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Abstract

seq signals and also relates to gene expression.

Background: Unraveling transcriptional regulatory networks is a central problem in molecular biology and, in this
quest, chromatin immunoprecipitation and sequencing (ChIP-seq) technology has given us the unprecedented
ability to identify sites of protein-DNA binding and histone modification genome wide. However, multiple systemic
and procedural biases hinder harnessing the full potential of this technology. Previous studies have addressed this
problem, but a thorough characterization of different, interacting biases on ChlP-seq signals is still lacking.

Results: Here, we present a novel framework where the genome-wide ChIP-seq signal is viewed as being quantifi-
ably influenced by different, measurable sources of bias, which can then be computationally subtracted away. We use
a compendium of 123 human ENCODE ChlIP-seq datasets to build regression models that tell us how much of a ChIP-
seq signal can be attributed to mappability, GC-content, chromatin accessibility, and factors represented in input DNA
and IgG controls. When we use the model to separate out these non-binding influences from the ChiP-seq signal, we
obtain a purified signal that associates better to TF-DNA-binding motifs than do other measures of peak significance.
We also carry out a multiscale analysis that reveals how ChlIP-seq signal biases differ across different scales. Finally, we
investigate previously reported associations between gene expression and ChiIP-seq signals at transcription start sites.
We show that our model can be used to discriminate ChIP-seq signals that are truly related to gene expression from
those that are merely correlated by virtue of bias—in particular, chromatin accessibility bias, which shows up in ChIP-

Conclusions: Our study provides new insights into the behavior of ChIP-seq signal biases and proposes a novel
mitigation framework that improves results compared to existing techniques. With ChIP-seq now being the central
technology for studying transcriptional regulation, it is most crucial to accurately characterize, quantify, and adjust for
the genome-wide effects of biases affecting ChIP-seq. Our study also emphasizes that properly accounting for con-
founders in ChIP-seq data is of paramount importance for obtaining biologically accurate insights into the workings
of the complex regulatory mechanisms in living organisms. R and MATLAB packages implementing the framework
can be obtained from http://www.perkinslab.ca/Software.html.

Background

Transcriptional regulation has been the focus of intense
investigation ever since seminal works on gene regula-
tory mechanisms appeared in the literature about half a
century ago [1, 2]. The past few decades have seen steady
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progress, revealing important insights that not only iden-
tify the main players of transcriptional regulation, such
as transcription factors (TFs) [3], core promoters [4],
enhancers [5], and silencers [6], but also begin to unravel
the complex interplay existing between these entities [7].
On the one hand, these studies substantially enhance
our understanding of fundamental biological processes,
such as differentiation and development [8], while, on the
other hand, they shed light on the deviations from nor-
mal expression patterns (attributable to misregulation)
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that are often responsible for initiating disease states
such as cancer [9-11].

Among the deluge of high-throughput quantitative
technologies that have facilitated transcriptional regu-
lation studies in recent years, a powerful and arguably
the most popular platform today is ChIP-seq (Chroma-
tin ImmunoPrecipitation followed by massively parallel
sequencing) [12]. This is a high-throughput method for
the genome-wide in vivo identification of the binding sites
of DNA-associated proteins. In the ChIP step, crosslinked
DNA-protein extracts are sheared and enriched by anti-
bodies specific to the protein of interest. The purified DNA
fragments are then identified through high-throughput
sequencing and mapped back to the organism’s canonical
genome for further computational analysis [13, 14].

While the ChIP-seq technology has advantages com-
pared to its microarray-based counterpart (ChIP-chip),
such as very high resolution and sensitivity, it also poses
significant challenges stemming from both inherent
biases in the design of the technology [15] as well as dif-
ferences in how individual experiments are conducted
[16]. For example, GC-rich fragments are often over-
represented in ChIP-seq datasets, giving rise to the GC-
content bias [17, 18]. There is also a mappability bias that
occurs due to differences in sequence complexity [19].
Since only uniquely mappable reads are typically retained
in ChIP-seq datasets, reads falling in low complexity
regions are predisposed to being discarded, resulting in
the bias. Furthermore, differences in chromatin structure
can lead to a chromatin accessibility bias. For instance,
heterochromatin is more tightly packed compared to
euchromatin, resulting in accessibility differences and
decreased read density [20, 21]. Other sources of biases,
such as PCR amplification and nucleic acid isolation, also
contribute to distortions in the ChIP-seq signal [19, 22,
23]. It is thus important to address the effects of these
biases because they can influence both the identification
and the prioritization of putative transcription factor
binding sites or regions of chromatin modification.

