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METHODOLOGY

EpiMINE, a computational program 
for mining epigenomic data
SriGanesh Jammula and Diego Pasini* 

Abstract 

Background:  In epigenetic research, both the increasing ease of high-throughput sequencing and a greater interest 
in genome-wide studies have resulted in an exponential flooding of epigenetic-related data in public domain. This 
creates an opportunity for exploring data outside the limits of any specific query-centred study. Such data have to 
undergo standard primary analyses that are accessible with multiple well-stabilized programs. Further downstream 
analyses, such as genome-wide comparative, correlative and quantitative analyses, are critical in deciphering key bio-
logical features. However, these analyses are only accessible for computational researchers and completely lack plat-
forms capable of handling, analysing and linking multiple interdisciplinary datasets with efficient analytical methods.

Results:  Here, we present EpiMINE, a program for mining epigenomic data. It is a user-friendly, stand-alone compu-
tational program designed to support multiple datasets, for performing genome-wide correlative and quantitative 
analysis of ChIP-seq and RNA-seq data. Using data available from the ENCODE project, we illustrated several features 
of EpiMINE through different biological scenarios to show how easy some known observations can be verified. These 
results highlight how these approaches can be helpful in identifying novel biological features.

Conclusions:  EpiMINE performs different kinds of genome-wide quantitative and correlative analyses, using ChIP-
seq- and RNA-seq-related datasets. Its framework enables it to be used by both experimental and computational 
researchers. EpiMINE can be downloaded from https://sourceforge.net/projects/epimine/.
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Background
All cells maintain their identity through a robust genomic 
organization. Different activities that modify the chroma-
tin environment, more commonly defined as epigenetic, 
play critical roles in preserving and using the genetic 
information. This involves a series of modifications that 
influence the genome at different levels, starting from 
changes at single nucleotides (i.e. DNA methylation and 
its oxidized forms) to the regulation of higher orders of 
DNA organization. To unravel the molecular mecha-
nisms behind each layer of regulation, previously devel-
oped techniques, such as chromatin immunoprecipitation 
(ChIP), expression of different forms of RNAs and bisul-
phite conversion, have been coupled to high-throughput 

sequencing (seq) technologies. Of all, ChIP-seq is most 
widely used for mechanistic studies, where immunopre-
cipitations are coupled with chromatin formaldehyde 
cross-linking and high-throughput sequencing to map the 
location of any specific epitope along the genome in living 
cells. Similarly, RNA-seq is another standard experimen-
tal approach for profiling genome-wide gene expression in 
any sample of interest. Thus, the conjunction of ChIP-seq 
and RNA-seq analyses allows the direct impact to be stud-
ied for given factors or specific modifications in regulating 
transcription. These milestone technical improvements 
have led to an exponential increase in the availability of 
data in public repositories. However, functional analyses 
performed with these data are often restricted to experi-
mental observations.

Before making any biological inferences from the 
data generated through high-throughput sequencing 
platforms, sequencing data have to undergo a series of 
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computational analyses, which can be regarded as pri-
mary and secondary analysis. Primary analysis mainly 
involves aligning sequencing data to a reference genome. 
Numerous programs are designed for this and are very 
well optimized. For instance, programs like BWA [1] and 
Bowtie [2] are commonly used for ChIP-seq data align-
ment, while others like TopHat [3], PALMapper [4] and 
STAR [5] are used for RNA-seq data alignment. To com-
plete primary analyses, ChIP-seq aligned data are further 
processed to determine regions of enrichment along the 
genome, thus identifying potential DNA binding of a tar-
get protein or the deposition of histone post-translational 
modifications (PTMs). This process is known as peak 
calling, and MACS [6] and SICER [7] are some commonly 
used applications. At the same time, RNA-seq aligned 
data are processed to measure the levels of expression of 
different genes. Level of expression is studied in terms of 
reads per Kb per million (RPKM) or fragments per Kb 
per million (FPKM), programs like ERANGE [8], TopHat 
[3] and RSAT [9] can be used for this. In the recent years, 
this part of analysis was well established and often sup-
ported by sequencing facilities. This makes processed 
data commonly available and not a bottleneck for users. 
Upon publication, these data become further available 
in these formats in public domains like GEO [10], thus 
becoming available to the entire scientific community.

Depending on the biological questions to be addressed, 
further downstream analysis can be very different from 
one another. In particular, ChIP-seq data can be further 
processed in many different ways, such as mapping ChIP-
enriched regions to the closest gene, and complete gene 
sets can be annotated to determine which biological pro-
cess/molecular functions or biochemical pathways are 
enriched. GREAT [11] application is specifically designed 
for annotating such regions of interest. Another common 
task is to identify highly represented motifs in enriched 
regions, applications like MEME-ChIP [12] or Pscan [13] 
are more commonly used for this purpose. Similarly, 
RNA-seq data from different experiments can be further 
processed specifically to identify differentially expressed 
genes. Cuffdiff2 [14], DESeq2 [15] and edgeR [16] are the 
most commonly used tools for identifying differentially 
regulated genes.

In terms of usage, different programs are designed 
to make it easy for all users to carry out computational 
analysis. The only systems that render specific programs 
in a linked pipeline are Galaxy [17] and Cistrome [18]. 
However, the level of complexity related to epigenomic 
dynamics makes such limited analysis insufficient to 
address complex biological questions involving a large 
number of multiple datasets. The vast amount of data 
available from different studies presents an opportunity 
for exploring these relationships at a much deeper level, 

with the potential of better characterizing genome-wide 
dynamics and exposing hidden layers of regulation. To 
achieve this possibility, programs with in-build analyti-
cal and data mining methods, power for supporting bulk-
processed data from different disciplines, are needed.

Although primary and extended analyses (i.e. ChIP-
seq peak calling) are mature and broadly available, pro-
grams with above-mentioned capabilities are still not 
available, which thus restricts the analytical power to 
highly experienced computational biologists. With such 
approach tools like SeqMINER [19], and some utili-
ties of HOMER [20], Cistrome [18] provides provisions 
for quantitative and correlative analysis, which remain 
restricted to a limited framework. However, these tools 
are very limited, as they cannot handle multiple samples, 
link changes within with transcription, predict depend-
encies, filter datasets on the basis of their relevance, 
identify features to characterize samples or perform dif-
ferential analysis. Moreover, programs like HOMER [20] 
and Cistrome [18] cannot deal with raw aligned data but 
rather require processed aligned data, adding a further 
layer of complexity.

In addition to these stand-alone applications and com-
mand line tools, several packages have been designed in 
R for similar purpose, such as RepiTools [21] for analysis 
of enrichment-based epigenomic data, ChIPpeakAnno 
[22] for annotating enriched regions, DiffBind [23] for 
identifying differentially regulated regions between 
experiments, and many others available in bioconduc-
tor. The main disadvantage of using R packages and other 
command line tools is that it requires prior knowledge of 
programming. From an experimental biologist point of 
view, this could mean that even small tasks are tedious.

