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and removal from ChIP‑seq data clarifies true 
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Abstract 

Background:  Unraveling transcriptional regulatory networks is a central problem in molecular biology and, in this 
quest, chromatin immunoprecipitation and sequencing (ChIP-seq) technology has given us the unprecedented 
ability to identify sites of protein-DNA binding and histone modification genome wide. However, multiple systemic 
and procedural biases hinder harnessing the full potential of this technology. Previous studies have addressed this 
problem, but a thorough characterization of different, interacting biases on ChIP-seq signals is still lacking.

Results:  Here, we present a novel framework where the genome-wide ChIP-seq signal is viewed as being quantifi-
ably influenced by different, measurable sources of bias, which can then be computationally subtracted away. We use 
a compendium of 123 human ENCODE ChIP-seq datasets to build regression models that tell us how much of a ChIP-
seq signal can be attributed to mappability, GC-content, chromatin accessibility, and factors represented in input DNA 
and IgG controls. When we use the model to separate out these non-binding influences from the ChIP-seq signal, we 
obtain a purified signal that associates better to TF-DNA-binding motifs than do other measures of peak significance. 
We also carry out a multiscale analysis that reveals how ChIP-seq signal biases differ across different scales. Finally, we 
investigate previously reported associations between gene expression and ChIP-seq signals at transcription start sites. 
We show that our model can be used to discriminate ChIP-seq signals that are truly related to gene expression from 
those that are merely correlated by virtue of bias—in particular, chromatin accessibility bias, which shows up in ChIP-
seq signals and also relates to gene expression.

Conclusions:  Our study provides new insights into the behavior of ChIP-seq signal biases and proposes a novel 
mitigation framework that improves results compared to existing techniques. With ChIP-seq now being the central 
technology for studying transcriptional regulation, it is most crucial to accurately characterize, quantify, and adjust for 
the genome-wide effects of biases affecting ChIP-seq. Our study also emphasizes that properly accounting for con-
founders in ChIP-seq data is of paramount importance for obtaining biologically accurate insights into the workings 
of the complex regulatory mechanisms in living organisms. R and MATLAB packages implementing the framework 
can be obtained from http://www.perkinslab.ca/Software.html.

© 2015 Ramachandran et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Transcriptional regulation has been the focus of intense 
investigation ever since seminal works on gene regula-
tory mechanisms appeared in the literature about half a 
century ago [1, 2]. The past few decades have seen steady 

progress, revealing important insights that not only iden-
tify the main players of transcriptional regulation, such 
as transcription factors (TFs) [3], core promoters [4], 
enhancers [5], and silencers [6], but also begin to unravel 
the complex interplay existing between these entities [7]. 
On the one hand, these studies substantially enhance 
our understanding of fundamental biological processes, 
such as differentiation and development [8], while, on the 
other hand, they shed light on the deviations from nor-
mal expression patterns (attributable to misregulation) 
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that are often responsible for initiating disease states 
such as cancer [9–11].

Among the deluge of high-throughput quantitative 
technologies that have facilitated transcriptional regu-
lation studies in recent years, a powerful and arguably 
the most popular platform today is ChIP-seq (Chroma-
tin ImmunoPrecipitation followed by massively parallel 
sequencing) [12]. This is a high-throughput method for 
the genome-wide in vivo identification of the binding sites 
of DNA-associated proteins. In the ChIP step, crosslinked 
DNA–protein extracts are sheared and enriched by anti-
bodies specific to the protein of interest. The purified DNA 
fragments are then identified through high-throughput 
sequencing and mapped back to the organism’s canonical 
genome for further computational analysis [13, 14].

While the ChIP-seq technology has advantages com-
pared to its microarray-based counterpart (ChIP-chip), 
such as very high resolution and sensitivity, it also poses 
significant challenges stemming from both inherent 
biases in the design of the technology [15] as well as dif-
ferences in how individual experiments are conducted 
[16]. For example, GC-rich fragments are often over-
represented in ChIP-seq datasets, giving rise to the GC-
content bias [17, 18]. There is also a mappability bias that 
occurs due to differences in sequence complexity [19]. 
Since only uniquely mappable reads are typically retained 
in ChIP-seq datasets, reads falling in low complexity 
regions are predisposed to being discarded, resulting in 
the bias. Furthermore, differences in chromatin structure 
can lead to a chromatin accessibility bias. For instance, 
heterochromatin is more tightly packed compared to 
euchromatin, resulting in accessibility differences and 
decreased read density [20, 21]. Other sources of biases, 
such as PCR amplification and nucleic acid isolation, also 
contribute to distortions in the ChIP-seq signal [19, 22, 
23]. It is thus important to address the effects of these 
biases because they can influence both the identification 
and the prioritization of putative transcription factor 
binding sites or regions of chromatin modification.

Many peak-calling algorithms—methods for automatic 
detection of enriched genomic regions in a ChIP-seq 
experiment—account for these biases using either a par-
allel input DNA (iDNA) control that has not been sub-
jected to the immunoprecipitation step, or a mock ChIP 
sample where a non-specific IgG antibody is used [13, 
24–27]. In both cases, the assumption is that the ChIP 
and the control samples have the same biases which, if 
untrue, would render the methods ineffective. Other 
algorithms address specific biases in a somewhat heu-
ristic manner by either modeling and removing them or 
introducing adjustments to local read positions and/or 
counts in the overall ChIP-seq signal profile [18, 19, 28].

Although such methodologies have been partly suc-
cessful in correcting for various biases, it is not always 
clear which biases they account for and which they do 
not. To provide clarity, a large-scale genome-wide study 
quantifying the composition of the ChIP-seq signal in 
terms of the biases and other factors such as notions of 
control would be very useful, and is missing from the cur-
rent literature. Such a study would help answer two ques-
tions. One, is it reasonable to view ChIP-seq data as a 
composite genome-wide signal, capable of being decom-
posed (or separated) into its constituent parts—with each 
part attributable to binding, biases, or other non-binding 
factors such as controls? And, two, if such a decompo-
sition is possible, then how much of the signal can be 
attributed to each factor? In other words, can we quan-
tify the roles played by the constituent factors in making 
up the ChIP-seq signal? Figure 1 shows a schematic of a 
ChIP-seq signal in peak regions where the biases due to 
mappability and chromatin accessibility are represented 
as component signals. Such a signal-processing view of 
ChIP-seq data would help identify and separate the bind-
ing and non-binding portions of the signal, ultimately 
leading to more accurate biological interpretation of the 
data.