Many peak-calling algorithms—methods for automatic
detection of enriched genomic regions in a ChIP-seq
experiment—account for these biases using either a par-
allel input DNA (iDNA) control that has not been sub-
jected to the immunoprecipitation step, or a mock ChIP
sample where a non-specific IgG antibody is used [13,
24-27]. In both cases, the assumption is that the ChIP
and the control samples have the same biases which, if
untrue, would render the methods ineffective. Other
algorithms address specific biases in a somewhat heu-
ristic manner by either modeling and removing them or
introducing adjustments to local read positions and/or
counts in the overall ChIP-seq signal profile [18, 19, 28].
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Although such methodologies have been partly suc-
cessful in correcting for various biases, it is not always
clear which biases they account for and which they do
not. To provide clarity, a large-scale genome-wide study
quantifying the composition of the ChIP-seq signal in
terms of the biases and other factors such as notions of
control would be very useful, and is missing from the cur-
rent literature. Such a study would help answer two ques-
tions. One, is it reasonable to view ChIP-seq data as a
composite genome-wide signal, capable of being decom-
posed (or separated) into its constituent parts—with each
part attributable to binding, biases, or other non-binding
factors such as controls? And, two, if such a decompo-
sition is possible, then how much of the signal can be
attributed to each factor? In other words, can we quan-
tify the roles played by the constituent factors in making
up the ChIP-seq signal? Figure 1 shows a schematic of a
ChIP-seq signal in peak regions where the biases due to
mappability and chromatin accessibility are represented
as component signals. Such a signal-processing view of
ChIP-seq data would help identify and separate the bind-
ing and non-binding portions of the signal, ultimately
leading to more accurate biological interpretation of the
data.

In this study, we present a novel framework that allows
the quantification, both individually and jointly, of vari-
ous biases that act on genome-wide ChIP-seq signals. We
set out to look at ChIP-seq data as a signal with quan-
tifiable components, also referred to as predictors in
the ensuing text. We first construct a staged regression
model using a large set of human ENCODE [29] ChIP-
seq datasets (123 in total) from the three Tier 1 cell lines

A == ChlP-seq signal
= Accessibility signal

=== Mappability signal

Signal
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Peak 1

<«— Genome ——>

Peak 2

Fig. 1 A signal-processing view of ChIP-seq data. Here, we show two
ChiP-seq peaks (potential regions of enrichment) with different signal
levels. Let us assume that after accounting for mappability and acces-
sibility, what is left in the overall signal corresponds to true binding.
Peak 1 is unlikely to be a genuine peak because only a small portion
of the overall signal may correspond to binding. Peak 2, on the other
hand, is much more likely to indicate true binding, as a relatively
smaller share of the overall signal is attributable to mappability and

chromatin accessibility, leaving a much larger portion for true binding
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to quantify the ChIP-seq signal in terms of five predic-
tors: Mappability, GC-content, chromatin accessibility,
input DNA control, and IgG control. The quantification
reveals that a large part of the overall ChIP-seq signal is
attributable to these background factors. We then carry
out a multiscale analysis using the model to quantify
the trends of ChIP-seq signal composition across differ-
ent scales, which also highlights the complex relation-
ships existing between the predictors. After establishing
a background model in this manner, we then proceed to
use the model to separate the binding and non-binding
portions of the ChIP-seq signal. We show that the result-
ing corrected binding signal is able to rank peaks bet-
ter than peak-callers such as MACS. Finally, we use our
model to investigate previously reported associations
between gene expression and TF and histone mark (HM)
ChIP-seq signals in small windows centered at TSSs [30,
31]. Other reports [32—34] have questioned the validity
of such associations, recommending caution while inter-
preting ChIP-seq signals in highly expressed genomic
regions. Motivated by these studies, we predict expres-
sion using our model with various predictor sets such
as standalone TFs, standalone HMs, and TFs and HMs
combined with controls. Our results not only confirm
the concerns raised in the cautionary studies mentioned
above, but go a step further in providing concrete evi-
dence that many of the associations between TF signal
around TSSs and gene expression can really be attributed
to confounding factors, particularly chromatin accessibil-
ity. Furthermore, we show that our model can account for
these confounding factors, thereby clearly differentiating
ChIP-seq signals that truly associate with gene expres-
sion from those that do not.

