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Abstract

Background: The interplay between epigenetic modifications and chromatin structure are integral to our understanding
of genome function. Methylation of cytosine (5mC) at CG dinucleotides, traditionally associated with transcriptional
repression, is the most highly studied chemical modification of DNA, occurring at over 70% of all CG dinucleotides in the
genome. Hypomethylated regions (HMRs) often occur in CG islands (CGls), however, they also occur outside of CGls and
function as cell-type specific enhancers. During the process of differentiation, reorganization of chromatin and nucleosome
arrangement at regulatory regions is thought to occur in order for the establishment of cell-type specific transcriptional
programs. However, the specifics regarding the organization of nucleosomes at HMRs and the potential mechanisms
regulating nucleosome occupancy in these regions are unknown. Here, we have investigated nucleosome organization
around hypomethylated regions (HMRs) identified in two mouse primary cells.

Results: Microccocal nuclease (MNase) digested mononucleosomes from primary cultures of new-born female mouse
dermal fibroblasts and keratinocytes were mapped and compared to the HMRs obtained from single

base-pair resolution methylomes. In both cell types, we find that nucleosomes are enriched at HMIR boundaries. In contrast
to the nucleosomes found at boundaries of HMRs in CGls, HMRs outside of CGls are calculated to be

preferentially bound by nucleosomes, with phased nucleosomes propagating into the methylated region. Nucleosomes
are enriched at the tissue-specific HVRs (TS-HMR) boundaries in both cell types suggesting that nucleosome
organization surrounding HMR boundaries is independent of methylation status. In addition, we find potential
transcription factor (TF) binding sites (E-box motifs) enriched in non-CGl TS-HMR boundaries.

Conclusions: Our results show that intrinsic nucleosome occupancy score (INOS) positively correlate with the
nucleosome organization surrounding non-CGl TS-HMRs, suggesting that DNA sequence plays a role in the
establishment of HMRs in the genome. Since nucleosomes impact all processes involving the genome, our results
provide a link between epigenetic modifications, chromatin structure, and regulatory function.

Keywords: CG methylation, Hypomethylated regions, HMR, Nucleosomes, Epigenomics, Keratinocytes, Fibroblasts

J

Background

Covalent modification of different bases of DNA occurs
throughout genomes [1,2]. In mammals, the typical
DNA modification is methylation of cytosine in the CG
dinucleotide with over 70% of CG dinucleotides being
methylated [3-5]. Several single nucleotide resolution
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methylation maps show that unmethylated cytosines
occur in clusters representing 2% to 3% of the genome,
mainly in the CG rich regions termed CG islands (CGIs),
which encompass 1% of the genome. Approximately
70% of promoters contain a CGI, and these promoters
tend to regulate housekeeping genes [6], and the hypo-
methylation of these regions is critical for cellular func-
tion [4,7,8]. However, a number of hypomethylated
regions (HMRs) exist outside of CGIs (non-CGI HMRs)
and promoters, and these tend to vary across cell types
and tissues [4,7-15], suggestive of a possible regulatory
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role for non-CGlIs as enhancer elements. Indeed, non-
CGI HMRs have been shown to be enriched for transcrip-
tion factor binding sites (TFBSs) [14], and are associated
with expression of nearby tissue-specific genes [4,8,16,17],
indicating that hypomethylation of non-CGI regions is a
hallmark of regulatory function.

In addition to the methylation status of regulatory ele-
ments, the primary organizational unit of chromatin, the
nucleosome, is an important factor impacting the regula-
tory capacity of the genome. Nucleosomes restrict access
to factors requiring the DNA template and nucleosome
loss, depletion, or rearrangement is indicative of transcrip-
tional activity in regulatory regions including promoters
and enhancers across species [18,19]. Moreover, the nu-
cleosome itself is an important factor signaling regulatory
activity. For example, nucleosomes harboring specific post-
translational modifications have been shown to associate
with active chromatin (for example, monomethylation of
lysine 4 of histone H3 is enriched in nucleosomes flanking
active or poised enhancers [20]). Nucleosomes have also
been implicated in the targeting of DNA methylation, as
they have also been shown to serve as tethering sites for
DNA demethylases that, in turn, contribute to the forma-
tion of repressive chromatin states [21,22].

