a) were identified. Within the 
promoter region of C21orf56, exposed fetal cortices at 
22.4  weeks (late) exhibited higher total DNA methyla-
tion levels than samples examined at 16.6  weeks (early). 
Conversely, unexposed fetal cortices displayed higher 

DNA methylation levels in early samples compared to 
late (Fig. 2b). Additionally, we found an intragenic region 
of SPAG1 that was conservatively hypomethylated in all 
samples except a subset of late second-trimester exposed 
fetal cortices that were hypermethylated (Additional file 2: 
Figure S2). Nanostring expression analysis of C21orf56 
demonstrated no difference in mRNA levels between 
exposure/developmental groups (Fig. 2c).

No discernable difference in group-wise DNA meth-
ylation patterns by exposure/development was evident 
in the promoter regions of RUN12/POLDIP3 or SYCE3, 
regions that had been identified using the bumphunter 
algorithm as significant (Additional file 3: Figure S3a, b). 
Gene expression analysis of SYCE3 revealed low gene 
expression in early second-trimester smoking exposed 
(p value = 0.02) (Additional file 3: Figure S3c), analogous 
to the SDHAP3 mRNA results indicative of develop-
mental delay in smoking exposed. No difference in POL-
DIP3 mRNA was found between exposure/development 
(Additional file 3: Figure S3d).

Global DNA methylation of fetal cortex exposed 
to maternal smoking
We examined global DNA methylation changes during 
cortical development in response to maternal smoking 
by calculating differentially methylated probes (DMPs) 
between early and late second-trimester samples in each 
exposure group (methods). We identified 574/371 hyper/
hypomethylated DMPs (Additional file  4: Table S2) in 
unexposed samples and 399/178 hyper/hypomethylated 
DMPs (Additional file  4: Table S3) in exposed samples 
(Fig.  3a). Unsupervised hierarchical clustering of both 
hypomethylated and hypermethylated DMPs separated 
samples by gestational age (Fig.  3a). More DMPs were 
found between early and late second-trimester unex-
posed samples than between smoking-exposed samples. 
Notably, a higher proportion of these DMPs were hyper-
methylated in the unexposed (64%) compared to exposed 
samples (44%). Hypomethylation is a feature of pluripo-
tent/multipotent stem cells and as cells differentiate, the 
acquisition of DNA methylation restricts cell lineage and 
drives cell specification [58]. We postulated that reduced 
hypermethylated DMPs in smoking-exposed samples 
could reflect alterations or delay in cell-type specification 
occurring in the developing cortices in response to smok-
ing exposure. Gene ontology analysis implicated canoni-
cal pathways of “Role of NFAT in Cardiac Hypertrophy,” 
“Th2 Pathway” and “Th1 and Th2 Activation Pathway” 
associated with genes annotated to DMPs between early 
and late second-trimester unexposed fetal samples (Addi-
tional file 4: Table S4). NFAT is a transcription factor that 
mediates axon growth in developing neurons (reviewed 
in [59]). Conversely, canonical pathways associated with 
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genes annotated to DMPs between early and late second-
trimester exposed fetal samples implicated “T Helper 
Cell Differentiation,” “Epithelial Adherens Junction Sign-
aling” and “Factors Promoting Cardiogenesis in Verte-
brates” (Additional file 4: Table S4).

Our cortical plate sectioning of the presumptive 
DLPFC aimed to enrich for post-migratory NeuN+ neu-
rons (Fig.  3b). Other investigators have established cell 
deconvolution algorithms with remarkable accuracy in 
estimating NeuN+ proportions of whole brain tissues 
using DNA methylation profiles [51, 60]. Using the DNA 
methylation profiles generated from the fetal cortices, we 
were able to estimate the cell proportions (CP estimates) 
of NeuN+, NeuN− and neural precursor cells (NPCs) 
within the fetal DLPFC sections (“Methods” section). CP 
estimates revealed our fetal cortical sections contained 
a high proportion of NPCs (mean =  16%) compared to 
CP estimates of NPCs of cortical sections (postnatal 
4–10  months) produced by the BrainSpan consortium 
(mean = 7%) [50, 53, 57] (Fig. 3c). These NPCs are pre-
sumably undergoing maturation, and thus, our sections 
provide a rare window into the effects of maternal smok-
ing exposure on neuro-cellular development.