We were interested in developing a light-weight stand-
alone open source application with genome-wide ana-
lytical features. We designed EpiMINE, a computational 
program for mining epigenomic data. The application is 
designed to be easy to use, with minimal input files, so 
that any experimental biologist with minimal compu-
tational background could use it easily, thus reducing 
dependency on others. This application is available with 
graphical user interface (GUI) and command line facility. 
The GUI option would make the application extremely 
user-friendly for scientists with no computational back-
ground. EpiMINE excludes primary/secondary analysis 
due to the extensive availability of resources for these 
analyses. Rather, it uses data from primary/secondary 
analysis as input for further downstream analysis, based 
on standard data that are easily accessible from pub-
lic domain. EpiMINE has several utilities, each with its 
own analytical capabilities for genome-wide correlative 
and quantification studies. Depending on the biological 
query, different utilities can be executed sequentially.
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Results
We built EpiMINE with different utilities, each with dis-
tinct functionalities. In brief, it harbours the following 
utilities: ENRICH, which allows it to determine prefer-
ential enrichments at multiple sets of regions of interest 
(ROI) among annotated datasets (bed files); CoREG—
performs co-localization analysis; MCOR—defines 
correlations between multiple datasets (bam files); 
TCOR—determines correlations between two datasets 
(bam files); QIRI—quantifies different datasets (bam files) 
within specific ROI; QARI—quantifies different datasets 
(bam files) around ROI; PMS—generates profiles using 
different datasets (bam files) across ROI; TDIFF—per-
forms differential analysis among two groups; MDIFF—
performs differential analysis among two or more groups; 
ABRI—predicts dependencies between datasets in the 
form of bed files; VarSEL—identifies meaningful data-
sets out of many (bam files) to describe specific ROI; 
CLASS—performs classification analysis; MatHM—gen-
erates heatmaps from the output of the other utilities; 
extBAM—extends reads by any desired length in pre-
existing bam files.

To highlight the different features of EpiMINE, we took 
advantage of processed ChIP-seq and RNA-seq data gen-
erated by the ENCODE consortium [24] from different 
human cell lines to postulate biological scenarios and 
analyse the obtained results.

Enrichment
For most epigenomic analysis, determining whether 
the ROI show any preferential enrichment towards any 
known set of annotated regions is essential. In such situ-
ations, the ENRICH section of the program is useful. For 
instance, we were interested in determining whether a set 
of different factors, for which we have obtained ChIP-seq 
location data, can preferentially bind active promoter or 
enhancer elements in human embryonic cells (H1hESC). 
The genomic location of active promoters or enhancers 
can be easily determined by the accumulation of H3K27 
acetylation (H3K27ac) with respect to a mapped tran-
scription start site (TSS). Using ENRICH, we took into 
consideration H3K27ac-enriched regions in H1hESC and 
separated these regions into two broad categories: (1) 
regions residing in close proximity to promoters (±2.5 kb 
from TSS) and (2) regions lying away from promot-
ers. This analysis identified bona fide active promoters 
(n = 4600) and enhancers (n = 2033) in H1hESC. These 
two sets of regions were used to determine the levels of 
association of 49 different factors for which ChIP-seq 
results were generated by the ENCODE consortium in 
H1hESC cells. This analysis showed that peculiar sets of 
factors clearly help in defining enhancers from promoters 
(Fig. 1a).

The results of this analysis are shown in Fig. 1a, which 
represents the proportion of ROI being bound by each 
individual factor. Apart from the analysis with input files, 
this utility provides the option to include random regions 
in the analysis (Fig. 1a, blue bars). This allows the extent 
of significance of this comparative analysis to be deter-
mined with respect to its random occurrence. This analy-
sis clearly showed that active regions are all completely 
devoid of repressive factors, such as Ezh2 and Suz12. 
Importantly, components of the transcription machin-
ery, such as RNA-POLII, TBP and TAF1, were present in 
both active promoters and enhancers, while factors such 
as Gabp, Brca1, Nrf1, Six5, Sp2, c-myc and Gtf2f1 were 
specifically enriched at active promoters. In contrast, 
DNA-binding TFs, like Oct4 (Pou5f1) and Nanog, were 
preferentially enriched at active enhancers, as previously 
reported [25, 26]. Interestingly, this unbiased analysis 
allowed us to identify Bcl11a and Tcf12 as novel factors 
specifically associated with active enhancer regions.

Using the CoREG utility, we further investigated 
whether factors that are specifically enriched at enhanc-
ers coexist together or not. This utility helps to dissect 
the extent of co-regulation between different factors 
based on the absence or presence of a given factor in 
each ROI. Using all Bcl11a-enriched regions as a refer-
ence, we found that Bcl11a frequently co-localized with 
the enhancer-specific TFs Nanog, Pou5f1, Tead4 and 
Tcf12, as well as with more promiscuous factors such 
as P300 and Sp1 (Fig.  1b). When the same analysis was 
performed using a set of promoters corresponding to the 
top 3000 highest expressed genes in H1hESC, this set 
of factors was indeed not enriched (Fig. 1c). Hence, this 
analysis strongly suggested that the novel enhancer-asso-
ciated factors Bcl11a and Tcf12 co-regulate cis-regulatory 
regions together with Nanog, Tead4 and Pou5f1 in ES 
cells, highlighting the power of these new analytical tools.

Quantification and correlation
Most genome-wide location studies generate multiple 
large ChIP-seq datasets, for which a major task is deter-
mining the extent of correlation among multiple data-
sets to identify closely related datasets that, by clustering 
together, highlight convergent or divergent biological 
behaviours. This type of analysis is facilitated with the 
MCOR section of the program, which can take multiple 
datasets and perform correlations at a genome-wide level 
or along specific ROIs. To illustrate this tool, we scanned 
the behaviour of 27 different factors from H1hESCs with 
respect to all human promoters. We subjected the data-
sets to two distinct correlation methods: Pearson’s corre-
lation (Fig. 1d) and principal component analysis (PCA; 
Fig.  1e). In both types of analyses, the results identified 
two types of clusters: a repressive cluster marked by a 
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Fig. 1  Preferential enrichment, coexistence and correlation analysis. a Barplot representing proportion of H3K27ac-positive promoters (in green), 
H3K27ac-positive enhancers (in red) and random regions (in blue), bound by different factors. b Heatmap showing the presence (dark blue) or 
absence (light blue) of different factors in a Bcl11a-binding regions. Closer the presence of any factor to Bcl11a, greater the coexistence. c Heat-
map showing the presence (dark blue) or absence (light blue) of different factors in promoters of the top 3000 highly expressed genes. Closer the 
presence of any factor to Promo, greater the coexistence. d Genome-wide correlation between different factors along all promoters of the human 
genome. e Variable plot with different factors and their degree of correlation with others along all promoters of human genome across first two 
principal components
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strong correlation between Polycomb proteins (Suz12 
and Ezh2) and their related histone PTMs (H3K27me3), 
and factors and histone PTMs associated with active 
transcription (H3K27ac, H3K9ac, Pol2, H3K79me2). 
With respect to the Pearson correlation, PCA provided 
much more extended information. First, the angle of 
separation allows a lack of any relationship between 
datasets representing active versus repressive features 
to be depicted. Second, the profile of H3K9me3 deposi-
tion strongly diverged from all other datasets consistent 
with its well-established deposition in constitutive het-
erochromatin. Third, the arrow length for each dataset 
provides information related to the contribution of each 
factor. For instance, the limited lengths of H2AZ, Ctcf 
and Jarid1a highlight their minimal contribution to defin-
ing promoter elements.