Results

A large portion of the ChlIP-seq signal does not correspond
to true binding

To test the hypothesis that ChIP-seq signals contain com-
ponents not related to true transcription factor binding
or chromatin marks, we turned to the wealth of human
ENCODE data [29]. The ENCODE consortium has stud-
ied transcription factor binding and chromatin state in
a large number of cell lines, but three “Tier-1” cell lines
were studied especially thoroughly in human: GM12878,
a lymphoblastoid cell line, H1I-hESC, human embryonic
stem cells, and K562, an immortalized myelogenous leu-
kemic cell line. Of the available ChIP-seq assays, we iden-
tified 30 TFs and 11 HMs that were assayed in all three
cell lines. We decided to use those 123 datasets as the
basis for our investigation. We also selected a set of five
other genomic signals that we thought might influence,
or be present within, the ChIP-seq data: mappability,
GC-content, chromatin accessibility, and input DNA and
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IgG control signals. Because the majority of the mapped
reads we processed were 36 base pairs long, we obtained
a 36-base-pair mappability track from the UCSC Table
Browser [35] and binarized it, so that each base pair in
the genome is designated simply as either mappable or
unmappable. Similarly, our binarized GC-content signal
reports whether each base pair in the genome is G/C (1)
or A/T (0). Our mappability and GC-content signals are
derived from the reference human genome (hgl9), and
we treat them as being identical for all three cell lines.
This is an approximation to the truth for a number of rea-
sons. First, any genome assembly has errors in it, arising
because of a variety of technical reasons [36]. Second, the
three cell lines come from different human individuals,
each with their own genetic variations. Third, the K562
cell line in particular, being cancer-derived, has numer-
ous mutations that are not reflected in the hgl9 assem-
bly. In fact, even at the karyotypic level, this cell line is
wildly abnormal, containing three copies of many chro-
mosomes along with complex translocations involv-
ing multiple chromosomes [37]. Despite these known
differences, no specialized genome assemblies for the
three Tier-1 cell lines are presently available, and so we
rely on hgl9 as the best available proxy. In contrast, we
treat chromatin accessibility as being different across
cell lines and, accordingly, chose to represent it based
on the cell line-specific DNasel hypersensitivity high-
throughput sequencing datasets generated by ENCODE.
In the same manner, we obtained from ENCODE the cell
line-specific input DNA and IgG control read sets that
are commonly used for peak-calling. The genome-wide
signals for DNasel hypersensitivity, input DNA, and
IgG control depend on mapping short reads to the hgl9
human genome assembly which, as we have noted above,
does not entirely match the cell lines we study. Still, these
signals are cell line-specific, and therefore should rea-
sonably reflect differences in chromatin accessibility and
other properties between the cell lines that can affect
ChIP-seq signals.

For our first analysis, we divided the genome into con-
secutive windows of (27 + 1) = 129 base pairs. This is
smaller than the majority of TF peaks and histone mark-
enriched regions, so it should capture any meaningful
variations in these signals, while still allowing for some
regional averaging to reduce noise. We tabulated read
counts for all the ChIP-seq, DNasel, input DNA, and IgG
control datasets in these windows, as well as mappable
bases and GC-content. Our goal was to determine how
much of the ChIP-seq signals can be explained in terms of
the other five factors, which we will call predictors. How-
ever, the predictors themselves are partially correlated.
For example, unmappable regions cannot have DNasel,
iDNA, or IgG reads mapped to them, so the latter signals
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will also be zero in those regions. To get around this prob-
lem, we conducted a staged regression analysis. We first
built a linear model predicting ChIP-seq reads from map-
pability alone, and determined how much of the ChIP-
seq signal was explained. Then, we added GC-content
to the model, then DNasel, and so on. With each added
feature, we track how much additional predictive power
we gain, and only that gain is attributed to the added fea-
ture. In this way, for example, we attribute to the DNase
I hypersensitivity predictor only what it explains about
the ChIP-seq data that is not already explained by mappa-
bility or GC-content. We chose to prioritize mappability
first because of its well-known influence on read densities
and because it is a cell state-independent feature (modulo
our comments above). Similarly, GC-content is cell state-
independent, so we chose it next. Chromatin accessibil-
ity was prioritized next, due to its known connections
to transcription factor binding [38]. Of the two common
peak-calling controls, we expected input DNA to be less
specific than IgG, so we wanted to account for its influ-
ence first. IgG control, which is procedurally most similar
to performing a TF ChIP-seq, therefore, came last in the
order of priority.