CP estimates of fetal DLPFC revealed significantly 
fewer NeuN+ in smoking-exposed fetal DLPFC (p 
value = 0.04, Fig. 4). Any decrease in CP estimate will be 
balanced by an increase in the proportion of another cel-
lular population, and indeed, we observed a higher pro-
portion of NeuN− in smoking-exposed fetal samples (p 
value = 0.08, Fig. 4). No difference in NPC proportions 
was observed between smoking exposure groups (Fig. 4). 

The results indicate that tobacco exposure is associated 
with a reduction in NeuN+ in the developing DLPFC. 
Using ReFACTor [61] method that adjusts for the possi-
ble effect of variation in cell-type proportions, we found 
no difference in methylation associated with smoking 

Fig. 3  DNA methylation patterns of the developing fetal DLPFC. a Heatmaps of unsupervised hierarchical clustered DMPs found differentially 
methylated between early and late ST for each exposed and unexposed group. b Coronal sections from formalin-fixed, paraffin-embedded, previ‑
ously frozen fetal cortex (20 wpc). Frontal region of cerebral hemisphere showing (i) hematoxylin and eosin (H&E) staining and (ii) NeuN staining, 
which distinctly labels the cortical plate (asterisk on H&E) and germinal matrix (arrowhead) (Scale = 2 mm). c CP estimates of NeuN−, NeuN+ and 
NPC within exposed and unexposed (local) fetal DLPFC samples (gray) were compared to CP estimates of publicly available postnatal frontal cortex 
generated by BrainSpan consortium (colored) (“Methods” section)
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Significantly fewer (proportionally) NeuN+ were observed between 
smoking exposed (all samples) and unexposed (all samples)
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exposure or developmental stage interaction. The meth-
ylation change associated with smoking exposure reflects 
differences in rate of cell differentiation during devel-
opment as observed by the estimated CP changes. To 
investigate the mechanism of nicotine exposure on 
neuron development, we turned to an in vitro model of 
development.

In vitro modeling of neurodevelopment in response 
to nicotine exposure
To model the effects of nicotine on human neuronal 
development, we exposed human induced neural pre-
cursor cells (hiNPCs) to nicotine over a 6-week period of 
neuronal differentiation. Following 3  weeks of nicotine 
exposure, differentiating hiNPCs exhibited a dosage-
dependent increase in TO-PRO®-3 fluorescence (live 
cells are impermeable to the dye, whereas the dye pen-
etrates compromised membranes characteristic of dead 
cells) (p value <0.05) and an increase in cell proliferation 
(Ki67) that was significant at high dose (p value = 0.01, 
Fig.  5). We observed a decrease in the staining of βIII 
Tubulin (TUJ1), a marker for mature neurons, and nota-
bly, the most significant decrease was found at 0.1 uM 
(low) nicotine exposure (p value  =  0.0003, Fig.  5). No 
significant differences in cell death or proliferation were 
detectable by 6 weeks; however, TUJ1 showed a dosage-
dependent increase that was significant at 1000 μM nico-
tine (p value = 0.03, Fig. 5). These data demonstrate that 
nicotine elicits dosage-dependent effects on neuronal 
maturation. Interestingly, the biologically meaningful 

nicotine exposure (0.1 μM) restricts early neuron devel-
opment despite exhibiting a lower toxicity (cell death) 
than higher exposures. Further, the differences in TUJ1 
staining between 3 and 6 weeks indicate that less differ-
entiated hiNPCs (3  weeks) are more susceptible to the 
inhibiting effects of nicotine on neuron development 
(Fig. 5).

Discussion
In this study, we profiled genome-scale DNA methylation 
of fetal brain development in response to exposure to 
maternal smoking in utero. Although limited in number, 
the fetal brain samples have well-characterized maternal 
health history and exposure data, thus providing a rare 
opportunity to investigate the impact of nicotine expo-
sure on early human brain development. Notably, our 
DNA methylation profiling was performed on whole tis-
sue sections from the developing DLPFC that consist of a 
mixture of neuronal and non-neuronal cell types. Estab-
lished methods enable the isolation of neuronal nuclei 
[62]; however, due to the fragility of fetal neuronal nuclei, 
this technique cannot be applied. Estimating cell propor-
tions using DNA methylation profiles revealed our fetal 
DLPFC sections contained approximately 16% NPCs 
that are presumably undergoing maturation, providing a 
rare window into human neuro-cellular development in 
response to maternal smoking exposure.