Comparative quantification and its effects
A great challenge of ChIP-seq analysis is to move from 
qualitative information about the location of a given 
factor or modification along the genome towards more 
quantitative information between multiple experimental 
conditions in relation to other biological outcomes, such 
as changes in transcription. This implies more complex 
computations that also take into consideration intrin-
sic biases related to the sequencing procedure. To cap-
ture these changes, we designed quantitative methods 
that can identify such changes among multiple datasets 
and relate them with expression information (when pro-
vided). To exemplify our tool, we portrayed different sce-
narios to show how different ways of quantification can 
be experimentally meaningful.

As a first case study, we used two samples of H1hESC—
one representing a set of H3K27ac-enriched regions 
(active transcription; n  =  6633) and the other repre-
senting a set of H3K27me3-enriched regions (repressed 
transcription; n  =  5406)—to determine the deposition 
behaviour of several other histone PTMs along these 
two functionally different sets of genomic regions. For 
this, we provided to QIRI program with ChIP-seq data-
sets comprising 10 different histone PTMs together 
with RNA polymerase II and complemented this with 
H1hESC gene expression data, for all genes with their 
respective FPKM values in log2 form. The program pro-
cesses data, computes the quantification and presents 
results in a form that can be visualized as a heatmap, with 
H3K27ac-enriched regions shown in the upper panel and 
H3K27me3-enriched regions in the lower (Fig. 2a). Each 
row of the heatmap represents one ROI. To uncover spe-
cific patterns within each cluster, data can be subjected 
to either hierarchical or k-means clustering. For the 
present analysis, data from each sample were subjected 
to k-means with nine clusters. Clustered data were then 

used to explore for specific expression patterns. The pro-
gram associates each ROI to the closest gene and repre-
sents the expression distribution of all genes associated 
within each cluster as boxplots (Fig. 2b), allowing imme-
diate visual comparisons of the results. This analysis 
clearly showed that all H3K27ac target genes present a 
higher level of expression than H3K27me3 target genes, 
consistent with their respective roles in activating and 
repressing transcription.

Within H3K27ac-enriched regions, clusters 3/4/7 
identified active enhancers marked by the presence of 
H3K27ac and H3K4me1 and by the absence of H3K4me3 
deposition. Other clusters identified active promot-
ers, which are marked by H3K27ac and high levels of 
H3K4me3. Interestingly, the closest genes to cluster 3 
enhancers, which contain higher levels of H4K20me1, 
H3K79me2 and RNA polymerase II, displayed a higher 
level of expression with respect to clusters 4 and 7, 
which contained a lower level of deposition for these 
modifications.

The results related to H3K27me3-enriched regions 
identified clusters 5/7/8/9 as representing bivalent 
domains [27, 28], which are marked by the presence of 
both H3K27me3 and H3K4me3. Within these clusters, 
cluster 7/8 presented high levels of RNA-PolII associa-
tion with respect to clusters 5/9 and is characterized by 
a higher level of expression of its associated genes. This 
result showed that deposition of repressive marks is not 
sufficient to exclude transcription and highlights the 
requirement of quantifying multiple types of datasets 
in parallel to stratify the functional status of transcrip-
tional regulatory regions. In agreement with this, it is 
important to note that the small set of genes linked to 
cluster 6, which are marked by the co-deposition of both 
H3K27me3 and H3K9me3, has undetectable transcrip-
tion levels, showing that acquisition of H3K9me3 locks 
H3K27me3-repressed genes in a transcriptionally non-
permissive status.

These quantifications can be based on a genome-wide 
level or can be applied to specific ROIs. A genome-wide 
approach normalizes, quantifies and scales the ChIP-
seq signals along the entire genome, while ROI-selec-
tion performs the same quantification but only taking 
genomic regions of ROIs into account. In the genome-
wide approach, quantification is processed in small bins, 
then the bins representing each ROI are merged and the 
mean signal is reported. If the analysis is restricted to a 
set of ROI, quantification and scaling will be specifi-
cally applied to this frame. It is important to note that 
it is always advisable to perform genome-wide analy-
sis to capture true intensities, since it is possible that 
by quantifying signals with respect to a restricted set of 
genomic regions, the intensities could result in over- or 
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under-representation with respect to a quantification 
that takes into account the entire range of signals along 
the genome. To avoid such biases, our program supports 
genome-wide-based quantification.

Further quantification studies are important in deter-
mining the extent of spread of the signal with respect to 
each ROI. Signal spread can be investigated over com-
plete ROI or only in surrounding regions by extending 
from centre of each ROI. QARI utility facilitates such 
analysis. To elucidate this option, we took into consid-
eration active enhancers from four different tissues—
lymphoblastoid (Gm12878), leukaemia (K562), liver 
carcinoma (Hepg2) and cervical carcinoma (HeLa-S3)—
to determine the spreading of the H3K27ac signal over a 
10-kb region. All enhancers from individual tissues were 
merged together and submitted to the program along 
with gene expression data specific to Gm12878. QARI 
utility extends to a selectable fixed length (default 5-kb 
up- and downstream) from the centre of each region and 
further segments these regions into small bins of 50  bp 
length (set as default). The H3K27ac computed from the 
four different tissues was quantified, scaled and subjected 
to K-means clustering with k = 8. Results can be visual-
ized as heatmap (Fig. 2c). The analysis clearly segregated 
tissue-specific enhancers, giving cluster 1/5 highly spe-
cific to lymphoblastoid, clusters 3/4 specific to K562, 
clusters 6/8 specific to Hela-S3 and cluster 7 specific to 
Hepg2, plus a cluster (cluster 2) that seems to represent 
a small set of constitutive enhancers present in all four 
tissues (Fig.  2c). Interestingly, there are sets of enhanc-
ers within each tissue with higher levels of H3K27ac with 
respect to others. In Gm12878, the levels of H3K27ac 
in cluster 1 are much higher than in cluster 5. The same 
applies to K562 and Hela-S3. It is possible that the clus-
ters with highest levels of H3K27ac may represent super 
enhancer regions as previously reported [26]. Consistent 
with this, when the results were related to the expres-
sion of the closest genes in Gm12878, the expression of 
genes associated with Gm12878-specific enhancers (clus-
ters 1/5) was significantly higher than in other clusters, 
thus representing active enhancers in different tissues 
(Fig. 2d).