Several studies have begun to investigate the relationship
between DNA methylation and nucleosome organization.
Many studies focus on the effects of DNA methylation on
nucleosome stability. It has been demonstrated that CG
methylation is reduced by the presence of nucleosomes
[23-27], however, methylation is enriched within nu-
cleosome core DNA in vivo [28]. Thus, the role of nu-
cleosome positioning on DNA methylation as well as
the effects of methylation on nucleosome positioning
are not resolved, and it has been suggested that both
can influence each other [29]. Recent studies focusing
on specific regulatory regions (promoters and distal en-
hancers) indicate that nucleosome reorganization and
depletion generally accompanies demethylation of regu-
latory elements leading to activation of these regions
in vivo [29-31]. It has recently been shown that nucleo-
somes tend to be highly organized over regions that are
differentially methylated between tissues even when
these regions are not active [30].

Here, we have investigated nucleosome organization at
the boundaries of HMRs where the DNA methylation
transition occurs. To this end, we have generated genome-
wide nucleosome maps produced by MNase digestion of
nucleosomal DNA obtained from primary tissues from
mouse fibroblasts and keratinocytes, followed by high-
throughput sequencing. We next compared the nucleosome
organization surrounding HMRs that we have recently iden-
tified in both cell types [5,32] and found that nucleosomes
are enriched at the HMR boundaries. We find that nucleo-
some organization at non-CGI HMR boundaries, which tend
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to be tissue-specific, is independent of methylation status. In
addition, in contrast to HMRs in CGIs, nucleosomes at the
boundaries of non-CGI HMRs are predicted by a model
of intrinsic nucleosome occupancy [33], suggesting that
nucleosomes are localized at their preferred sites, impli-
cating a role for DNA sequence in demarcating these
putative regulatory regions genome-wide.

Results

Genome-wide nucleosome maps of mouse dermal
fibroblasts and keratinocytes

Micrococcal nuclease (MNase)-digested nucleosomal
DNA from primary cultures of new-born female mouse
fibroblasts and keratinocytes was sequenced using an Illu-
mina HiSeq sequencer [34-38]. The resulting reads,
mapped to the mouse genome, allowed the generation of
map of nucleosome occupancy at high (27-35X) coverage
for each cell type (Additional file 1: Table S1, Additional
file 2: Figure S1).

As validation of the quality of these data, we assessed the
nucleosome occupancy surrounding the transcription start
site (TSS). We subdivided mouse promoters based on the
presence of CGIs (+/-CGI) and their methylation status
[5,32]. We find that unmethylated promoters (+/-CGI) in
both tissues are characterized by a nucleosome-depleted re-
gion upstream of the TSS, with phased nucleosomes (165
base pairs (bps) periodicity) occurring towards the body of
the gene (Additional file 2: Figure S2). The degree of
nucleosome depletion upstream of the TSS as well as the
strength of the phasing is positively correlated with
transcription, as previously observed in yeast [38,39] and
vertebrates [40-42]. The next largest group, are promoters
that are methylated but do not contain a CGI (-HMR/-
CGI: 8,803/28,283). In contrast to the previous groups,
promoters of the most highly expressed genes in this class
do not have a nucleosome depleted region or the phased
nucleosome pattern similar to Saga-containing promoters
in yeast [43] (Additional file 2: Figure S2).

