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Abstract

Background: DNA methylation is one of the most phylogenetically widespread epigenetic modifications of
genomic DNA. In particular, DNA methylation of transcription units (‘gene bodies’) is highly conserved across
diverse taxa. However, the functional role of gene body methylation is not yet fully understood. A long-standing
hypothesis posits that gene body methylation reduces transcriptional noise associated with spurious transcription of
genes. Despite the plausibility of this hypothesis, an explicit test of this hypothesis has not been performed until now.

Results: Using nucleotide-resolution data on genomic DNA methylation and abundant microarray data, here we
investigate the relationship between DNA methylation and transcriptional noise. Transcriptional noise measured from
microarrays scales down with expression abundance, confirming findings from single-cell studies. We show that gene
body methylation is significantly negatively associated with transcriptional noise when examined in the context of
other biological factors.

Conclusions: This finding supports the hypothesis that gene body methylation suppresses transcriptional noise. Heavy
methylation of vertebrate genomes may have evolved as a global regulatory mechanism to control for transcriptional
noise. In contrast, promoter methylation exhibits positive correlations with the level of transcriptional noise. We
hypothesize that methylated promoters tend to undergo more frequent transcriptional bursts than those that avoid
DNA methylation.
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Background
DNA methylation at CpG dinucleotides is a key epigen-
etic modification in the human genome crucial for regu-
latory and developmental processes [1,2]. The degree of
DNA methylation in the human genome is extensive:
most CpG dinucleotides are methylated in most tissues
and developmental stages examined [3-6]. In particular,
transcription units, or so-called ‘gene bodies’, are even
more heavily methylated than the surrounding intergenic
regions [6-9].
The functional consequences of promoter methylation

on chromatin configuration and transcriptional regulation
are extensively documented (see, for example, [10-12]).
There is also considerable evidence suggesting that DNA
methylation suppresses proliferation of transposable ele-
ments (TEs) [13-15]. However, the role of gene body
methylation remains largely unresolved. Recently, studies
have begun to identify molecular consequences of gene
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body methylation. For example, gene body methylation af-
fects pol II occupancy and histone modifications [16]. Dif-
ferential levels of DNA methylation between different
exons have been linked to differential inclusion and exclu-
sion of specific exons in transcripts [17,18]. Gene body
methylation may also occur as a byproduct of transcrip-
tional processes [19]. Another possibility is that gene body
methylation is simply an extension of methylation of TEs;
many genes harbor TEs within their transcription units,
and the main role of methylation is to suppress the prolif-
eration of these TEs [15].
Nevertheless, the main role of gene body DNA methyla-

tion remains unresolved. In fact, it is considered as one of
the most long-standing open questions regarding genomic
DNA methylation [20-25]. This question is even more per-
tinent in light of evolutionary patterns of DNA methyla-
tion. Comparative DNA methylation studies indicate that
gene body methylation is the most conserved, ancestral
form of genomic DNA methylation [7,9,23,26]. Thus, elu-
cidating the role of gene body DNA methylation may pro-
vide significant insights into the evolutionary divergence
of genomic DNA methylation across taxa [9,23,26,27].
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A long-standing hypothesis posits that gene body DNA
methylation suppresses spurious transcription within cod-
ing regions. By doing so, gene body methylation can ef-
fectively reduce ‘transcriptional noise’ [27,28]. This
hypothesis is based upon the well-accepted idea that DNA
methylation is generally repressive [29]. Pervasive DNA
methylation of gene bodies, and the consequent suppres-
sion of transcriptional noise, may have served as a key fa-
cilitator enabling the evolution of complex vertebrate
genomes [27]. Moreover, recent studies have begun to in-
dicate that epigenetic mechanisms are deeply implicated
in regulation of gene expression variability [30-33].
However, a detailed analysis of the relationship between

transcriptional noise and DNA methylation has been lack-
ing until now, due in large part to technical difficulties.
Here, capitalizing on the recent progress in genomics and
epigenomics, we investigated the impact of DNA methyla-
tion on transcriptional noise, using data from the human
genome. Our analyses provide, for the first time, un-
equivocal evidence supporting the role of gene body
methylation to reducing transcriptional noise. Further-
more, we show that promoter DNA methylation is also
highly significantly associated with transcriptional noise.