Figure 2a shows stacked bar plots of the percentages of
variance explained (POVs) for all the ChIP-seq datasets
corresponding to the H1-hESC cell line, for regression
models successively adding more features. For most of the
datasets (34 out of 41), mappability and chromatin acces-
sibility together share most of the total predictive power
held by all the predictors combined. For example, for
ATEFS3, the five predictors combined explain 12.61 % of the
total variance in the dataset. Of this, mappability explains
449 % and chromatin accessibility (measured using
DNasel hypersensitivity) explains an additional 5.11 %,
amounting to a total of 9.6 %. In contrast, the two notions
of control, IgG and input DNA, explain significantly
smaller percentages of variance (0.53 and 1.13 %, respec-
tively), after mappability and chromatin accessibility have
been accounted for. The total variance explained, as well
as the portions explained by individual predictors, varies
substantially between different datasets. For instance, only
4.09 % of the NRSF signal is explained by all predictors
combined, with only 0.46 % coming from mappability and
2.14 % from chromatin accessibility. By contrast, 34.87 %
of the CREBI signal is explained by the predictors, with
3.04 % attributable to mappability and 25.97 % to chro-
matin accessibility. Similar trends hold for the other two
cell lines (Additional file 1: Figures S1, S2). Together, these
results show that a large portion of the ChIP-seq signal
comes neither from specific aspects of the control data
nor from the binding itself, but rather from other factors
such as mappability and chromatin accessibility. Particu-
larly interesting is the consistently large predictive power
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of chromatin accessibility. Equally interesting, and in fact
surprising, is the significantly small predictive power
wielded by the controls IgG and input DNA. Thus, our
first conclusion is that mappability and chromatin acces-
sibility are the two strongest determinants of the strength
of the ChIP-seq signal in a given genomic region, at least
at the relatively small scale of 129-bp windows. Although
numerous previous works have considered mappabil-
ity as a factor influencing read densities [15, 19, 22], and
chromatin accessibility is known to influence transcrip-
tion factor binding [20], our analysis provides systematic
confirmation and quantification of these influences using
a large compendium of ENCODE datasets. Complete lists
of POV values for all datasets and cell lines are presented
in Additional file 2: Table S1, Additional file 3: Table S2,
and Additional file 4: Table S3.

Figure 2b summarizes the predictive power of indi-
vidual predictors across datasets, separated by cell line
and by transcription factor versus chromatin mark. In all
cases, DNasel hypersensitivity shows the largest spread
among the predictors. It also has the largest median pre-
dictive power in all cases except H1-hESC histone marks,
where mappability and GC-content have higher median
predictive power. This means that although chromatin
accessibility is generally the largest influence on these
ChIP-seq signals, its importance varies widely across
datasets. For the transcription factor ChIP-seq signals,
mappability is the second most important factor, as men-
tioned above. For the histone mark ChIP-seq signals in
the Gm12878 and K562 cell lines, however, the input
DNA signal is generally the second most important after
chromatin accessibility, and more important therefore
than mappability.

The total predictive power from all predictors (the
stack heights in Fig. 2a) is summarized in Fig. 2c. Each
box in Fig. 2¢ represents either TFs or histone marks for
a particular cell line. The total POV values across all data-
sets and cell lines range from 2.82 to 43.62. Overall, the
predictability of TF data is higher than the predictability
of histone data (Wilcoxon rank-sum test, p-value 0.0002).
Across cell lines, both the Gm12878 and the K562 pre-
dictabilities are better than the predictability in H1-hESC
(Wilcoxon signed-rank test, p-values 0.00002 and 0.0004,
respectively), while they themselves are not significantly
different from each other (p-value 0.41). Thus, the total
percentage of variance explained varies by cell line as well
as between transcription factors and histone marks.