In this study, we present a novel framework that allows 
the quantification, both individually and jointly, of vari-
ous biases that act on genome-wide ChIP-seq signals. We 
set out to look at ChIP-seq data as a signal with quan-
tifiable components, also referred to as predictors in 
the ensuing text. We first construct a staged regression 
model using a large set of human ENCODE [29] ChIP-
seq datasets (123 in total) from the three Tier 1 cell lines 
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Fig. 1  A signal-processing view of ChIP-seq data. Here, we show two 
ChIP-seq peaks (potential regions of enrichment) with different signal 
levels. Let us assume that after accounting for mappability and acces-
sibility, what is left in the overall signal corresponds to true binding. 
Peak 1 is unlikely to be a genuine peak because only a small portion 
of the overall signal may correspond to binding. Peak 2, on the other 
hand, is much more likely to indicate true binding, as a relatively 
smaller share of the overall signal is attributable to mappability and 
chromatin accessibility, leaving a much larger portion for true binding
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to quantify the ChIP-seq signal in terms of five predic-
tors: Mappability, GC-content, chromatin accessibility, 
input DNA control, and IgG control. The quantification 
reveals that a large part of the overall ChIP-seq signal is 
attributable to these background factors. We then carry 
out a multiscale analysis using the model to quantify 
the trends of ChIP-seq signal composition across differ-
ent scales, which also highlights the complex relation-
ships existing between the predictors. After establishing 
a background model in this manner, we then proceed to 
use the model to separate the binding and non-binding 
portions of the ChIP-seq signal. We show that the result-
ing corrected binding signal is able to rank peaks bet-
ter than peak-callers such as MACS. Finally, we use our 
model to investigate previously reported associations 
between gene expression and TF and histone mark (HM) 
ChIP-seq signals in small windows centered at TSSs [30, 
31]. Other reports [32–34] have questioned the validity 
of such associations, recommending caution while inter-
preting ChIP-seq signals in highly expressed genomic 
regions. Motivated by these studies, we predict expres-
sion using our model with various predictor sets such 
as standalone TFs, standalone HMs, and TFs and HMs 
combined with controls. Our results not only confirm 
the concerns raised in the cautionary studies mentioned 
above, but go a step further in providing concrete evi-
dence that many of the associations between TF signal 
around TSSs and gene expression can really be attributed 
to confounding factors, particularly chromatin accessibil-
ity. Furthermore, we show that our model can account for 
these confounding factors, thereby clearly differentiating 
ChIP-seq signals that truly associate with gene expres-
sion from those that do not.

Results
A large portion of the ChIP‑seq signal does not correspond 
to true binding
To test the hypothesis that ChIP-seq signals contain com-
ponents not related to true transcription factor binding 
or chromatin marks, we turned to the wealth of human 
ENCODE data [29]. The ENCODE consortium has stud-
ied transcription factor binding and chromatin state in 
a large number of cell lines, but three “Tier-1” cell lines 
were studied especially thoroughly in human: GM12878, 
a lymphoblastoid cell line, H1-hESC, human embryonic 
stem cells, and K562, an immortalized myelogenous leu-
kemic cell line. Of the available ChIP-seq assays, we iden-
tified 30 TFs and 11 HMs that were assayed in all three 
cell lines. We decided to use those 123 datasets as the 
basis for our investigation. We also selected a set of five 
other genomic signals that we thought might influence, 
or be present within, the ChIP-seq data: mappability, 
GC-content, chromatin accessibility, and input DNA and 

IgG control signals. Because the majority of the mapped 
reads we processed were 36 base pairs long, we obtained 
a 36-base-pair mappability track from the UCSC Table 
Browser [35] and binarized it, so that each base pair in 
the genome is designated simply as either mappable or 
unmappable. Similarly, our binarized GC-content signal 
reports whether each base pair in the genome is G/C (1) 
or A/T (0). Our mappability and GC-content signals are 
derived from the reference human genome (hg19), and 
we treat them as being identical for all three cell lines. 
This is an approximation to the truth for a number of rea-
sons. First, any genome assembly has errors in it, arising 
because of a variety of technical reasons [36]. Second, the 
three cell lines come from different human individuals, 
each with their own genetic variations. Third, the K562 
cell line in particular, being cancer-derived, has numer-
ous mutations that are not reflected in the hg19 assem-
bly. In fact, even at the karyotypic level, this cell line is 
wildly abnormal, containing three copies of many chro-
mosomes along with complex translocations involv-
ing multiple chromosomes [37]. Despite these known 
differences, no specialized genome assemblies for the 
three Tier-1 cell lines are presently available, and so we 
rely on hg19 as the best available proxy. In contrast, we 
treat chromatin accessibility as being different across 
cell lines  and, accordingly, chose to represent it based 
on the cell line-specific DNaseI hypersensitivity high-
throughput sequencing datasets generated by ENCODE. 
In the same manner, we obtained from ENCODE the cell 
line-specific input DNA and IgG control read sets that 
are commonly used for peak-calling. The genome-wide 
signals for DNaseI hypersensitivity, input DNA, and 
IgG control depend on mapping short reads to the hg19 
human genome assembly which, as we have noted above, 
does not entirely match the cell lines we study. Still, these 
signals are cell line-specific, and therefore should rea-
sonably reflect differences in chromatin accessibility and 
other properties between the cell lines that can affect 
ChIP-seq signals.