Results
Transcriptional noise is negatively correlated with
expression abundance and associate with specific functions
Levels of gene expression vary between cells even with the
same genetic materials and under the same biological con-
ditions [34-36]. Understanding the nature and mechanism
of such variability, which is commonly referred to as ‘tran-
scriptional noise’, has manifold functional consequences
[37]. Recently, there have been significant improvements
in experimental methods to measure transcriptional noise,
as well as in the theoretical understanding of transcrip-
tional noise. These studies indicate that transcriptional
noise may occur due to transcriptional bursting of pro-
moters, as well as spurious transcription within coding se-
quences [38-41].
Transcriptional noise in multicellular organisms, such

as mammals, cannot be easily dissected using experimen-
tal means. However, they can be approximated using
abundant expression datasets, for example utilizing nor-
malized variation among microarray assays between repli-
cates of populations [42,43]. For example, Yin et al. [42]
compared the transcriptional noise measured from
microarrays to those measured from single-cell experi-
ments. The two results correspond remarkably well [42].
Similar results were seen in another study, comparing ex-
pression variation among populations to experimentally
measured transcriptional noise [43]. Following these ap-
proaches, in this study we approximated transcriptional
noise of human genes as the coefficient of variation of
transcriptional abundance, assayed between replicates of
populations of the same tissue samples under normal con-
ditions (see Methods).
There have been significant recent technical improve-

ments in analysis of genomic DNA methylation. In par-
ticular, researchers have begun to generate whole-genome
maps of DNA methylation at the nucleotide level, via
whole-genome sequencing of bisulfite-converted genomic
DNA [5,44,45]. This method quantifies the methylation
level of each CpG dinucleotide across the whole genome,
enabling us to discern gene body methylation levels for in-
dividual genes.
In this study, we analyzed DNA methylation and tran-

scriptional noise of the prefrontal cortex (brain) and the
peripheral blood mononuclear cells (blood). We chose
these two tissues for the following reasons. First, we de-
cided to analyze ‘normal’ tissues (as opposed to cell
lines). While there exists vast information on transcrip-
tional variation of cell lines, gene expression profiles of
cell lines are known to have significantly diverged from
those of normal tissues [46]. Consequently, we chose not
to consider cell lines in the current study. Second, we
chose tissues whose genome-wide methylation maps are
currently available. Finally, large numbers of microarray
data in the ‘control’ (as opposed to disease) conditions
exist for these tissues, thereby enabling us to measure
transcriptional noise with confidence. We used rigorous
quality control processes to curate microarray data from
these tissues (see Methods). The resulting data are from
the same technical platforms, and exhibit high correlation
levels among experiments (Additional files 1 and 2).
We examined whether the transcriptional noise calcu-

lated from these curated data exhibited similar proper-
ties to those identified from previous studies. For
example, from studies of yeast, genes involved in protein
synthesis exhibited lower noise compared to other genes
[39,40]. At the same time, genes responding to environ-
mental signals or stress genes showed particularly high
levels of noise [39,40]. We found similar patterns in the
transcriptional noise of human genes (Additional file 3).
One of the most striking findings from previous studies
was that transcriptional noise is approximately propor-
tional to the expression abundance [39,40]. We observed
the same scaling behavior in which the transcriptional
noise was negatively associated with expression abun-
dance in both human tissues studied (Figure 1). This ob-
servation indicates that the scaling of transcriptional
noise to expression abundance is likely to be a common
phenomenon across diverse taxa, underscoring common
molecular mechanisms, such as random birth and death
processes of mRNAs [39,40,47]. It has been also pro-
posed that transcriptional noise is minimized for essen-
tial genes [48]. However, in our data, we did not
observe enrichment of low-noise genes in essential genes
(Additional file 4).



Figure 1 Transcriptional noise and expression abundance are significantly negatively correlated in (A) brain, and (B) blood.
Transcriptional noise is measured as the coefficient of variation of transcriptional abundance (see Methods section). The regression coefficients
between these variables are −0.60 (P <0.001) and −0.55 (P <0.001) for brain and blood, respectively.