Figure 2d shows scatter plots of the true and the pre-
dicted numbers of windowed read counts for selected
cases. We chose the TF and the HM corresponding to the
maximum and the minimum total POV value for plot-
ting. Trends are as expected, with the TF cases showing
stronger correlations than HM cases.
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Fig. 2 Power of different predictors for predicting the strength of the ChIP-seq signal. All plots correspond to a window size of 129 bp. a Stacked bar
plot for the H1-hESC cell line showing the predictive power of different predictors in terms of the POV explained. b Box plots showing the variability
in the predictive power of the predictors across datasets in a given cell line. Boxes represent the interquartile range, which measures the spread of
the data. The top whisker ends at g; + w(g; — g;) and the bottom whisker ends at q; — w(g; — q;), where w = 1.5 and g, and g; are the 25th and
the 75th percentiles, respectively. € Box plot showing the variability of the total predictive power of all the predictors combined. Data are grouped
such that we have one box per combination of cell line and ChIP-seq type (TF or histone marks). d Scatter plots showing the correlations between
true and predicted number of reads in individual windows for chosen cases: maximum and minimum total POV values for each of the TF and HM
groups in a, all from the H1-hESC cell line. The name of the TF or HM is also indicated. For plotting purposes, the predictions were rounded to the
nearest integer for consistency with the true read numbers (which are always integers). The plots have also been color coded to indicate duplicate
points. This reveals large clusters at the lower left corners of the plots indicating many windows having very few to no reads. The Pearson’s rho (p)

along with the p-values are also shown

Predictive power and predictability improve at larger
scales

The analysis of the previous section, employing 129-bp
windows, illustrates variability in ChIP-seq signals on a
small scale. However, for some transcription factors and
regulatory complexes, average peak size can be many
times larger [39, 40]. Further, signals for chromatin marks
are usually diffuse, spanning from several nucleosomes to
large domains covering multiple genes [41, 42]. Thus, it is
important to consider influences on ChIP-seq signals at a
variety of scales larger than 129 bps. In this section, we
observe a remarkably consistent trend wherein the pre-
dictive power of some predictors, and consequently the
total predictability of the ChIP-seq data, improves signifi-
cantly as the scale becomes larger. We applied the regres-
sion model described above across all datasets and over

a range of window sizes in increasing powers of 2, from
(27 + 1) to (2%° 4 1) & 10° bp. Figure 3a summarizes the
results of this multiscale analysis, where each subpanel
corresponds to either transcription factors or histone
marks for a particular cell line. The curves in the sub-
panels represent the trends of the total predictive power
(black) and the predictive power of the five predictors
(colors) obtained using staged regression across the range
of scales. The dark central line of each patch denotes the
mean across the datasets in the group, while the sur-
rounding lighter color represents two standard deviations
on either side of the mean. For example, in Gm12878
cells, the total POV across TFs went from 23.82 + 3.49 at
(27 4+ 1) bps to 93.64 & 1.25 at (2% + 1) bps. The POV
specifically by mappability went from 3.00 £ 1.05 to
35.6 + 8.6 over the same range of window sizes.
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The first striking observation is that the overall pre-
dictability of ChIP-seq data (in terms of the total POV
explained) increases dramatically with increasing scale,
for all three cell lines and both data groups. At the larg-
est scale of analysis, which uses windows of just over a

million base pairs, approximately 90 % of the variability
in TF ChIP-seq data and 70-80 % of the variability in
HM data is explained, mostly by chromatin accessibility,
mappability, and GC-content. The predictive power of
mappability is high and increasing with scale for the TFs



Ramachandran et al. Epigenetics & Chromatin (2015) 8:33

in the Gm12878 and H1-hESC cell lines. In the other four
cases, GC-content is more important than mappability
and increases more strongly with scale. The predictive
power of chromatin accessibility (DNasel hypersensitiv-
ity) increases at smaller scales, but then flattens out or
even decreases at the larger scales. This profile is also
shared by the predictive power of the input DNA and
IgG features, although the total amount of variance they
explain is smaller. Thus, as in our 129-bp analysis, the two
standard ChIP-seq peak-calling controls, input DNA and
IgG, have relatively little predictive value once the other
factors are taken into account.