For our first analysis, we divided the genome into con-
secutive windows of (27 +  1) =  129 base pairs. This is 
smaller than the majority of TF peaks and histone mark-
enriched regions, so it should capture any meaningful 
variations in these signals, while still allowing for some 
regional averaging to reduce noise. We tabulated read 
counts for all the ChIP-seq, DNaseI, input DNA, and IgG 
control datasets in these windows, as well as mappable 
bases and GC-content. Our goal was to determine how 
much of the ChIP-seq signals can be explained in terms of 
the other five factors, which we will call predictors. How-
ever, the predictors themselves are partially correlated. 
For example, unmappable regions cannot have DNaseI, 
iDNA, or IgG reads mapped to them, so the latter signals 
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will also be zero in those regions. To get around this prob-
lem, we conducted a staged regression analysis. We first 
built a linear model predicting ChIP-seq reads from map-
pability alone, and determined how much of the ChIP-
seq signal was explained. Then, we added GC-content 
to the model, then DNaseI, and so on. With each added 
feature, we track how much additional predictive power 
we gain, and only that gain is attributed to the added fea-
ture. In this way, for example, we attribute to the DNase 
I hypersensitivity predictor only what it explains about 
the ChIP-seq data that is not already explained by mappa-
bility or GC-content. We chose to prioritize mappability 
first because of its well-known influence on read densities 
and because it is a cell state-independent feature (modulo 
our comments above). Similarly, GC-content is cell state-
independent, so we chose it next. Chromatin accessibil-
ity was prioritized next, due to its known connections 
to transcription factor binding [38]. Of the two common 
peak-calling controls, we expected input DNA to be less 
specific than IgG, so we wanted to account for its influ-
ence first. IgG control, which is procedurally most similar 
to performing a TF ChIP-seq, therefore, came last in the 
order of priority.

Figure 2a shows stacked bar plots of the percentages of 
variance explained (POVs) for all the ChIP-seq datasets 
corresponding to the H1-hESC cell line, for regression 
models successively adding more features. For most of the 
datasets (34 out of 41), mappability and chromatin acces-
sibility together share most of the total predictive power 
held by all the predictors combined. For example, for 
ATF3, the five predictors combined explain 12.61 % of the 
total variance in the dataset. Of this, mappability explains 
4.49  % and chromatin accessibility (measured using 
DNaseI hypersensitivity) explains an additional 5.11  %, 
amounting to a total of 9.6 %. In contrast, the two notions 
of control, IgG and input DNA, explain significantly 
smaller percentages of variance (0.53 and 1.13 %, respec-
tively), after mappability and chromatin accessibility have 
been accounted for. The total variance explained, as well 
as the portions explained by individual predictors, varies 
substantially between different datasets. For instance, only 
4.09  % of the NRSF signal is explained by all predictors 
combined, with only 0.46 % coming from mappability and 
2.14 % from chromatin accessibility. By contrast, 34.87 % 
of the CREB1 signal is explained by the predictors, with 
3.04  % attributable to mappability and 25.97  % to chro-
matin accessibility. Similar trends hold for the other two 
cell lines (Additional file 1: Figures S1, S2). Together, these 
results show that a large portion of the ChIP-seq signal 
comes neither from specific aspects of the control data 
nor from the binding itself, but rather from other factors 
such as mappability and chromatin accessibility. Particu-
larly interesting is the consistently large predictive power 

of chromatin accessibility. Equally interesting, and in fact 
surprising, is the significantly small predictive power 
wielded by the controls IgG and input DNA. Thus, our 
first conclusion is that mappability and chromatin acces-
sibility are the two strongest determinants of the strength 
of the ChIP-seq signal in a given genomic region, at least 
at the relatively small scale of 129-bp windows. Although 
numerous previous works have considered mappabil-
ity as a factor influencing read densities [15, 19, 22], and 
chromatin accessibility is known to influence transcrip-
tion factor binding [20], our analysis provides systematic 
confirmation and quantification of these influences using 
a large compendium of ENCODE datasets. Complete lists 
of POV values for all datasets and cell lines are presented 
in Additional file 2: Table S1, Additional file 3: Table S2, 
and Additional file 4: Table S3.

Figure  2b summarizes the predictive power of indi-
vidual predictors across datasets, separated by cell line 
and by transcription factor versus chromatin mark. In all 
cases, DNaseI hypersensitivity shows the largest spread 
among the predictors. It also has the largest median pre-
dictive power in all cases except H1-hESC histone marks, 
where mappability and GC-content have higher median 
predictive power. This means that although chromatin 
accessibility is generally the largest influence on these 
ChIP-seq signals, its importance varies widely across 
datasets. For the transcription factor ChIP-seq signals, 
mappability is the second most important factor, as men-
tioned above. For the histone mark ChIP-seq signals in 
the Gm12878 and K562 cell lines, however, the input 
DNA signal is generally the second most important after 
chromatin accessibility, and more important therefore 
than mappability.

The total predictive power from all predictors (the 
stack heights in Fig.  2a) is summarized in Fig.  2c. Each 
box in Fig. 2c represents either TFs or histone marks for 
a particular cell line. The total POV values across all data-
sets and cell lines range from 2.82 to 43.62. Overall, the 
predictability of TF data is higher than the predictability 
of histone data (Wilcoxon rank-sum test, p-value 0.0002). 
Across cell lines, both the Gm12878 and the K562 pre-
dictabilities are better than the predictability in H1-hESC 
(Wilcoxon signed-rank test, p-values 0.00002 and 0.0004, 
respectively), while they themselves are not significantly 
different from each other (p-value 0.41). Thus, the total 
percentage of variance explained varies by cell line as well 
as between transcription factors and histone marks.