A further advantage of this tool is the possibility to 
combine data from different experimental conditions. 
This becomes particularly useful when the same factor or 
modification is used in different experimental conditions 

(i.e. using the same antibody). In such a case, the pro-
gram applies a global scaling over all datasets; otherwise, 
scaling is applied only within each individual dataset. The 
pros and cons of these approaches can be appreciated in 
Additional file  1: Figure S2A and S2B. Additional file  1: 
Figure S2A is the same as Fig. 2c, where the program by 
defaults assumes that all datasets are handled indepen-
dently, irrespective of which antibody was used; in con-
trast, in Additional file  1: Figure S2B, this option was 
turned on, and all datasets are scaled together.

Previous tools have allowed the levels of different ChIP 
analyses to be quantified over individual regions. How-
ever, we were also interested in determining the general 
genome-wide behaviour of a specific factor/modifica-
tion along different set of regions or experimental con-
ditions. In such cases, composite profiles of different 
ChIP analyses become simple and highly informative. In 
our program, we supported such analysis with the pro-
vision of quantifying target(s) over complete ROI (with 
either invariable length or over a constant region from 
the centre). PMS utility is specifically designed for this. 
Taking advantage of expression data from H1hESC cells, 
we sorted the genes on the basis of their expression levels 
(high to low) and partitioned gene expression into quar-
ters. The first quarter represents highly expressed genes, 
while lower quarter represents low or not expressed 
genes. We then quantified the H3K4me3 and H3K36me3 
levels at both promoters and gene bodies for the genes 
belonging to each individual quarter, respectively 
(Fig.  3a, b). For H3K4me3, we quantified its levels with 
respect to promoter centres (i.e. centred on the TSS with 
the surrounding region extended by a constant length of 
5 kb up- and downstream of the TSS). Each region was 
further broken in smaller bins of 50  bp to quantify the 
signal over length. Similarly, we quantified H3K36me3 
levels within the gene bodies of each individual gene. In 
this case, due to the invariable gene length, each gene was 
subdivided into defined finite blocks, whereby each block 
represents a fixed proportion of the total length of each 
gene body. These data were averaged within each quar-
ter and plotted together (Fig. 3a, b). It is well established 
that gene expression, the levels of H3K4me3 deposition 
at promoters and the accumulation of H3K36me3 within 
gene bodies are positively correlated [29, 30]. Indeed, our 
analysis perfectly validated such behaviour (Fig.  3a, b). 
Genes belonging to quarter 1 displayed higher levels of 

(See figure on previous page.) 
Fig. 2  Quantification in and around ROI. a Heatmap with genome-wide-based normalized intensities for different histone modifications RNA-
PolII in H3K27ac (top panel)- and H3K27me3 (bottom panel)-positive regions. b Expression level of target genes in each cluster identified in a. Top 
panel represents expression levels for target gene clusters for H3K27ac regions; lower panel represents H3K27me3-positive regions. c Intensities 
of H3K27ac ChIP in a 5-kb region surrounding the centre of enhancer regions, across five different cell lines. d Expression levels of target genes in 
Gm12878 in clusters identified in C
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both H3K4me3 at promoters and H3K36me3 within gene 
bodies with respect to genes with a lower expression level 
(quarter 2/3/4; Fig. 3a, b). One of the advantages of this 
analysis is that the program makes use of strand infor-
mation (when provided), which helps to make sense of 
the data. For instance, it can be easily observed from our 
results that H3K4me3 deposition preferentially occurs 
towards the +1 nucleosome, aiding proper positioning 
and active transcription. In same way, H3K36me3 levels 
are higher towards the gene terminal portion. The differ-
ences of not using strand information can be appreciated 
in Additional file 1: Figure S2C and S2D.

This tool also supports quantification based on “spike-
in” data. Recent reports have shown that data generated 
through standard ChIP-seq procedures do not capture 
real changes in histone PTM deposition, particularly 
when the overall global levels of a specific modification 
vary between experimental conditions due to technical 
biases of the ChIP-seq procedure [31]. To circumvent 
this technical problem, a standard ChIP-seq can be com-
bined with a spike of the same chromatin from other 
reference genomes. This new procedure is able to bet-
ter quantify the levels of a target PTM among different 
experimental conditions at each specific ROI. To prove 
the power of this option, we analysed data generated 
for H3K79me2, using different amounts of chromatin 
in which H3K79me2 is either present or absent. These 
chromatin spikes were added in different proportions (0, 
25, 50, 75, 100 %) to mimic a linear reduction in global 
H3K79me2 levels. Data were analysed by considering or 
not the presence of an equal amount of exogenous Dros-
ophila reference chromatin [31]. This analysis clearly 
shows the lack of linearity of standard ChIP-seq analyses 
and highlights the quantification power of the spike-in 
correction (Fig. 3c–f).

Differential quantification
Quantification-based differential studies can also help to 
identify markers, allowing to differentiate between two 
or more cell types. For instance, we questioned whether 
the deposition pattern of the same histone PTM in two 
different tissues could be used to distinguish one tis-
sue from the other. To test this, we chose H3K4me3 
ChIP-seq data (a marker of active transcription in gene 
promoters) from skeletal muscle (Hsmm) and keratino-
cytes (Nhek). We applied differential analysis over all 
promoters for H3K4me3 deposition. Using computed 
normalized read intensities, the TDIFF utility program 
identified a set of genes that were significantly enriched 
for H3K4me3 through a Fisher’s test in skeletal muscle 
(n = 512) over keratinocyte (n = 406; Fig. 4a). When we 
provided expression data for all genes in these two tis-
sues, the program linked all enriched promoters to their 

respective target genes. This analysis clearly showed that 
the expression levels of H3K4me3 target genes in their 
respective tissue were significantly higher than others 
(Fig.  4b, c). This was further confirmed by performing 
tissue specificity with DAVID [32] using the output files 
containing the list of promoters significantly enriched in 
either skeletal muscle or keratinocyte. Both lists showed 
higher specificity towards their respective tissue, validat-
ing the tissue specificity of our results (Additional file 1: 
Figure S2E, S2F).