Nucleosomes localize at boundaries of hypomethylated
regions of keratinocytes and fibroblasts

We next investigated the in vivo nucleosome organization
surrounding 49,233 fibroblast hypomethylated regions
(HMRs) [5] and 71,495 keratinocyte HMRs [32]. One dif-
ficulty in such an analysis is the assignment of the bound-
aries of HMRs. These boundaries could occur at the first
unmethylated CG dinucleotide of the HMR, the methyl-
ated CG directly upstream and downstream of the HMR,
or somewhere between the two. To gain insight into
nucleosome distributions across HMRs, we aligned HMRs
either by the first/second unmethylated CG or by the adja-
cent methylated CG (Additional file 2: Figure S3 and S4)
located on average 150 bps from the first unmethylated
CG (Additional file 2: Figure S5a and b). We observe a
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weak averaged nucleosome profile when HMR bound-
aries are assigned using the adjacent methylated CGs
(Additional file 2: Figures S3a, S4a-d). However, when
HMR boundaries are set using the first unmethylated CG,
we find a striking pattern in both cell types with nucleo-
somes enriched at the boundaries with a periodic array of
nucleosomes propagating into the methylated region
(Figure 1a, d, g and Additional file 2: Figure S3b). Similar
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results were obtained when defining the HMR boundaries
using the second unmethylated CG (Additional file 2:
Figures S3c, S4e-h), although this approach yielded a less
periodic nucleosome signal outside of the HMR boundaries
(Additional file 2: Figure S5c).

Since a substantial fraction of HMR regions found in our
methylome maps do not overlap a CGI (72.5% of all fibro-
blast HMRs and 81.2% of all identified keratinocyte HMRs),
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Figure 1 Patterns of nucleosome occupancy at hypomethylated regions (HMRs) of mouse fibroblasts and keratinocytes. (a-c)

Heatmap of nucleosome densities at HMRs sorted by length in fibroblasts (Fb.) for (a) all HMRs, (b) HMRs overlapping with CGls and (c) HMRs
not overlapping with CGls. (d-f) Average nucleosome occupancy measured in fibroblasts (blue) and keratinocytes (red) and intrinsic nucleosome
occupancy scores (INOS, black) for (d) all fibroblast HMRs, (e) fibroblast HMRs overlapping CGls (+CGls), and (f) non-CGl containing fibroblast
HMRs (—CGls). HMRs are aligned by the first (5') unmethylated CG dinucleotides. (g-i) same as in (a-c) but for mouse keratinocytes (Ker).
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we next divided the HMRs into two groups: those that
overlap with CGIs (Figure 1b, e, h) and those that do not
(Figure 1c, f, i). For fibroblast HMRs overlapping CGIs,
nucleosomes localize to the unmethylated CG boundary
with phased nucleosomes extending into the methyl-
ated region, with a nucleosome depleted region in the
middle of the HMR (Figure le). This nucleosome de-
pleted region is at the TSS of expressed genes in CGlIs
(Additional file 2: Figure S2). Indeed, 78% (10,529/13,520)
(Additional file 2: Figure S6a) of fibroblast HMRs within
CGIs contain TSSs and the observed nucleosome deple-
tion is presumably caused by RNA Pol II and associated
factors that preferentially associate with CGI promoters
(Additional file 2: Figure S2) [42,44-46]. The 13,460 kera-
tinocyte HMRs in CGIs are primarily promoters with nu-
cleosomes at the boundary (Additional file 2: Figure S6c),
however, the interior of these HMRs are more occupied by
nucleosomes than the corresponding group in fibroblasts
(Figure 1e, h), potentially reflecting the changes observed in
the terminal stages of epidermal differentiation [47,48].
Most HMRs are not in CGIs and they have a similar nu-
cleosome pattern at the boundaries (Figure 1c, f, i). The
35,713 fibroblast and 58,035 keratinocyte HMRs without
CGIs have nucleosomes at the boundary with phased nu-
cleosomes spreading into the adjacent methylated region.
However, in contrast to the HMRs within CGIs, the nucle-
osomes at the boundary of non-CGI HMRs are predictable
by a model of intrinsic nucleosome sequence preference
(intrinsic nucleosome occupancy scores (INOS)) [33] sug-
gesting that the localization of nucleosomes at these
boundaries might be driven by DNA sequence (Figure 1f).