Figure 2d shows scatter plots of the true and the pre-
dicted numbers of windowed read counts for selected 
cases. We chose the TF and the HM corresponding to the 
maximum and the minimum total POV value for plot-
ting. Trends are as expected, with the TF cases showing 
stronger correlations than HM cases.
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Predictive power and predictability improve at larger 
scales
The analysis of the previous section, employing 129-bp 
windows, illustrates variability in ChIP-seq signals on a 
small scale. However, for some transcription factors and 
regulatory complexes, average peak size can be many 
times larger [39, 40]. Further, signals for chromatin marks 
are usually diffuse, spanning from several nucleosomes to 
large domains covering multiple genes [41, 42]. Thus, it is 
important to consider influences on ChIP-seq signals at a 
variety of scales larger than 129  bps. In this section, we 
observe a remarkably consistent trend wherein the pre-
dictive power of some predictors, and consequently the 
total predictability of the ChIP-seq data, improves signifi-
cantly as the scale becomes larger. We applied the regres-
sion model described above across all datasets and over 

a range of window sizes in increasing powers of 2, from 
(27 + 1) to (220 + 1) ≈ 106 bp. Figure 3a summarizes the 
results of this multiscale analysis, where each subpanel 
corresponds to either transcription factors or histone 
marks for a particular cell line. The curves in the sub-
panels represent the trends of the total predictive power 
(black) and the predictive power of the five predictors 
(colors) obtained using staged regression across the range 
of scales. The dark central line of each patch denotes the 
mean across the datasets in the group, while the sur-
rounding lighter color represents two standard deviations 
on either side of the mean. For example, in Gm12878 
cells, the total POV across TFs went from 23.82 ± 3.49 at 
(27 +  1) bps to 93.64 ±  1.25 at (220 +  1) bps. The POV 
specifically by mappability went from 3.00  ±  1.05 to 
35.6 ± 8.6 over the same range of window sizes.
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The first striking observation is that the overall pre-
dictability of ChIP-seq data (in terms of the total POV 
explained) increases dramatically with increasing scale, 
for all three cell lines and both data groups. At the larg-
est scale of analysis, which uses windows of just over a 

million base pairs, approximately 90 % of the variability 
in TF ChIP-seq data and 70–80  % of the variability in 
HM data is explained, mostly by chromatin accessibility, 
mappability, and GC-content. The predictive power of 
mappability is high and increasing with scale for the TFs 
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and the points are color coded to indicate duplicate points. The Pearson’s rho (ρ) along with the p-values is also shown



Page 7 of 16Ramachandran et al. Epigenetics & Chromatin  (2015) 8:33 

in the Gm12878 and H1-hESC cell lines. In the other four 
cases, GC-content is more important than mappability 
and increases more strongly with scale. The predictive 
power of chromatin accessibility (DNaseI hypersensitiv-
ity) increases at smaller scales, but then flattens out or 
even decreases at the larger scales. This profile is also 
shared by the predictive power of the input DNA and 
IgG features, although the total amount of variance they 
explain is smaller. Thus, as in our 129-bp analysis, the two 
standard ChIP-seq peak-calling controls, input DNA and 
IgG, have relatively little predictive value once the other 
factors are taken into account.

Between the two data groups, histone marks have 
larger spreads around the mean curve than the TFs in 
general, meaning the predictability of the histone mark 
signals varies more widely. The iDNA predictor has a 
distinctly thinner spread for H1-hESC compared to the 
other two cell lines, whereas the total POV explained 
shows the opposite effect—spread for H1-hESC is thicker 
than those for the other two cell lines.

Figure 3b shows scatter plots of the true and the pre-
dicted numbers of windowed read counts at four differ-
ent scales. For each scale, we chose to display the plot 
corresponding to the TF or HM with the maximum total 
POV value. This corresponded to the TF Mxi1 (except for 
the lowest scale where it was Sp1), and the histone mark 
H3k4me2. In agreement with Panel A, for both TFs and 
HMs, the predictions become more accurate as the scale 
becomes larger.

Removing non‑binding influences produces a better 
estimate of true binding signal
The results thus far demonstrate that multiple non-
binding influences on ChIP-seq signals can be identified 
and quantified. Intuitively, if we subtract away the non-
binding components of the ChIP-seq signal using our 
genome-wide model, what remains should correspond 
more closely to the true binding signal. Of course, we 
do not know the true strength of TF binding across the 
genome. However, previous studies suggest that higher 
affinity TF peaks are more likely to harbor DNA-binding 
motifs or even multiple such motifs [43, 44]. Thus, we 
decided to look for correlations between estimated bind-
ing signal strength based on our regression modeling 
and TF-DNA-binding motif frequencies. Of the 30 TFs 
in our dataset, we identified 17 for which a clear DNA-
binding motif was available in the JASPAR database [45] 
(see Additional file 5: Table S4 for TF and motif list). We 
obtained peaks for those TFs by running MACSv1.4.2 
(the latest stable release at the time of our analysis) with 
default parameters. Since the peaks are usually asym-
metric with respect to their summits and can differ in 
width significantly, for the sake of consistent analysis 

across datasets, we redefined a peak as a symmetric win-
dow around the summit location. Specifically, we took 
windows of (summit ±64) base pairs as the peaks. This 
resulted in 129-bp peaks, which was consistent with the 
scale of our initial ChIP-seq analysis and safely within 
the average peak size across the different datasets. We 
estimated true binding signal in peaks by subtracting 
the predicted read numbers based on our genome-wide 
background model from the corresponding true read 
numbers. Intuitively, this difference corresponds to the 
portion of the ChIP-seq signal not explained by other, 
potentially confounding factors, and thus is more likely 
to represent true binding. We refer to this as the esti-
mated binding signal (B). Then, we used FIMO [46] with 
default parameters along with in-house scripts to iden-
tify and count motif occurrences in the peaks—we call 
this signal M (see “Methods” for complete details of the 
FIMO runs). Finally, we computed the Pearson’s correla-
tion coefficient between signals B and M. As a basis for 
comparison, we also correlated signal M with two other 
measures of the binding signal: (1) the raw read numbers, 
signal R, and (2) the MACS peak scores, signal S (these 
are scaled log p-values). Intuitively, a stronger true bind-
ing signal should be associated with a higher motif occur-
rence; so the estimate of the binding signal (B, R, or S) 
that best correlates with motif frequencies (M) can be 
taken as the best estimator of true binding.