Similarly, situations arise in which differentially 
enriched regions need to be detected not only between 
two independent systems but also across multiple sys-
tems, a possibility that is included in our tool. To show its 
functionality, we extended the biological logic of Fig. 4a 
over multiple tissues, with the aim of identifying tissue-
specific markers. Based on normalized read intensities, 
the MDIFF utility of the program identified differentially 
enriched H3K4me3 promoters across all datasets through 
a chosen statistical test (ANOVA or Kruskal–Wallis). All 
statistically significant regions were represented in the 
form of a heatmap, whereby the normalized read intensi-
ties were transformed to standard z-scores (Fig.  4d). To 
identify tissue-specific patterns, results were subjected 
to k-means clustering, using k = 10. This analysis clearly 
showed that all tissue-specific, differentially enriched 
H3K4me3 promoters were clustered together (Fig.  4d). 
To further cross-validate that these promoters are true 
markers of tissue specificity, the program also linked all 
promoters with the expression of their respective genes 
across all tissues within individual clusters. This resulted 
in the distribution of the expression of all target genes 
within individual clusters (Fig. 4d). Comparing the results 
side by side, we confirmed that genes associated with tis-
sue-specific promoters indeed displayed tissue-specific 
expression (Fig. 4d, e). For example, cluster 1 represents 
promoters that are specific for lymphoblastoid cell line 
(Gm12878), which indeed display greater expression lev-
els with respect to all other tissues. Similar conclusions 
can be applied for all other clusters.

Probabilistic relationships
Exploring relationships between different chromatin-
associated factors, with the aim to better dissect the 
role of each entity and its functional contribution in a 
given biological process, requires increasing availabil-
ity as well as the capability of generating large sets of 
genome-wide location analysis. We designed a utility 
that helps to predict the probabilistic relation between 
different factors, either at a genome-wide level or spe-
cifically within ROIs, taking advantage of a Bayesian net-
work approach. To introduce this analysis, we wanted 
to determine which factors localize at genomic regions 
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of compact chromatin and, among these, which factors 
showed dependency on each other. We selected regions 
enriched for Suz12 (n = 4789), a component of the Poly-
comb repressive complex 2 (PRC2) and an established 
marker of compact chromatin, to compute its localiza-
tion with respect to defined genomic features and other 
DNA-binding factors that could represent a common 
functionality. For this, we took the binding sites of 51 dif-
ferent DNA-binding factors along with two sets of anno-
tated genomic regions, of CPG island (CpGi) and gene 
promoters. These data are then processed by the ABRI 
utility by implementing a learning algorithm, in which 
either constraint or scoring analysis can be performed, 
depending on the users interest (see “Methods” for fur-
ther details). In our analysis, we used a constraint-based 

grow shrink algorithm in an iterative bootstrap process, 
where 70  % of total data were selected randomly, and 
constructed a Bayesian network from this. This step was 
repeated 500 times, and only the dependency factors that 
were identified in 95 % of the networks were retained to 
generate a final dependency network (Fig.  5a). To fur-
ther determine the validity of the generated network, 
we repeated the above process using random regions of 
the same input size (n =  4789) to generate a “control” 
network (Fig. 5b). Comparison of both networks clearly 
identified that the dependency between Ctcf and Rad21 
was not specific for the Suz12 bound regions, while 
the rest of the dependencies were shown to be specific 
(Fig.  5a, b). Indeed, a functional relationship between 
Ezh2 and Suz12 (Fig. 5a) and its preferential localization 
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at CpG-rich genomic regions at gene promoters (Fig. 5a) 
are well established. In addition, this analysis identi-
fied novel specific dependencies between Ezh2, Ctbp2 
and Egr1 that were never reported previously. To test 
whether the dependency between Ezh2/Ctbp2 is valid, 
we used the ChIP-seq profiles of these proteins to deter-
mine their association among all Suz12 binding sites. 
Indeed, we found that Ctbp2 occupies nearly half of the 
Suz12-binding sites (Additional file 1: Figure S2G). This 
observation has been very recently validated experimen-
tally, showing a functional link between the activities of 
Ctbp2 and PRC2 [33].

Classification
Recent studies have shown that different loci of the 
genome display precise epigenetic characteristics. In 
terms of regulation, classifying genomic regions on the 
basis of their epigenetic characteristics is helpful for clas-
sifying distinct roles. Here, we present a system in which 
different classes can be segregated on the basis of quanti-
fying different factors (which can be either TFs or histone 
PTMs). In this tool, we supported classification based on 
a support vector machine (SVM) approach, employing 
both linear and nonlinear models of classification. This 
system can be used for either training or with a combined 
training and prediction processes. In the training scheme, 
the program takes into consideration all provided data-
sets and lists the performance as an area under ROC with 
accuracy scores. If the user is satisfied with the classifica-
tion on the training data, the classification model can be 
further applied to a new set of ROIs. In addition to the 
classification, the program also supports pre-data analy-
sis. Such an approach is recommended in cases dealing 
with large numbers of datasets. The user has to judge 
which datasets contribute the most for the classifica-
tion. In such situations, users can choose a pre-selection 
analysis, which subjects all datasets to a recursive feature 
elimination process in which all possible subsets are con-
sidered, and accuracies for all variable sizes are reported. 
The program also generates a list of predictors with the 
highest accuracies, which can be further used for the 
classification.

As an example, we show the process of characteriz-
ing active enhancers and active promoters marked by 
H3K27ac in ES cells on the basis of 49 different TFs and 
other regulators. Initially, all 49 datasets were subjected 
to the VarSEL utility for a variable pre-selection process. 
This process helps to eliminate the lower contributing 
datasets. From the results, we observed that a combina-
tion of 14 datasets was sufficient for classifying active 
enhancers and active promoters (Fig.  5c), while includ-
ing additional datasets did not give major improvements. 

Therefore, through pre-selection analysis, we were able 
to downsize the number of datasets for further analysis, 
thus removing noise and reducing computing power. 
From available literature, we can easily assure that all 
critical factors known to characterize active promoters 
and enhancers were selected (Fig.  5c). Interestingly, the 
novel enhancer-specific factor that we identified in this 
analysis, Bcl11a, was among the new selected datasets, 
further validating its enhancer specificity (Fig.  1a). As 
a final validation, we achieved an ROC of 0.95 when all 
these 14 datasets were fed to CLASS utility for classifica-
tion process (Fig. 5d).

All presented analyses demonstrate the versatility of 
EpiMINE in interpreting epigenomic studies with mul-
tiple datasets and experimental conditions integrating 
location with expression results. In addition to these 
main features, EpiMINE is packed with additional tools 
that are not presented in our figures due to space con-
strains but that are well described in the download pack-
age. These include: (1) a time-saving tool, MatHM, which 
generates heatmaps from already generated results in 
different forms without rerunning complete analysis; (2) 
extBAM, which extends aligned reads to a certain fixed 
length; (3) TCOR, which determines the correlation 
between two datasets.

EpiMINE is available in two different forms: one 
is designed to support an old version of bedtools 
(2.16/2.17) and the other is designed to support latest 
version of bedtools (2.25). EpiMINE with support of 
bedtools (version 2.16/2.17) can be downloaded directly 
from the following link: https://sourceforge.net/pro-
jects/epimine/files/EpiMINE_bedtools_2.16_2.17.tar.
gz/download, while EpiMINE with support of bedtools 
(version 2.25) can be downloaded directly from follow-
ing link: https://sourceforge.net/projects/epimine/files/
EpiMINE_bedtools_2.25.tar.gz/download. We recom-
mend the users to use the older version of bedtools (ver-
sion 2.16/2.17) as it provides much better performance 
as compared to that with higher version. The installation 
process will automatically recognize the presence of a 
newer version, uninstall it and reinstall the appropriate 
bedtools version.