Nucleosome localization at non-CGlI HMR boundaries does
not depend on methylation status

We next asked whether the observed nucleosome pattern
in HMRs outside of CGIs is due to their methylation sta-
tus. We subdivided HMRs into three groups: those that
are common in both cell types and those that are differen-
tially methylated between the two tissues. For the purposes
of clarity, we will refer to these differentially methylated
regions as either keratinocyte or fibroblast tissue-specific
HMRs (TS-HMRs) to mean those HMRs that are found in
only one of the two tissues compared in this study. In
contrast to common HMRs, in which a substantial portion
(36.3%) occurs within CGIs, TS-HMRs show only 0.4%
overlap with CGIs. Common HMRs outside of CGIs have
nucleosomes at their boundaries as predicted by INOS
with one to three strongly phased nucleosomes extending
into the methylated region (Figure 2a, ¢, €). A similar pat-
tern is seen in the nucleosome occupancy profiles of TS-
HMRs, albeit with weaker phasing surrounding the HMR
(Figure 2b, d). The stronger phasing may be due to active
transcription [49] as approximately 14% common non-CGI
HMR contain a TSS (Additional file 2: Figure S6e). In
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contrast, 4% of TS-HMRs contain a TSS within 2 kbp of
the HMR (Additional file 2: Figure S6b, d).

Cross-comparison of nucleosome occupancy profiles in
differentially methylated regions between keratinocytes
and fibroblasts shows a peak of nucleosome occupancy at
the TS-HMR boundary in both cell types. This peak at
the boundaries corresponds to regions of high INOS
(Figure 2f, g), suggesting that DNA sequence encoded
nucleosome occupancy and not methylation status is an
important contributor to the observed nucleosome
localization at non-CGI HMR boundaries.

Nucleosome organization at extended HMRs

A common feature of HMRs shared between keratinocytes
and fibroblasts is that the boundaries are not always identi-
cal. There exist 15,747 HMRs in which the one boundary
is identical; however the other boundary is extended in one
cell type [32]. The extended unmethylated region is on
average 280 bps in length with a median of 170 bps
(Figure 3a and b and Additional file 2: Figure S7a and b).
The nucleosome localization at the common boundary of
these extended HMRs is similar to the boundaries of those
observed for HMRs with identical boundaries (Figure 3c
and Additional file 2: Figures S7c, S8a and b). However for
the extended HMRs, nucleosomes are displaced from their
optimal positions at the identical boundary and phased
nucleosomes extend into the methylated region, reflecting
the influence of CGI-containing HMRs in the averaged
profiles (2,453/7,497 or 32.7% of such HMRs overlap a
CGI). The tissue-specific boundary of the shorter HMR
(boundary 2) also has a positioned nucleosome and some
modest phasing (Figure 3c and Additional file 2: Figure S7c).
The extended boundary of the longer HMR (boundary 3) is
reminiscent of boundaries in TS-HMRs with nucleosomes
at the boundary, with little to no phasing of nucleosomes
(Figure 3c and Additional file 2: Figure S7c). Nucleosomes
centered on the boundary of both short and extended
HMRs (boundaries 2 and 3) are in a region of high INOS,
suggesting a prominent role for DNA sequence in specifying
the boundaries of extended HMRSs.