The results for the K562 cell line are shown in Fig. 4a 
(see Additional file  1: Figures S3, S4 for results corre-
sponding to the other cell lines). Cases B, R, and S are 
indicated by different colors as shown. We see that the 
correlations of the different binding estimates to motif 
counts vary widely for the different transcription fac-
tors, but that the three estimates largely vary in concert. 
For example, all three are poor for CMYC in GM12878 
and H1-hESC, whereas all three are relatively good for 
CREB1. This trend is particularly apparent in Figs. 4b, c, 
where we show scatter plots of the Pearson’s correlation 
coefficient (PCC) values for estimate B with the PCC val-
ues for the other two estimates. For the majority of data-
sets, all three estimators have correlations between 0.2 
and 0.4, which are substantial and statistically significant 
(p-values ranging from 0 to 1.77  ×  10−48). Across the 
cell lines, the three estimates co-vary best for Gm12878, 
followed by H1-hESC and K562 in that order. Figure 4d 
shows a ternary grid, where the color of a square identi-
fies the estimate that correlates best with motif frequen-
cies for a given cell line and transcription factor. Signal B 
outperforms the other two in 37 out of a total of 51 cases, 
which is a statistically significant fraction (p = 1.2 × 10−8 
by ratio test, under the null hypothesis of no difference 
between the methods). Of the remaining cases, the split 
between methods R and S is 3 to 11. Very similar results 
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are obtained if we correlate B, R, and S to the presence 
(count > 0) or absence (count = 0) of motifs in the peak 
(Additional file 6: Table S5). Correlations involving actual 
motif counts are a bit better for the majority of cases 
(about two-thirds) compared to correlations involving 
just motif presence or absence.

As a further evaluation of the performance of the 
three estimates, we ranked the peaks in order of best to 
worst scores obtained using the three estimates. Then, 
we computed the fraction of peaks within a moving 
window of 1000 peaks that contained at least one motif 
(the notion of presence/absence of motifs is more natu-
ral for this scenario). The resulting trends for the three 

estimates corresponding to an example TF MAFK from 
the K562 cell line are plotted in Fig. 4e. A good ranking 
of the peaks is one in which peaks with a DNA-binding 
motif are near the top, and peaks lacking motifs are 
near the bottom. Accordingly, in Fig.  4e, we see that 
the curve corresponding to our estimate B is above the 
other curves in the left half of the plot and below the 
other curves in the right half, indicating a better rank-
ing than the other two estimates. In other words, our 
binding estimate  B concentrates motif-rich peaks more 
towards the top and motif-poor peaks more towards the 
bottom of the list, leading to a better overall grouping of 
the peaks.
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Finally, the Venn diagrams in Fig. 4f picture the degree 
of overlap between the top 1/6th of peaks, the next 1/6th 
of peaks, and so on, as ranked by the three different cri-
teria. All three methods agree pretty well on what are the 
top peaks. But then as one goes down the list disagree-
ment grows, until one gets to the end where the methods 
start agreeing again on what are the worst peaks.

Thus, overall, in a statistically significant manner, our 
model is able to more effectively separate out the non-
binding components of the ChIP-seq signal compared to 
the other competing models considered. The motif analy-
sis presented in this section amounts to a biological vali-
dation of our model, thereby demonstrating its utility in 
the accurate identification of TF-binding sites.

Chromatin accessibility explains most of the association 
between specific transcription factors and gene 
expression, but general factors have genuine predictive 
power
A number of studies have investigated the predictabil-
ity of gene expression using factors such as TF/histone 
binding activity in peak regions and chromatin accessi-
bility [47, 48]. Other studies have forgone peak-calling, 
and simply used raw TF ChIP-seq signals (read counts) 
in the vicinity of transcription state sites (TSSs) to pre-
dict gene expression [30, 31]. In this latter camp, some 
startlingly high, and statistically significant correlations 
have been found between the ChIP-seq signals of many 
individual TFs and gene expression. One possible expla-
nation for these observed associations is that quantita-
tive TF-binding levels at the TSSs directly regulate gene 
expression. However, there are several reasons to doubt 
this explanation, even if the correlations themselves are 
not in doubt. First, the signals of many different TFs are 
found to be associated to expression, even when those 
TFs themselves are often not known to bind in any 
coherent or coordinated fashion. Second, most genu-
ine TF-binding activities are believed to occur in peak 
regions. Therefore, associations that do not explicitly 
involve peaks, but rather look only at the signal around 
the TSSs irrespective of whether a peak is present or not, 
may not have anything to do with true binding. Third, 
gene expression levels are known to directly relate to 
chromatin accessibility [49, 50] with a large propor-
tion of TSSs being in open chromatin regions [48]. This 
fact, combined with our above result that ChIP-seq sig-
nals contain a substantial component reflecting chro-
matin accessibility, alludes to chromatin accessibility 
acting as a confounder in these associations. Due to all 
these reasons, it is compelling to consider the alterna-
tive possibility that the observed association between 
gene expression and TF ChIP-seq signal in a small 
region centered at the TSSs may actually be explained by 

relationships between expression and background/non-
binding signal in the ChIP-seq data.

To systematically investigate the cause of these asso-
ciations, we first predicted expression for the GENCODE 
[51] v19 genes (annotation data downloaded from the 
UCSC Table Browser) in the three cell lines using each 
TF and HM dataset individually. Specifically, we chose 
the numbers of CAGE (Cap Analysis Gene Expression) 
[52] reads in windows of size 129 bps (TSS ±64  bps) 
to represent gene expression. In the same windows, we 
counted ChIP-seq reads for the TF and HM datasets. We 
constructed linear regression models predicting gene 
expression based on each TF’s and HM’s read counts. A 
tenfold cross-validation analysis was carried out for each 
predictor to estimate prediction accuracy and establish 
confidence intervals for those estimates.

Figure  5a shows the accuracy of the predictors in 
H1-hESCs, in terms of the Pearson correlation coefficient 
(PCC) between predicted and actual gene expression. 
The different TFs and HMs have widely varying power 
to predict gene expression. Nevertheless, many have sta-
tistically significant predictive power, with correlations 
between predictions and actual gene expression ranging 
between 0.2 and 0.5 for many TFs. (Small black marks 
at the top of each bar give the 95 % confidence intervals 
based on cross-validation.) Several general TFs, includ-
ing Pol2, TAF1, and TBP have correlations over 0.6, and 
two HMs, namely, H3K4me3 and H3K9ac, are not much 
behind. These results confirm previous findings of cor-
relations between gene expression and numerous TF and 
HM ChIP-seq signals at TSSs. These trends are mostly 
consistent across different cell lines (see Additional file 1: 
Figures S5, S6).