All the described analyses were performed on Mac OS 
with 4 GB of RAM. The performance of each individual 
utility is summarized in Table 1. All these analyses were 
performed with EpiMINE with the support of bedtools 
version 2.16. This table describes the time taken by each 
utility for completing each analysis together with the 
number of datasets/ROIs that were processed for each 
specific task, highlighting the high feasibility of per-
forming these types of analyses also form a local laptop 
machine.

https://sourceforge.net/projects/epimine/files/EpiMINE_bedtools_2.16_2.17.tar.gz/download
https://sourceforge.net/projects/epimine/files/EpiMINE_bedtools_2.16_2.17.tar.gz/download
https://sourceforge.net/projects/epimine/files/EpiMINE_bedtools_2.16_2.17.tar.gz/download
https://sourceforge.net/projects/epimine/files/EpiMINE_bedtools_2.25.tar.gz/download
https://sourceforge.net/projects/epimine/files/EpiMINE_bedtools_2.25.tar.gz/download
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Discussion
The fast development of NGS technologies has radically 
changed experimental approaches in “wet labs” leading 
to the generation of a surplus of high-quality data, which 
are also available from public resources. To handle this 
increasing amount of data, in terms of both size and com-
plexity, we developed a platform, EpiMINE, with efficient 
analytical methods. We tested to which level of flexibility 
it can be applied for different epigenomic studies. This 
development is an attempt to open a new window for 
high-throughput data analysis, providing a platform with 
useful methods for genome-wide studies. The uniqueness 
of the program lies in handling and analysing the changes 
within and/or across multiple samples against different 
datasets and their flexible linkage of results to expression 
data. Each utility of the program generates all necessary 
results, different plots of good resolution and many other 
supplementary text files. Supplementary text files can be 
helpful for further downstream analyses, which can be 
used as input to other utilities of the EpiMINE program, 
thus increasing its flexibility without the need of addi-
tional modifications. Depending on the utility, the pro-
gram offers some additional features for enhancing the 
results, including options for smoothing data, making use 
of strand information for analysis and selecting colour for 
heatmaps (a detailed description can be found in the help 
of utility and manual of EpiMINE). This program comes 
with both graphical and command line utilities, allow-
ing it to be used by also by non-specialist users with very 
minimal computational background. It can be executed 
in both Mac OS and Linux operating systems.

Taking advantage of publicly available human 
ENCODE datasets and analysing them using EpiMINE, 
we have cross-verified some known observations to show 
the power and accuracy of EpiMINE. At the same time, 
we generated novel findings, such as the preferential 
association of the Bcl11a transcription factor at active 
enhancers with respect to promoters and of the asso-
ciation between Suz12 and Ctbp2 in chromatin compact 
regions of human embryonic stem cells.

We tried to avoid redundancy of running alignment, 
peaking calling and others, and we specifically chose to 
restrict the program on tertiary analysis. These steps are 
now very much standardized, and many pipelines have 
been well established for doing such tasks. In addition, 
many sequencing facilities provide support by default for 
both primary and secondary analysis. The most limiting 
step is to handle further downstream analyses based on 
experimental design. With few exceptions, no other pro-
gram is as capable as EpiMINE in performing compre-
hensive genome-wide analyses with multiple datasets. 
Table  2 represents a comparison between the various 
features provided by EpiMINE with respect to other well-
known tools, such as Cistrome [18], ChIPseeqer [34], 
HOMER [20], seqMINER [19], diffReps [35] and macs2 
bdgdiff (https://github.com/taoliu/MACS).

Conclusions
EpiMINE is a light, user-friendly application for epig-
enomic studies, which has the capability of handling mul-
tiple datasets and performing different types of analyses 
that are either ROI restricted or genome wide.

Table 1  Performance of different utilities of EpiMINE in generating results mentioned in this manuscript along with num-
ber of files processed

Mac Book laptop—Mac OS 10.11—4 GB RAM

Figure Utility Real User Sys Number of bam files 
processed

Number of bed files 
processed

1A ENRICH 3m4.420s 1m40.539s 0m8.173s 51

1B, C CoREG 2m16.439s 1m7.569s 0m3.969s 51

1D, E MCOR 74m41.883s 69m40.924s 2m19.813s 27 1

2A, B QIRI 26m27.703s 23m25.298s 0m47.114s 12 2

2C, D QARI 240m28.371s 182m38.537s 39m15.460s 8 1

3A PMS 287m16.025s 240m14.324s 22m8.330s 2 4

3B PMS 125m56.986s 119m0.587s 4m43.368s 2 4

3F PMS 62m1.064s 45m49.599s 9m50.006s 5 1

4A, B, C TDIFF 4m14.759s 3m8.678s 0m3.862s 2 1

4D, E MDIFF 37m15.644s 35m2.737s 0m50.188s 36 1

5A ABRI 8m11.794s 6m5.741s 0m7.175s 51

5C VarSEL 143m28.846s 143m28.846s 3m25.513s 49 2

5D CLASS 29m0.011s 26m41.527s 0m44.029s 14 2

https://github.com/taoliu/MACS
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Methods
EpiMINE can be downloaded from https://sourceforge.
net/projects/epimine/. It constitutes several utilities, 
each with its own capabilities. They are dedicated for 
enrichment, coexistence, quantification, correlation, 
differential, predicting dependencies and classification 
studies. Here, we describe its design, file formats and the 
different methods it uses for analysis.

Design and dependencies
The EpiMINE program is developed in the Python plat-
form. It requires the presence of Python (version ≥2.7) 
with the following modules: wxpython, pysam, pybed-
tools, rpy2, R application with gplots, ggplot2, RColor-
Brewer, FactoMineR [36], kernlab [37], bnlearn [38], 
igraph, fastcluster [39], caret, ROCR [40] packages and 
bedtools [41] installed. wxpython is used for graphical 

Table 2  Comparison of different features of well-known programs with EpiMINE

GUI graphical user interface, CL command line, TRUE feature is available in tool, FALSE feature is not available in tool, NA feature is not applicable for tool, Not in build 
feature should be executed outside the tool

User interface seqMINER HOMER ChIPseeqer Cistrome EpiMINE
GUI CL GUI WEB GUI GUI/CL