Sequence features enriched at HMR boundaries

Our findings identify nucleosomes at boundaries of
HMRs. However, the area under the ROC curve (AUC)
score assessing the ability of a single CG dinucleotide
to predict a nucleosome at the boundary of a HMR is
modest (AUC =0.52, Additional file 2: Figure S9a). In
contrast, the INOS calculation is more robust at pre-
dicting if a nucleosome will localize to these regions
(AUC =0.79, Additional file 2: Figure S9a). Moreover,
the predictive power of INOS is higher for the nucleo-
somes that are most highly enriched at HMR boundaries
(that is, the top 20% of nucleosome peaks at boundaries,
with an AUC =0.83 for INOS (AUC =0.81 for all the
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Figure 2 Nucleosome organization in non-CGl HMRs is not dependent on methylation status. (a, b) Heatmap of nucleosome density in
fibroblasts (Fb.) surrounding non-CGl containing HMRs for (a) common (found at both keratinocytes and fibroblasts), and (b) fibroblast-specific HMRs.
(¢, d) Heatmap of nucleosome density surrounding non-CGl containing HMRs in keratinocyte (Ker.) for (c) common and (d) keratinocyte-specific HMRs.
For all heatmaps, HMRs in each class are sorted by length. (e-g) Average nucleosome occupancy measured in fibroblasts (blue), and keratinocytes
(red), and intrinsic nucleosome occupancy scores (INOS, black) surrounding the 5" unmethylated CG of the HMR boundary for (e) common non-CGl
HMRSs, (f) fibroblast specific non-CGlI HMRs, and (g) keratinocyte-specific non-CGl HMRs.
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fibroblast-specific HMR boundaries), Additional file 2:
Figure S9b), providing evidence that the broader se-
quence contexts in which these unmethylated CGs
occur is important for the enrichment of nucleosomes
at HMR boundaries.

While INOS shows a general positive correspondence to
the observed nucleosome occupancy at TS-HMR bound-
aries, this correlation is not perfect (Additional file 2:
Figure S9). We therefore sought to identify additional
DNA sequence features besides INOS that contribute to
the observed nucleosome arrangements at HMR boundar-
ies in vivo. We computed the enrichment of all 6-mers
centered on the unmethylated CG at both HMR boundar-
ies. Motifs enriched in the top 20% of all in vivo nucleosome
peaks include GC rich 6-mers (CACGTG, CACGGG,
CTCGTG) and motifs enriched at the HMR boundaries not
bound by nucleosomes (bottom 20%) tend to be AT-rich

(AACGTT, AACGTQG) (Figures 4a and b, and Additional
file 2: Figure S10a and b), consistent with base compos-
ition being a dominant contributor to INOS [33]. Interest-
ingly, the E-box motif (CACGTG) is the most frequently
occurring 6-mer at the unmethylated CG at the boundary
at TS-HMRs that have high observed nucleosome occu-
pancy in both cell types (Figure 4a and b and Additional
file 2: Figure S10a and b) [7], being enriched approximately
2.0-fold at boundaries (Figure 4c and d and Additional file
2: Figure S10c and d). We also find that the E-Box motif is
predicted to be well bound by nucleosomes and potentially
its function is not as a TEFBS but as a nucleosome binding
site [50], as 150-bps sequences containing this motif in the
mouse genome tend to be in sequences with higher than
average INOS (INOS with E-box motif =0.59 vs. genome
average =0.23). Taken together, this suggests that overlap-
ping genomic signals, TFBS, and intrinsic nucleosome
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sequence preferences, contribute to the potential regulatory
functions of TS-HMRs.

Discussion

We have compared genome-wide nucleosome maps in
mouse fibroblasts and keratinocytes with methylome data
and have found that nucleosomes are enriched at the
boundaries of HMRs. Furthermore, the methylation status
of the HMR does not affect nucleosome localization at
the boundary. The localization of nucleosomes at the
boundaries of HMRs in CGIs is not predicted by INOS,