To understand these results more deeply, in Fig.  5b 
(and in Additional file  1: Figure  S7), we present the 
results of similarly predicting gene expression based on 
mappability, GC-content, DNaseI hypersensitivity reads, 
iDNA reads, and IgG reads (which we now collectively 
call our core predictors to distinguish them from TF or 
HM signals used as predictors). As with TFs and HMs, 
the power of different core predictors to predict gene 
expression using only their signals at the TSSs varies sig-
nificantly, with mappability and IgG control being at the 
low end, input DNA and GC-content being midrange, 
and chromatin accessibility having the highest predictive 
power. Surprisingly, even when the core predictors are 
used together, the combined predictive power does not 
improve much compared to using chromatin accessibil-
ity alone. This strongly suggests that, in small windows 
around the TSSs, the chromatin state effect dominates 
over all the other predictors. Indeed, only two gen-
eral transcription factors (in H1-hESC) predict expres-
sion better than the chromatin accessibility signal (Pol2, 
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p = 0.003, and Taf1, p = 0.0002, by Wilcoxon rank-sum 
test). Conversely, no TSS ChIP-seq signal of a “specific” 
TF or HM on its own displayed a higher correlation to 
gene expression than the chromatin accessibility sig-
nal. Indeed, all were substantially worse predictors, with 
p-values of 0.0002 or smaller.

As a further test of our conjecture that the chroma-
tin accessibility component of TSS ChIP-seq signals is 
responsible for their correlation to gene expression, we 
present the scatter plot in Fig.  5c. The plot shows, for 
the three cell lines, the correlation between the power of 
chromatin accessibility to predict genome-wide TF and 
HM ChIP-seq data (the light green components from 
Fig.  2a) and the PCC values for expression predictions 
using the TF and HM signals one at a time (the dark 
green components from Fig. 5a). We see that when dif-
ferent TF or HM ChIP-seq signals have a greater chro-
matin accessibility component, their TSS ChIP-seq 
signals also tend to have a greater association to gene 
expression.

A stronger and more quantitative evidence of a mean-
ingful relationship between gene expression and a TF/
HM ChIP-seq signal at TSSs would be the additional 
predictive power that ensues when an individual TF/HM 
predictor is combined with our core predictors. Figure 5d 
shows this measure for H1-hESC in terms of the increase 
in correlation coefficient obtained by adding individual 
TFs and HMs one at a time to the combined core predic-
tors. This plot clearly shows that hardly any TF or HM 
signals are substantially related to gene expression. Some 
improvements are statistically significant due to the 
large number of genes involved, but the increases in cor-
relation coefficient are less than 0.02 in nearly all cases. 
Only the general factors Pol2, TAF1, and TBP, and the 
histone marks H3K27ac, H3K4me3, and H3K9ac stand 
out as adding substantial information beyond our core 
predictors. Similar results are obtained in the Gm12878 
and K562 cell lines, which are shown as a scatter plot in 
Fig.  5e. Here, we can see how the correlation increases 
in the Gm12878 and K562 cell lines (y-axis) relate to the 
correlation increases seen in H1-hESCs (x-axis). The 
increases in all three cell lines are correlated, although 
the increases in Gm12878 are more modest compared to 
the other cell lines.

Finally, the plots of Fig. 5f show the comparative trends 
of the gene expression predicted using the TSS ChIP-seq 
signals of POL2 (which is directly involved in transcrip-
tion) and the TSS signal levels of the core predictors. 
Strikingly, the core predictors are able to predict expres-
sion as well as POL2, particularly at low to moderate 
expression levels.

Taken together, these results suggest that although a 
small portion of the observed association between TF 

signal around TSSs and gene expression may be attrib-
utable to true TF-binding, for the most part, these asso-
ciations can be explained by other background/control 
factors. Particular among those factors is chromatin 
accessibility, which positively influences both TF/HM 
signals and expression, thereby explaining most of the 
correlations between them.

For the sake of completeness, we also predicted gene 
expression using our core predictors inside whole gene 
boundaries instead of just around TSSs. We used the num-
ber of RNA-seq reads (instead of CAGE reads) to measure 
gene expression within the gene boundaries. The results 
obtained were similar, with the contribution of back-
ground factors to observed gene expression still being 
significant, although to a lesser extent compared to when 
focusing on TSS regions (see Additional file 1: Figure S8).

Discussion
Using a regression model and a set of 123 ENCODE 
human ChIP-seq datasets encompassing TFs and HMs 
across multiple cell lines, we have shown that we can 
quantify the influences of a variety of other signals on 
the ChIP-seq signal. The novelty in our treatment lies in 
the quantitative framework, which shows how genome-
wide variations in ChIP-seq signal depend partly on true 
binding/chromatin state and partly on other, bias-related 
factors. While we chose to include in our study five such 
influences that we believe most strongly affect ChIP-seq 
signals, namely, mappability, GC-content, chromatin 
accessibility, input DNA control, and IgG control, our 
framework can readily be extended to quantify the effects 
of other potential influences. Likewise, the framework 
can be adapted to use models more sophisticated than 
linear regression. Regardless of these particular choices, 
our study emphasizes a mindset in which ChIP-seq 
datasets are viewed as consisting of an overall genome-
wide signal that can be quantifiably decomposed into 
multiple components. Importantly, we have found that 
different ChIP-seq datasets can contain substantially dif-
ferent amounts of these components. This suggests that 
no single control dataset (even cell type-specific iDNA 
or IgG pulldown) can control equally well for non-spe-
cific signal in different ChIP-seq datasets. Rather, each 
ChIP-seq dataset should be individually analyzed for its 
specific biases. Our framework also facilitates the sepa-
ration of the extraneous influences from the binding sig-
nal, and even helps to account for correlations between 
the influences themselves—which can often create false 
impressions of biological relationships between unrelated 
datasets.