Standard analyses

 Peak calling FALSE TRUE TRUE TRUE FALSE

 Gene ontology FALSE FALSE TRUE FALSE FALSE

 Motif analysis FALSE TRUE TRUE TRUE FALSE

Peaks based analysis

 Enrichment of different samples in ROI FALSE FALSE FALSE FALSE TRUE

 Coexistence of different samples in ROI FALSE FALSE FALSE FALSE TRUE

 Correlation based on peaks FALSE FALSE TRUE FALSE FALSE

 Predicting dependencies based on peaks FALSE FALSE FALSE FALSE TRUE

 Introducing and analysing random regions FALSE FALSE FALSE FALSE TRUE

Quantification-based analysis

 Number of samples can be processed in a run 1 1 NA ≥1 (applicable for few cases) ≥1 (applicable for all cases)

 Works with raw data (no processing required) TRUE FALSE FALSE FALSE TRUE

 Signal within ROI FALSE FALSE FALSE FALSE TRUE

 Spread of Signal around ROI TRUE TRUE FALSE TRUE TRUE

 Profile generator TRUE TRUE FALSE TRUE TRUE

 Genome-wide/ROI-specific correlation FALSE FALSE FALSE TRUE TRUE

 Introducing and analysing random regions FALSE FALSE FALSE FALSE TRUE

 Provision of k-means clustering on quantified 
data

TRUE Not in build FALSE TRUE TRUE

 Provision of hierarchical clustering on quantified 
data

FALSE Not in build FALSE FALSE TRUE

 Correlating clustered data with expression FALSE FALSE FALSE FALSE TRUE

 Spike-in normalization FALSE FALSE FALSE FALSE TRUE

 Predicting dependencies based on peaks FALSE FALSE FALSE FALSE TRUE

 Filtering datasets on the basis of their impor-
tance wrt ROI

FALSE FALSE FALSE FALSE TRUE

 Classification studies FALSE FALSE FALSE FALSE TRUE

User interface macs2 bdgdiff diffReps EpiMINE
CL CL GUI/CL

Differential studies

 Identifying differential regions between two conditions without replicates FALSE TRUE TRUE

 Identifying differential regions between two conditions with replicates TRUE TRUE TRUE

 Identifying differential regions between more than two conditions with replicates FALSE FALSE TRUE

https://sourceforge.net/projects/epimine/
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user interface, pysam for processing alignment files and 
rpy2 for statistical analysis through R. This program is 
supported in Mac OS and Linux. It is available both in 
form of GUI and command line with support in both 
Mac OS and Linux. To facilitate end-user with install-
ing any missing dependencies, program is bundled 
with automated script, which can check for any missing 
dependencies and install them accordingly.

Datasets
All presented results were generated using human 
ENCODE [24] data. We used histone modification 
(HM), transcription factor and expression datasets of 
human embryonic stem cells (H1hESC), lymphoblastoid 
(Gm12878), umbilical vein endothelial cells (HUVEC), 
cervical carcinoma (HeLa-S3), liver carcinoma (HepG2), 
leukaemia (K562), skeletal muscle fibroblast (HSMM), 
human lung fibroblast (NHLF) and epidermal keratino-
cytes (NHEK). For effective comparison between differ-
ent tissues expression, data were subjected to quantile 
normalization. For spike-in analysis, published data were 
downloaded [31] and aligned to a human or Drosophila 
reference genome, and bam files were generated for fur-
ther use in downstream analyses.

Input files
Each utility requires input data, which can be a bed, 
bam or genome file. (1) bed files are tab-separated files 
containing information certain locus of genome. More 
details about the format can be obtained from https://
genome.ucsc.edu/FAQ/FAQformat.html#format1. (2) 
bam files are standard binary format files containing 
details about the alignment of sequencing data with ref-
erence genome. (3) Genome files are also tab-separated 
files, with two columns listing chromosomes and their 
lengths.

Samples
Multiple bed files containing regions of interest (ROI), 
where one bed implies one sample.

Datasets
Either bam/bed files, against which the single/multiple 
samples can be analysed.

Promoters
We considered promoters as regions 2.5-kb both up- and 
downstream from the TSS of a given gene.

Active promoters
We considered these as promoter regions that are posi-
tive for H3K27ac.

Active enhancers
We considered these as regions that are distant from pro-
moters and have both H3K27ac and H3K4me1 but not 
HK4me3.

Use of bedtools
Bedtools is used for computing overlaps, coverage in 
regions of interest, and for finding closest transcript.

Random regions
To improve analytical power, the program can gener-
ate random data (if enabled) in bed format and analyse 
these data in parallel to the main data stream. Random 
regions are generated of similar size as that of input data 
by shuffling the genomic coordinates and chromosomes 
of input regions. Reordered coordinates are then cross-
checked with reference genome file in order to verify 
that the new coordinates are within the limits of chro-
mosome length.

Quantification
Different utilities of EpiMINE like TCOR, MCOR, QARI, 
VarSEL and CLASS perform computational analysis 
on tag intensities quantified from different datasets. In 
such cases, program preforms genome-wide quantifi-
cation in which genome is fragmented into small bins 
of user defined length. Program then counts total num-
ber of reads within each bin which is then normalized 
to sequencing depth. In cases where an input/control 
sample is provided, normalized reads for input dataset 
are computed within each ROI and are then subtracted 
from normalized reads of target datasets. If spike-in 
data are provided, then normalization is carried out in 
a similar manner as explained previously [31]. To avoid 
any skewness in data distribution, normalized intensi-
ties are log transformed. To efficiently compare different 
datasets derived either with similar or different antibod-
ies, quantification is subjected to scaling. If datasets are 
generated with the same antibody (an option provided in 
program), the whole quantification will be scaled to 0–1. 
On the other hand, if datasets are generated with differ-
ent antibodies, the individual datasets are scaled to 0–1 
separately to allow liable comparison between datasets. 
Scaling can be explained better by considering matrix (X) 
containing n rows and m columns, where each row rep-
resents one ROI and each column represents each data-
set. If all m datasets are generated with same antibody, 
then scaling is performed such that minimum and max-
imum values of the matrix are set to 0 and 1. If on the 
other hand all m datasets are generated through different 
antibodies, then scaling is performed such that minimum 
and maximum values for each column of the matrix are 

https://genome.ucsc.edu/FAQ/FAQformat.html%23format1
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set to 0 and 1. In cases where target ROI is provided, then 
the bins representing target ROI are retrieved. If single 
ROI represents multiple bins, then the average of all bins 
for that particular ROI is considered. Complete flow of 
quantification is schematically represented in Additional 
file 1: Figure S1.

Results from quantifications can be further used to 
identify patterns of quantification of different datasets 
over all ROI by subjecting it to hierarchical/k-means 
clustering. Further, clustered results can be linked with 
expression data. If expression data are provided, then 
each ROI is assigned to the closest gene, and the expres-
sion distribution of target genes across different clusters 
is presented as a boxplot.

This program harbours other utilities, such as QARI 
and PMS, that performs quantification around a ROI 
from its centre or can be profiled over a ROI. In such 
cases, the ROI or its extended form is fragmented into 
smaller bins based on the user’s preference, and normal-
ized reads are computed for these bins. Quantification 
can be represented for each individual ROI or as an aver-
age profile over all ROIs.