Between the two data groups, histone marks have
larger spreads around the mean curve than the TFs in
general, meaning the predictability of the histone mark
signals varies more widely. The iDNA predictor has a
distinctly thinner spread for H1-hESC compared to the
other two cell lines, whereas the total POV explained
shows the opposite effect—spread for HI-hESC is thicker
than those for the other two cell lines.

Figure 3b shows scatter plots of the true and the pre-
dicted numbers of windowed read counts at four differ-
ent scales. For each scale, we chose to display the plot
corresponding to the TF or HM with the maximum total
POV value. This corresponded to the TF Mxil (except for
the lowest scale where it was Sp1), and the histone mark
H3k4me2. In agreement with Panel A, for both TFs and
HM:s, the predictions become more accurate as the scale
becomes larger.

Removing non-binding influences produces a better
estimate of true binding signal

The results thus far demonstrate that multiple non-
binding influences on ChIP-seq signals can be identified
and quantified. Intuitively, if we subtract away the non-
binding components of the ChIP-seq signal using our
genome-wide model, what remains should correspond
more closely to the true binding signal. Of course, we
do not know the true strength of TF binding across the
genome. However, previous studies suggest that higher
affinity TF peaks are more likely to harbor DNA-binding
motifs or even multiple such motifs [43, 44]. Thus, we
decided to look for correlations between estimated bind-
ing signal strength based on our regression modeling
and TF-DNA-binding motif frequencies. Of the 30 TFs
in our dataset, we identified 17 for which a clear DNA-
binding motif was available in the JASPAR database [45]
(see Additional file 5: Table S4 for TF and motif list). We
obtained peaks for those TFs by running MACSv1.4.2
(the latest stable release at the time of our analysis) with
default parameters. Since the peaks are usually asym-
metric with respect to their summits and can differ in
width significantly, for the sake of consistent analysis
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across datasets, we redefined a peak as a symmetric win-
dow around the summit location. Specifically, we took
windows of (summit +64) base pairs as the peaks. This
resulted in 129-bp peaks, which was consistent with the
scale of our initial ChIP-seq analysis and safely within
the average peak size across the different datasets. We
estimated true binding signal in peaks by subtracting
the predicted read numbers based on our genome-wide
background model from the corresponding true read
numbers. Intuitively, this difference corresponds to the
portion of the ChIP-seq signal not explained by other,
potentially confounding factors, and thus is more likely
to represent true binding. We refer to this as the esti-
mated binding signal (B). Then, we used FIMO [46] with
default parameters along with in-house scripts to iden-
tify and count motif occurrences in the peaks—we call
this signal M (see “Methods” for complete details of the
FIMO runs). Finally, we computed the Pearson’s correla-
tion coefficient between signals B and M. As a basis for
comparison, we also correlated signal M with two other
measures of the binding signal: (1) the raw read numbers,
signal R, and (2) the MACS peak scores, signal S (these
are scaled log p-values). Intuitively, a stronger true bind-
ing signal should be associated with a higher motif occur-
rence; so the estimate of the binding signal (B, R, or S)
that best correlates with motif frequencies (M) can be
taken as the best estimator of true binding.

The results for the K562 cell line are shown in Fig. 4a
(see Additional file 1: Figures S3, S4 for results corre-
sponding to the other cell lines). Cases B, R, and S are
indicated by different colors as shown. We see that the
correlations of the different binding estimates to motif
counts vary widely for the different transcription fac-
tors, but that the three estimates largely vary in concert.
For example, all three are poor for CMYC in GM12878
and H1-hESC, whereas all three are relatively good for
CREBI. This trend is particularly apparent in Figs. 4b, c,
where we show scatter plots of the Pearson’s correlation
coefficient (PCC) values for estimate B with the PCC val-
ues for the other two estimates. For the majority of data-
sets, all three estimators have correlations between 0.2
and 0.4, which are substantial and statistically significant
(p-values ranging from 0 to 1.77 x 107*%). Across the
cell lines, the three estimates co-vary best for Gm12878,
followed by H1-hESC and K562 in that order. Figure 4d
shows a ternary grid, where the color of a square identi-
fies the estimate that correlates best with motif frequen-
cies for a given cell line and transcription factor. Signal B
outperforms the other two in 37 out of a total of 51 cases,
which is a statistically significant fraction (p = 1.2 x 1078
by ratio test, under the null hypothesis of no difference
between the methods). Of the remaining cases, the split
between methods R and S is 3 to 11. Very similar results
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Fig. 4 Correlation analysis with motif counts in peaks and peak-ranking analysis. a Pearson’s correlation coefficients between different model scores
in peaks and DNA-binding motif counts computed for all 17 TFs from the K562 cell line. b, ¢ Scatter plots of the PCC values for estimate B with the
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are obtained if we correlate B, R, and S to the presence
(count > 0) or absence (count = 0) of motifs in the peak
(Additional file 6: Table S5). Correlations involving actual
motif counts are a bit better for the majority of cases
(about two-thirds) compared to correlations involving
just motif presence or absence.