indicating that additional biochemical forces are organiz-
ing HMR boundaries. Promoters in CGIs have a similar
nucleosome organization to yeast, with a nucleosome-
depleted region at the TSS and phased nucleosomes
extending into the gene body [42]. However, the biochem-
ical mechanisms that produce these positioned nucleo-
somes are different. In yeast, the nucleosome depleted
promoter is AT rich and nucleosomes do not bind these
sequences well. In contrast, mammalian promoters tend
to be GC-rich and nucleosome depleted even though
nucleosomes preferentially bind these sequences [45,46].
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Potentially, the DNA sequences that occur in CGIs [51]
recruit remodelers [52] that are critical for the displace-
ment of nucleosomes from favored binding positions.
More impressively, in the case of HMRs outside of CGls,
which tend to be tissue-specific, we show that INOS ex-
plains a substantial fraction (AUC =0.81) of the nucleo-
some localization at boundaries, providing evidence that
DNA sequence demarcates the boundaries of TS-HMRs
in the genome. Sequence preferences of nucleosomes also
play a role in the definition of the boundaries of extended
HMRs, however, the exact mechanisms that regulate HMR
length between tissue types warrant further investigation.
E-box motifs are enriched at boundaries of TS-HMRs
in both cell types, particularly for HMRs with a nucleo-
some at the boundary. While some transcription factors,
such as nuclear receptor proteins can bind nucleosomal
DNA, B-HLH proteins cannot [50]. Nucleosome enrich-
ment within HMR boundaries confirms and extends pre-
vious observations regarding the encoding of nucleosome
occupancy over regulatory regions [45,46]. Since many

enhancers tend to be cell-type specific, high nucleosome
occupancy of TFBS can restrict their utilization to a cer-
tain cell type. In addition, nucleosomes can reinforce and
promote cooperative interactions between TFs in dis-
placing nucleosomes from their preferred sites, providing
higher specificity in gene regulation [53,54]. The E-box
motif is a sequence that nucleosome preferentially binds
suggesting its presence at the HMR boundary is not to be
a TFBS but a nucleosome localization site. Alternatively,
the E-Box may function as both, sometimes being
bound by a nucleosome and other times being bound
by a B-HLH protein. Whether or not HLH proteins do
in fact bind these E-Box sequences, suggesting equilib-
rium between a nucleosome and HLH protein binding
and potential enhancer function of TS-HMRs, however,
remains to be determined.

Conclusions
We have mapped genome-wide nucleosome organization
in two mouse primary tissue types, providing an important
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resource for the understanding of chromatin structure and
gene regulation. Comparing these maps with HMRs ob-
tained from single-base pair resolution methylomes has
allowed the identification of the nucleosome arrangements
in these regions. In particular, we find that nucleosomes
are enriched at the boundaries of HMRs. Nucleosome
organization at HMR boundaries is independent of
methylation status. For HMRs not in CGI, boundaries
are calculated to be well bound by nucleosome as
occurs in vivo. Since hypomethylation of non-CGI regions
is a hallmark of regulatory activity, our findings have im-
portant implications for the specification of chromatin
architecture at regulatory regions in the genome.

Methods

Mouse primary keratinocytes and dermal fibroblasts

NIH research guidelines and IACUC approved animal
study protocols were followed in this study. Keratinocytes
and dermal fibroblasts were cultured from newborn wild
type according to the protocol described previously [55].
Primary keratinocytes were seeded at a density of one
mouse epidermis per 10 cm dish or equivalent in calcium
and magnesium free SMEM (GIBCO Laboratories, Grand
Island, NY, USA), supplemented with 8% Chelex (Bio-Rad,
Richmond, CA, USA) treated FBS (Atlanta Biologicals,
Inc.) and 0.2 mM calcium (CaCl2). Dermal fibroblasts
were also seeded at a density of one mouse dermis per
10-cm-dish or equivalent in DMEM/F12: GlutaMAX
medium (Invitrogen) with 10% FBS.