Among the five non-binding (background) influences 
we considered, mappability and chromatin accessibility 
generally exert more influence on the ChIP-seq signal (in 
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terms of predictive power) than the other three. Tran-
scription factor ChIP-seq data demonstrated greater 
overall predictability using background compared to his-
tone mark data. Higher predictability, of course, means 
that the total non-binding influences on the signal are 
greater, and it suggests that a smaller portion of the sig-
nal reflects what is truly of biological interest (binding 
for TFs and modifications for HMs). This may be because 
most TFs bind DNA in a relatively focal manner, so the 
true signal is restricted to a small portion of the genome. 
By contrast, some histone marks can span many thou-
sands or even millions of base pairs, so the total portion 
of genuine signal is greater in these cases. We also saw 
that predictability in the Gm12878 and K562 cell lines is 
greater than that in H1-hESC, and that the influence of 
the input DNA factor in particular was greater.

It may be worth noting that when predicting back-
ground signal levels within the peaks of known ‘pio-
neer’ TFs [53, 54], the background model may have to be 
adjusted by weighing down or even excluding the chro-
matin accessibility feature for better accuracy. This is 
because the unadjusted chromatin accessibility compo-
nent (which actually signifies open chromatin) may be an 
overestimate, considering that pioneer TFs are believed 
to bind to condensed chromatin leading, in turn, to an 
open chromatin only thereafter. On the other hand, when 
pioneer TFs are part of the training set itself, we do not 
expect any significant impact on our model’s accuracy 
because the model is fitted over windows tiled across 
the entire genome. In comparison, the peak regions of 
a pioneer TF would cover only a minute fraction of the 
genome. And finally, although some of what is captured 
by our model may be ‘opportunistic’ binding [54], inter-
estingly, it has been shown that even a ChIP-seq on a fac-
tor that has been knocked out results in significant signal 
levels [55]. Therefore, the ‘background’ signals we remove 
are not just limited to opportunistic or non-specific 
binding.

As we expanded the scale of our analysis by increasing 
the window size, we found that the overall predictability 
of ChIP-seq data using all influences together steadily 
improves. The dynamics among the predictive powers of 
individual influences, however, varies widely, with some 
increasing in predictive power and others decreasing. 
These trends can be understood in light of the fact that, 
just as genomic analyses are conducted at different scales 
(1 bp resolution for SNP analysis, ~100 bp resolution for 
TF ChIP-seq peak-calling, and ~100 bp to ~100 kb reso-
lution for chromatin domain analysis), bias effects also 
occur with varying strengths at different scales [23]. At 
a given scale, only certain biases are active enough to 
significantly influence the data. Therefore, an a priori 

knowledge of the strengths of biases as a function of 
scale will allow one to prioritize their mitigation. While 
the reasons for these trends are not obvious, the overall 
increase in predictability with scale is to be expected. 
Larger genomic windows represent greater averaging, 
and therefore variability due to the inherent “noise” of 
random sampling from a genomic signal tends to even 
out.

We validated the effectiveness of our model in captur-
ing non-binding influences and separating them from 
the ChIP-seq signal by showing it leads to a better rank-
ing of peaks and a better correlation between the esti-
mated binding signal and motif frequencies. While the 
estimated binding signal is of good utility and can be 
conveniently computed for a given dataset using our soft-
ware package, by extension, we can envision a complete 
ChIP-seq analysis methodology where the raw ChIP-seq 
signal would be subjected to a comprehensive multistage 
decomposition process, taking into account all relevant 
control datasets at the same time. Successive decom-
position stages would quantify and thereby eliminate 
the effects of biases one by one, eventually leading to a 
“purified” ChIP-seq signal that would exclusively reflect 
binding. In our opinion, such a generalized methodol-
ogy would more completely address the problems asso-
ciated with biases in the ChIP-seq technology compared 
to existing peak-calling methodologies, improving, in the 
process, the utility of the technology itself.

Finally, we investigated the validity of associations 
between gene expression and ChIP-seq reads in small 
windows centered at the TSSs, which have been reported 
in multiple studies [30, 31]. (We also extended our inves-
tigation over whole gene boundaries, see Additional 
file 1: Figure S8). While the associations may be statisti-
cally genuine, our analysis suggests that they are mainly 
caused by the common factor of chromatin accessibility, 
which is related to gene expression and also creates a bias 
towards a higher ChIP-seq signal, regardless of true bind-
ing. Several previous studies carried out in yeast [32–34] 
have already shown this phenomenon to be true, calling 
it the expression bias or hyper-ChIPability. These essen-
tially refer to the fact that highly transcribed genomic 
regions are more susceptible to non-specific protein 
binding compared to other regions. As a result, unre-
lated transcription factors can bind to these regions, and 
these effects can sometimes be so strong that transcrip-
tional repressors can erroneously appear to be activators 
[34]. When such effects can dominate even after selec-
tively filtering for highly enriched peak regions as dem-
onstrated in the yeast studies, it should be no surprise 
that these effects manifest themselves in TSS regions, 
particularly when no specific efforts are made to filter 
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the TSSs according to whether they overlap with or are 
proximal to high-quality peaks. Our results comple-
ment those of the yeast studies, and confirm the hyper-
ChIPability effects in human using ENCODE datasets. 
The true cause of these effects may be manifold, such as 
a very open chromatin resulting from nucleosome deple-
tion or non-specific interactions between antibodies and 
RNA polymerases [33]. Regardless of the cause, in light of 
these findings, it becomes all the more crucial to recog-
nize the role of confounding factors and account for their 
effects while interpreting observed relationships between 
biological variables. Upon properly accounting for these 
effects, we can look forward to much more accurate and 
biologically meaningful insights into the workings of the 
complex regulatory mechanisms in living organisms.