Correlation
Using genome-wide quantification (as explained above), 
a correlation between different datasets can be computed 
either by Pearson’s product–moment correlation, rank 
correlations (Spearman, Kendall) or principal component 
analysis (PCA) methods. Once any of the three initial 
methods is chosen, the correlation between all possible 
dataset pairs is computed and transformed into a corre-
lation matrix. This matrix is then represented as a heat-
map, in which the degree of correlation is associated with 
a colour code. If PCA is chosen, the program generates 
a variable graph with a circle of correlation across the 
first two principal components capturing maximum vari-
ance from the data. Variable graph signifies the degree of 
closeness/relatedness between multiple datasets, where 
each dataset is represented as an arrow. Variable graph 
can be interpreted at different levels. First, the ampli-
tude of the angle between two arrows is directly linked to 
the degree of correlation, whereby the smaller the angle 
between two datasets, the higher their correlation. A 90° 
angle signifies no correlation, while an opposite angle 
(>90°) reflects an anti-correlation between two datasets. 
Second, the length of the arrow represents the impor-
tance of that dataset in representing whole data, whereby 
the longer the length, the greater the importance of that 
variable, and vice versa.

Differentially enriched regions
For any given couple of datasets where each dataset 
represents one condition, differentially enriched ROIs 

are discovered using Fisher’s test. For individual ROI, p 
value is computed from 2*2 contingency table where 
columns represent datasets and rows represent normal-
ized intensities for datasets inside and outside ROI. p 
values are further adjusted by Benjamini and Hochberg 
method. In the case of multiple datasets representing 2 
or more conditions, differential regions are identified by 
either Kruskal–Wallis or ANOVA statistical tests. In this 
case, p value for each ROI is computed from normalized 
intensities grouped across different conditions. p values 
are further adjusted by Benjamini and Hochberg method. 
Normalized read intensities within the significantly dif-
ferentially enriched regions are then converted into 
standard z-scores, which are represented as a heatmap. 
To segregate differential regions specific to any specific 
dataset, results can be subjected to clustering. If expres-
sion data across multiple systems are provided, each 
differential ROI is assigned to the closest gene, and the 
distribution of expression of target genes across different 
clusters is presented as boxplot. Normalized read intensi-
ties are computed in similar fashion as explained above 
but only restricted to ROI not genome wide.

Selection and classification
Many epigenomic studies involve characterizing and 
classifying set of ROIs on the basis of some known 
properties. For such studies, we implemented SVM in 
our program. It can be used for characterizing two sets 
of ROI on the basis of any given datasets to determine 
whether the given datasets are capable of differentiating 
them. If the datasets are fruitful in the characterization 
of ROI through this process, the analysis can be further 
extended in classifying new sets of ROIs using the con-
structed model. In this version of EpiMINE, we only sup-
port classification studies for only two classes. In future, 
we plan to implement for more than two classes.

If the number of datasets used for characterizing two 
sets ROIs is too large, the program provides an option 
to pre-select meaningful datasets. The advantage of pre-
selection resides in filtering out datasets that have no or 
very minimal contribution for the classification. To filter 
out non-contributing factors, this program uses a recur-
sive feature elimination approach where all possible sub-
sets are considered, and an accuracy score for each best 
combination is reported. Out of these, variables with the 
best combination scoring high accuracy are reported. 
This combination of datasets can now be further used 
for building the SVM model. This analysis is performed 
using R package caret.

To build the classification model, the program pro-
vides the provision to choose an either linear or nonlin-
ear (radial, Laplacian) classifier. Given two sets of ROIs, 
a positive set and a negative set of ROIs and n different 
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datasets, the program quantifies provided datasets within 
all ROIs using genome-wide approach (as explained 
above) and constructs a matrix where columns represent 
datasets, rows represent ROI and each cell represents 
normalized intensities. Labels representing each ROI 
to positive and negative sets are maintained separately. 
Using the constructed matrix and labels information as 
training dataset, a classification model is constructed. 
For constructing strong classification model, we provide 
option for k-fold cross-validation. Using this approach, 
the training set is split into k groups of approximately the 
same size; then SVM model is iteratively trained using 
k − 1 groups and simultaneously makes prediction on the 
group that was left aside. By default, k is set to 10. For 
a given combination of datasets, analysis presents the 
performance as receiver operating characteristic (ROC) 
curve, with the true positive rate (TPR) plotted against 
the false positive rate (FPR). The program lists the area 
under the ROC curve (AUC) for the classification. The 
higher the AUC, the greater the possibility of classifying 
two sets of ROIs. Once the user is satisfied with the clas-
sification model based on the training data, the analysis 
can be further extended to predict a similar classification 
on a new set of ROIs. Above-explained SVM analysis is 
performed using R package kernlab.

Bayesian network
In any given cell type, different HMs and TFs are 
enriched/bound through the genome. These factors 
(HMs/TFs) together regulate transcription. Using ChIP-
seq from many cell types, the localization of these differ-
ent factors was mapped throughout the genome. From 
these data, one can study which different factors func-
tion dependently/independently, either genome wide or 
within a ROI. Such studies can be explored in this pro-
gram using Bayesian network (BN), which helps to pre-
dict probabilistic relationships between a set of different 
factors. In general terms, for a given finite set of random 
discrete variables X = (x1, x2, x3… xn), BN is an directed 
acyclic graph that signifies joint probability distribution 
over X. Nodes correspond to variables, and edges cor-
respond to the influence of one variable on another. A 
unique joint probability distribution P of X can be writ-
ten as:

where Πxi represent parent(s) of Xi.
 Program is fed with n different bed files, where each 

bed file represents one factor. A matrix in discrete format 
is constructed signifying presence or absence of the fac-
tor within the region of analysis. Using such constructed 

P(X) =

n∏

i=1

P(Xi|ΠXi)

data, a joint distribution model is learned by either con-
straint- or score-based methods. For constraint-based 
structure methods, algorithms like grow shrink, incre-
mental association, fast incremental association and 
interleaved incremental association are supported. Simi-
larly, for score-based structure-learning methods, algo-
rithms like hill climbing and tabu search are supported. 
In constraint-based learning method, BN is built using 
conditional independence test, which in our case we use 
mutual information as test statistic. On the other hand, 
in score-based learning method, BN is constructed using 
heuristic optimization approach where candidate BN is 
assigned with score representing goodness of fit which 
is then attempted to maximise by the algorithm. We use 
Bayesian information criterion (BIC) as scoring function 
for scoring BN. To generate networks with high predic-
tive power, a selected learning method is applied itera-
tively on randomly selected data (default 90 % per cent) 
from the original data for 100 times (default). Based on 
a selected threshold, a probabilistic network is generated 
with only those edges that are identified at least in 80 % 
(default) of the generated networks. Above-explained 
Bayesian network analysis is performed using R package 
bnlearn.
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