As a further evaluation of the performance of the
three estimates, we ranked the peaks in order of best to
worst scores obtained using the three estimates. Then,
we computed the fraction of peaks within a moving
window of 1000 peaks that contained at least one motif
(the notion of presence/absence of motifs is more natu-
ral for this scenario). The resulting trends for the three

estimates corresponding to an example TF MAFK from
the K562 cell line are plotted in Fig. 4e. A good ranking
of the peaks is one in which peaks with a DNA-binding
motif are near the top, and peaks lacking motifs are
near the bottom. Accordingly, in Fig. 4e, we see that
the curve corresponding to our estimate B is above the
other curves in the left half of the plot and below the
other curves in the right half, indicating a better rank-
ing than the other two estimates. In other words, our
binding estimate B concentrates motif-rich peaks more
towards the top and motif-poor peaks more towards the
bottom of the list, leading to a better overall grouping of
the peaks.
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Finally, the Venn diagrams in Fig. 4f picture the degree
of overlap between the top 1/6th of peaks, the next 1/6th
of peaks, and so on, as ranked by the three different cri-
teria. All three methods agree pretty well on what are the
top peaks. But then as one goes down the list disagree-
ment grows, until one gets to the end where the methods
start agreeing again on what are the worst peaks.

Thus, overall, in a statistically significant manner, our
model is able to more effectively separate out the non-
binding components of the ChIP-seq signal compared to
the other competing models considered. The motif analy-
sis presented in this section amounts to a biological vali-
dation of our model, thereby demonstrating its utility in
the accurate identification of TF-binding sites.

Chromatin accessibility explains most of the association
between specific transcription factors and gene
expression, but general factors have genuine predictive
power

A number of studies have investigated the predictabil-
ity of gene expression using factors such as TF/histone
binding activity in peak regions and chromatin accessi-
bility [47, 48]. Other studies have forgone peak-calling,
and simply used raw TF ChIP-seq signals (read counts)
in the vicinity of transcription state sites (TSSs) to pre-
dict gene expression [30, 31]. In this latter camp, some
startlingly high, and statistically significant correlations
have been found between the ChIP-seq signals of many
individual TFs and gene expression. One possible expla-
nation for these observed associations is that quantita-
tive TF-binding levels at the TSSs directly regulate gene
expression. However, there are several reasons to doubt
this explanation, even if the correlations themselves are
not in doubt. First, the signals of many different TFs are
found to be associated to expression, even when those
TFs themselves are often not known to bind in any
coherent or coordinated fashion. Second, most genu-
ine TF-binding activities are believed to occur in peak
regions. Therefore, associations that do not explicitly
involve peaks, but rather look only at the signal around
the TSSs irrespective of whether a peak is present or not,
may not have anything to do with true binding. Third,
gene expression levels are known to directly relate to
chromatin accessibility [49, 50] with a large propor-
tion of TSSs being in open chromatin regions [48]. This
fact, combined with our above result that ChIP-seq sig-
nals contain a substantial component reflecting chro-
matin accessibility, alludes to chromatin accessibility
acting as a confounder in these associations. Due to all
these reasons, it is compelling to consider the alterna-
tive possibility that the observed association between
gene expression and TF ChIP-seq signal in a small
region centered at the TSSs may actually be explained by
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relationships between expression and background/non-
binding signal in the ChIP-seq data.