Conclusions
In this study, we have developed a novel framework to 
quantify the roles of different types of biases in influ-
encing the genome-wide ChIP-seq signal using a large 
compendium of ENCODE datasets. Our model, along 
with the accompanying software package, has general 
applicability, yields a better ranking of peaks and a bet-
ter estimate of the binding signal than competing meth-
ods, and has led to several other new insights including 
(1) background influences are greater at larger scales, 
(2) mappability and chromatin accessibility significantly 
influence the ChIP-seq signal, (3) transcription fac-
tor ChIP-seq signals have a higher proportion of non-
binding influences compared to histone mark ChIP-seq 
signals, and (4) confounders need to be accounted for 
before measuring relationships between gene expression 
and ChIP-seq signals around TSSs. In addition, our study 
has revealed that due to wide variability in the propor-
tions of biases across different ChIP-seq datasets, no sin-
gle control dataset can effectively account for all biases, 
even within similar cellular conditions. Controls that are 
more specific towards individual biases must therefore 
be utilized. We expect these observations to significantly 
advance our understanding of the role of biases in influ-
encing ChIP-seq signals, thereby paving ways for better 
techniques for bias identification and removal.

Methods
ChIP‑seq data processing
The 123 human (hg19) ENCODE ChIP-seq datasets (30 
TFs and 11 histone marks) corresponding to the three 
Tier 1 cell lines (Gm12878, H1-hESC, and K562) were 
downloaded as BAM files from the ENCODE section of 
the UCSC Genome Browser [56]. For easy access to the 
read locations, the BAM files were then converted to 
the BED format using the “bamTobed” utility from the 

BEDTools package [57]. We removed all duplicate reads. 
That is, multiple reads mapping to the same position of 
the same strand of the same chromosome were collapsed 
into a single representative read. As a result, a genomic 
window of size N  may have a maximum of 2N  reads in it, 
one on each strand at each position within the window.

For a selected subset of the TF datasets (17 out of 
30, Additional file  5: Table S4) for which a clear DNA-
binding motif was available in the JASPAR database 
[45], peaks were called using MACS v1.4.2 with default 
parameters. These peak summits were used for the motif 
correlation analysis in Fig. 4.

For each cell line, the DNaseI hypersensitivity, input 
DNA control, and the IgG control ChIP-seq datasets 
were also downloaded and processed as described above.

Mappability and GC‑content data tracks
Our mappability and GC-content tracks are based on the 
reference human genome version hg19. Across the cell 
lines, there can be minor differences in these tracks because 
(1) GM12878 and K562 come from specific individuals 
and (2) they have mutated genomes. Partly due to lack of 
availability of genomes specific to the different cell lines 
and partly because we believe these differences are subtle 
enough not to significantly affect our results, we ignore 
them for our investigation. These tracks are thus assumed to 
be identical for all three cell lines. Both the tracks are bina-
rized in that a given base pair location carries a ‘1’ in the 
mappability track if it is mappable and a ‘1’ in the GC-con-
tent track if it has a G or a C. In the opposite situations, the 
base pair location carries a ‘0’. A given window of base pairs, 
thus, will reflect the exact fraction of the total number of 
base pairs in the window that are mappable or contain a G/C 
in the mappability and the GC-content tracks, respectively.

The genome‑wide staged regression model
For the staged regression model, the genome was divided 
into consecutive windows of size (27  +  1)  =  129 base 
pairs. The odd-numbered window sizes were specifi-
cally chosen for symmetry around the midpoint. Read 
counts for the ChIP-seq datasets and bit counts for the 
mappability and GC-content tracks were then tabulated 
for the windows. Chromosome Y was excluded from the 
analysis for the sake of consistency, since some ChIP-seq 
datasets had reads for chromosome Y while others did 
not. The regression model was then trained in successive 
stages by introducing a new predictor at each stage in 
the order Mappability, GC-content, DNaseI hypersensi-
tivity, input DNA control, and IgG control. If yi denotes 
the regressand containing the true number of windowed 
reads, Xi the predictor design matrix, and βi the coef-
ficient vector for stage i, then the ordinary least squares 
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(OLS) estimator is given by βi =
(

XT
i Xi

)

−1
XT
i yi.  

The mean squared error (MSE) for stage i, denoted 

MSEi, would then be 

[

n
∑

j=1

(

yij − Xijβij

)2

]

/(n− 1)

, where n is the number of residuals. The percentage of 
variance (POV) explained by the latest predictor added 
to the regression in stage   i can then be calculated as 
POVi = 100(MSEi−1 −MSEi)/var(yi). We use the POV 
calculated in this manner to measure the predictive 
power of the individual predictors.

Motif analysis
To conduct motif analysis for the model evaluation in 
Fig.  4, we first searched the JASPAR database for bind-
ing motifs corresponding to the set of TFs we have in our 
investigation. Unambiguous DNA-binding motifs were 
available for only 17 of the 30  TFs we considered. JAS-
PAR count matrix (.cm) files were downloaded for these 
TFs, which were then converted to position-specific scor-
ing matrix (.pssm) files using the ‘jaspar2meme’ utility 
from the MEME package [58]. FIMO [46], with default 
parameters, was then used to identify individual motif 
locations within peaks. Tasks such as FASTA sequence 
extraction in peak intervals and counting of the identi-
fied motifs within peaks were completed using in-house 
scripts.

Gene expression analysis
For the gene expression analysis in Fig.  5, GEN-
CODE v19 gene annotations were downloaded from 
the UCSC Table Browser along with CAGE expres-
sion reads corresponding to the three cell lines. Then, 
to establish confidence intervals for the predicted 
expressions, a tenfold cross-validation analysis was 
carried out as follows. The set of TSSs was randomly 
divided into ten roughly equal-sized groups. In each 
fold, the regression model was first trained on nine 
groups and then used to make expression predictions 
on the left-out group. The predicted expression val-
ues and the Pearson’s correlation coefficient (PCC) 
between the ground truths and the predictions were 
recorded.

Software
The framework described here has been implemented in 
R and MATLAB, and these packages can be downloaded 
from http://www.perkinslab.ca/Software.html. The soft-
ware can be used to first build the background model 
corresponding to a ChIP-seq dataset, and then estimate 
the purified binding signal for a user-given set of genomic 
intervals (e.g., peaks).
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