Micrococcal nuclease (MNase) digestion and mapping of
MNase-seq data

Primary cultures of female primary mouse dermal fibro-
blasts or keratinocytes were harvested and washed once
with ice cold PBS. Resuspended cell pellet (approximately
10® cells) were resuspended in 5 mL of ice cold NP-40
lysis buffer (10 mM Tris—HCI (pH 7.4), 10 mM NaCl,
3 mM MgCl,, 0.5% NP-40) and incubated for 5 min in ice.
Nuclei were washed with MNase digestion buffer (10 mM
Tris—HCI (pH 7.4), 15 mM NaCl, 60 mM KCI) and resus-
pended in MNase digestion buffer containing 1 mM
CaCl2. Nuclei were digested with MNase for 10 and
15 min at 37 C. The MNase digestion was stopped by put-
ting the samples on ice and adding 100 mM EDTA and
10 mM EGTA (pH 7.5). MNase digested DNA were puri-
fied with the Qiagen PCR purification kit after digestion
with protease K (Qiagen). Isolated DNA was eluted in elu-
tion buffer (Qiagen). Mnase digested DNA fragments
were separated on a 2% agarose gel. DNA corresponding
to the mononucleosomal bands was gel extracted and
pulled from all digestion. The libraries for sequencing
were prepared according to the standard protocol for the
Hlumina HiSeq2000 sequencing platform with 102 bp
paired end reads. Paired end reads of MNase-seq data were
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aligned using Novoalign software (http://www.novocratft.
com/) with default parameters for both primary dermal
fibroblasts and keratinocytes to the mouse genome (UCSC
build mm9). Reads mapping to more than one location
were discarded, and data were filtered to include only those
sequences that had a mate pair match within 100 to
160 bp. Counts were recorded at the midpoint of the mate
pair alignment, and Gaussian smoothing was applied to
yield a continuous measure of nucleosome signal across the
entire genome [56].

Annotations

TSS information was extracted from RefGene annotations
downloaded from the UCSC genome browser (https://
genome.ucsc.edu/) for version of mm9. For genes with
identical transcript start and stop sites, only one was retained.
We downloaded the CG island annotations from the UCSC
genome browser for version mm9 of the mouse genome.

Female mouse primary dermal fibroblast and

keratinocyte methylomes

The fibroblast methylome was produced and released by
our group [5]. Generation of the genome-wide primary fe-
male mouse keratinocyte methylation data is described in
the accompanied paper [32]. Regions of hypomethylation
(hypomethylated regions (HMRs)) were defined using a
two-state Hidden Markov Model (HMM) described in [7].

Intrinsic nucleosome occupancy scores

We predicted intrinsic nucleosome occupancy scores
(INOSs) across HMRs using the Lasso linear model de-
scribed in [33]. For each HMR, we calculated the INOSs
at every base pair using a sliding window of 147 bp.

Data submission

Two biological replicates of MNase-seq for each primary
dermal fibroblasts and keratinocytes are in the process
of GEO submission. Keratinocyte methylome data have
been submitted to the GEO database with accession
number (GSE44918) [32]. Two biological replicates of
keratinocyte mRNA-seq data are in the process of sub-
mission to the GEO database [32]. Fibroblast methylome
and mRNA-seq data have been obtained from the GEO
accession number (GSE44942) [5]. The second biological
replicate RNA-seq data of dermal fibroblasts are in the
process of submission to the GEO database [32]. All the
sequencing data for fibroblasts and keratinocytes will be
submitted to the GEO database with accession numbers
(GSE44942 and GSE44918 respectively). The data can
also be obtained from the authors upon request.
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Additional file 1: Table S1. Statistics on MNase-seq (102 bp paired
end reads).

Additional file 2: Figure S1. Distribution of insert length of library of
MNase-seq in fibroblasts and keratinocytes. Figure S2. Nucleosome
occupancy at fibroblast and keratinocyte promoters. Figure S3. Nucleosome
occupancy at fibroblast HMRs aligned using different CG dinucleotides
to define HMR boundaries. Figure S4. Average in vivo and predicted
nucleosome occupancy at the 5" boundaries of fibroblast HMRs using
different boundary CGs. Figure S5. Location and nucleosome periodicity of
potential CG boundaries used to define HMRs. Figure S6. Locations of
transcription start sites (TSS) relative to HMRs in keratinocytes and fibroblasts.
Figure S7. Nucleosome organization at extended HMRs in keratinocytes.
Figure S8. Average nucleosome density and INOS at common HMRs with
identical boundaries (C1). Figure $9. ROC curve of two predictors of
nucleosome occupancy in fibroblast. Figure S10. E-box motif

enrichment at the boundaries of non-CGl HMRs in keratinocytes.
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