To systematically investigate the cause of these asso-
ciations, we first predicted expression for the GENCODE
[51] v19 genes (annotation data downloaded from the
UCSC Table Browser) in the three cell lines using each
TF and HM dataset individually. Specifically, we chose
the numbers of CAGE (Cap Analysis Gene Expression)
[52] reads in windows of size 129 bps (TSS £64 bps)
to represent gene expression. In the same windows, we
counted ChIP-seq reads for the TF and HM datasets. We
constructed linear regression models predicting gene
expression based on each TF’s and HM’s read counts. A
tenfold cross-validation analysis was carried out for each
predictor to estimate prediction accuracy and establish
confidence intervals for those estimates.

Figure 5a shows the accuracy of the predictors in
H1-hESCs, in terms of the Pearson correlation coefficient
(PCC) between predicted and actual gene expression.
The different TFs and HMs have widely varying power
to predict gene expression. Nevertheless, many have sta-
tistically significant predictive power, with correlations
between predictions and actual gene expression ranging
between 0.2 and 0.5 for many TFs. (Small black marks
at the top of each bar give the 95 % confidence intervals
based on cross-validation.) Several general TFs, includ-
ing Pol2, TAF1, and TBP have correlations over 0.6, and
two HMs, namely, H3K4me3 and H3K9ac, are not much
behind. These results confirm previous findings of cor-
relations between gene expression and numerous TF and
HM ChIP-seq signals at TSSs. These trends are mostly
consistent across different cell lines (see Additional file 1:
Figures S5, S6).

To understand these results more deeply, in Fig. 5b
(and in Additional file 1: Figure S7), we present the
results of similarly predicting gene expression based on
mappability, GC-content, DNasel hypersensitivity reads,
iDNA reads, and IgG reads (which we now collectively
call our core predictors to distinguish them from TF or
HM signals used as predictors). As with TFs and HMs,
the power of different core predictors to predict gene
expression using only their signals at the TSSs varies sig-
nificantly, with mappability and IgG control being at the
low end, input DNA and GC-content being midrange,
and chromatin accessibility having the highest predictive
power. Surprisingly, even when the core predictors are
used together, the combined predictive power does not
improve much compared to using chromatin accessibil-
ity alone. This strongly suggests that, in small windows
around the TSSs, the chromatin state effect dominates
over all the other predictors. Indeed, only two gen-
eral transcription factors (in H1-hESC) predict expres-
sion better than the chromatin accessibility signal (Pol2,
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p = 0.003, and Tafl, p = 0.0002, by Wilcoxon rank-sum
test). Conversely, no TSS ChIP-seq signal of a “specific”
TF or HM on its own displayed a higher correlation to
gene expression than the chromatin accessibility sig-
nal. Indeed, all were substantially worse predictors, with
p-values of 0.0002 or smaller.

As a further test of our conjecture that the chroma-
tin accessibility component of TSS ChIP-seq signals is
responsible for their correlation to gene expression, we
present the scatter plot in Fig. 5c. The plot shows, for
the three cell lines, the correlation between the power of
chromatin accessibility to predict genome-wide TF and
HM ChIP-seq data (the light green components from
Fig. 2a) and the PCC values for expression predictions
using the TF and HM signals one at a time (the dark
green components from Fig. 5a). We see that when dif-
ferent TF or HM ChIP-seq signals have a greater chro-
matin accessibility component, their TSS ChIP-seq
signals also tend to have a greater association to gene
expression.

A stronger and more quantitative evidence of a mean-
ingful relationship between gene expression and a TF/
HM ChIP-seq signal at TSSs would be the additional
predictive power that ensues when an individual TF/HM
predictor is combined with our core predictors. Figure 5d
shows this measure for H1-hESC in terms of the increase
in correlation coefficient obtained by adding individual
TFs and HMs one at a time to the combined core predic-
tors. This plot clearly shows that hardly any TF or HM
signals are substantially related to gene expression. Some
improvements are statistically significant due to the
large number of genes involved, but the increases in cor-
relation coefficient are less than 0.02 in nearly all cases.
Only the general factors Pol2, TAF1, and TBP, and the
histone marks H3K27ac, H3K4me3, and H3K9ac stand
out as adding substantial information beyond our core
predictors. Similar results are obtained in the Gm12878
and K562 cell lines, which are shown as a scatter plot in
Fig. 5e. Here, we can see how the correlation increases
in the Gm12878 and K562 cell lines (y-axis) relate to the
correlat