Embryogenesis is a stage of rapid neurological trans-
formation and growth in which epigenomic landscapes 
undergo dramatic change [63, 64]. In the developing 

TOPRO3 Ki67 TUJ1 

3 Weeks 

TUJ1 

6 Weeks 

Nicotine (µM) Nicotine (µM) Nicotine (µM) Nicotine (µM) 

0.47 0.19 0.01 0.47 * ** ** * 0.15 0.35 0.12 0.03 

Fig. 5  Immunohistochemistry (IHC) staining on hiNPCs. Left to right significant changes in IHC staining of hiNPCs at week 3 for TOPRO3, Ki67 and 
TUJ1 and at 6 weeks for TUJ1. Significance of difference compared to vehicle-treated control (p value, Student’s t test) specified above each result; 
* p value <0.01; ** p value <0.001
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DLPFC, genome-wide DNA methylation changes that 
distinguish early and late second-trimester samples were 
clearly reduced in fetal cortex of smoking exposed indi-
cating alterations in cell-type differentiation. Indeed, our 
most significant DMRs were identified by interaction 
analysis between gestational age and maternal smok-
ing exposure. We found a delay in the up-regulation of 
expression of SYCE3, a gene that is conserved among 
mammals and whose loss leads to a block in synapsis 
initiation resulting in meiotic arrest [65]. We also iden-
tified an interaction DMR in the promoter of C21orf56 
(also known as SPATC1L). C21orf56 is a spermatogenesis 
and centriole-associated 1-like gene found on chromo-
some 21 of little-known function. Although we did not 
observe developmental/exposure dependent changes in 
gene expression, we observed a gain in promoter methyl-
ation in late second-trimester exposed samples that could 
reduce the transcriptional potential of C21orf56 later in 
development.

Genes such as GNA15 and SDHAP3 that contained 
maternal smoking-associated DMRs displayed a devel-
opmental delay in mRNA up-regulation in smoking 
exposed. Notably, SDHAP3 is a subunit of the succinate 
dehydrogenase complex located within the mitochon-
drial membrane and functions in electron transport 
chain transfer of electrons to coenzyme Q [66]. It has 
been reported that mutations within succinate dehy-
drogenase subunits actually increase levels of oxidative 
stress [67]. Intriguingly, this same DMR was recently 
found hypermethylated in the cerebellum of patients 
diagnosed with ASD [68] and differentially methylated 
in the DLPFC of patients diagnosed with schizophrenia 
(SCZ) within 3 independent studies [69]. Furthermore, in 
a separate report, GNA15 was found to be differentially 
methylated in the PFC of ASD patients [70]. Both ASD 
and SCZ probably have prenatal origins [71–73]. Taken 
together, these results reveal a potential link between 
maternal smoking-associated DNA methylation pertur-
bation and potential increase risk for neurodevelopmen-
tal abnormalities. Notably, GNA15 is transcriptionally 
modifiable by acute doses of nicotine in neuroblastoma 
cell lines [74], indicating nicotine as a potential causative 
agent.

Cell deconvolution algorithms have shown remark-
able accuracy in estimating NeuN+ proportions from 
DNA methylation profiles from whole brain tissue [51, 
60]. CP estimates within our fetal DLPFC revealed a 
smoking exposure-associated reduction in NeuN+ cells 
supporting previous observations of reduced gray mat-
ter in the cortex of smoking-exposed children [5]. The 
adverse effects of maternal smoking on fetal develop-
ment are well described; however, it was estimated that 
30% of smokers attempting to quit smoking use cessation 

aids that contain nicotine [75]. Nicotine is a well-studied 
substance in tobacco and has been shown to induce oxi-
dative stress in rodent [76, 77] and human neurons [78]. 
Exposure of hiNPCs to 100 nM nicotine resulted in the 
lowest amount of toxicity but the greatest suppression 
of neuronal differentiation (B3-Tubulin). These results 
recapitulate the reduction in the estimated proportion of 
NeuN+ cells we observed in human samples and impli-
cate nicotine as a causative agent in impeding neuronal 
development. These data provide direct evidence from 
primary tissue of in utero exposure to teratogenic agents 
as found in cigarettes—warranting further investigations 
of the in utero environment on fetal development and 
how it impacts offspring health and disease risk through 
the lifespan.

Conclusions
In summary, we have found evidence that intrauterine 
smoking exposure alters the developmental patterning of 
DNA methylation and gene expression and is associated 
with reduced mature neuronal content, effects that are 
likely driven by nicotine through mechanisms independ-
ent of cell death.
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