Table 1 Multiple linear regression models explaining
variation of transcriptional noise in different tissues

Predictors Estimate of β t value Significance VIF

Brain

Intercept 1.47 19.51 <10-4

Expression abundance −0.59 −180.50 <10-4 1.21

Gene body methylationa −0.28 −4.74 <10-4 1.96

Promoter methylation 0.20 4.94 <10-4 1.27

Log (gene length)a 0.00092 0.099 0.921 2.19

Adjusted R2 0.87

Blood

Intercept 1.89 28.92 <10-4

Expression abundance −0.55 −237.24 <10-4 1.11

Gene body methylationa −0.37 −6.68 <10-4 1.27

Promoter methylation 0.29 7.36 <10-4 1.65

Log (gene length)1 −0.038 −5.09 <10-4 1.79

Adjusted R2 0.92
aExclusive of transposable elements.
VIF, variance inflation factor.
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Gene body methylation and promoter methylation
exhibit negative and positive associations with
transcriptional noise
Our interest was in determining whether DNA methyla-
tion influences transcriptional noise. To do so, we needed
to first account for the effect of expression abundance on
both of these variables. This is because DNA methylation
is intimately related to expression abundance [6,10,23,25],
and gene expression abundance is correlated with tran-
scriptional noise (Figure 1). In addition, other genomic
variables, such as gene lengths, are also correlated with ex-
pression abundance [49,50].
Our goal was to explain the variation found in the levels

of transcriptional noise using several explanatory (inde-
pendent) variables. We used the following variables as ex-
planatory variables: expression abundance, gene body
methylation, promoter methylation, and gene lengths. We
first examined the variance inflation factors (VIFs), which
are indicators of multicolinearity among variables. None
of the explanatory variables exhibited VIFs greater than 5.
This demonstrated that we could assess individual contri-
butions of each genomic trait without the influence of
multicolinearity [51].
We found that, in both tissues, gene body methylation

shows significant negative relations to transcriptional
noise (Table 1). This is in accord with the hypothesis
that gene body DNA methylation suppresses transcrip-
tional noise [27]. As gene length increases, there may be
more opportunities for spurious transcription. In other
words, gene length may be positively correlated with
transcriptional noise. According to our multiple linear
regression analysis, however, the effect of gene length on
transcriptional noise, while controlling for other factors,
was negligible in the brain data, but significantly negative
in the blood data (Table 1). Analyzing more tissue samples
would clarify the effect of gene length on transcriptional
noise. Interestingly, promoter methylation again exhibited
strong positive relations with the transcriptional noise in a
multiple linear regression setting (Table 1).
In the above analyses, we analyzed gene body methyla-

tion levels after removing TEs. We also sought to



Table 3 Robust regression analyses (quantile regression
for median) for the model used in Table 1

Predictors Estimate of β t value Significance

Brain

Intercept 1.53 19.51 <0.0001

Expression abundance −0.61 −188.65 <0.0001

Gene body methylationa −0.26 −4.30 <0.0001

Promoter methylation 0.13 3.76 0.0002

Log (gene length)a 0.0008 0.0885 0.3762

Blood

Intercept 1.82 28.75 <0.0001

Expression abundance −0.55 −237.24 <0.0001

Gene body methylationa −0.28 −4.65 <0.0001

Promoter methylation 0.20 5.38 <0.0001

Log (gene length)a −0.03 −5.09 <0.0001
aExclusive of transposable elements.
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include methylation of TEs specifically in our model,
using the following method. We first estimated methyla-
tion levels of gene bodies that are identified as TEs
according to RepeatMasker [52]. Then we included this
methylation level of TEs found within each gene as a
separate variable in a multiple linear regression setting.
The length of TEs themselves within each gene could
not be included in this model because they exhibited
high VIFs (7.39 in brain, 6.62 in blood, respectively), and
thus could cause multicolinearity problems. The results
of this analysis, presented in Table 2, demonstrate that
TE methylation is significantly negatively correlated with
transcriptional noise. In other words, TE methylation
may also contribute to reducing transcriptional noise.
The regression coefficients of other variables are highly
similar to those from Table 1, indicating that the effects
of other variables are not highly influenced by the level
of TE methylation.
To attest that our results were not biased due to statis-

tical outliers, we next performed robust regression ana-
lyses using the same explanatory variables. We used
several available methods including quantile regression
as well as a few well-known loss functions such as
bisquare, and Hampel and Huber ([53-55]; see also
Methods section). The results of these analyses (Table 3
and Additional file 5) were unanimously consistent with
the previous results, indicating highly significant nega-
tive associations between the level of gene body DNA
methylation and transcriptional noise, and highly
Table 2 Multiple linear regression models explaining
variation of transcriptional noise in different tissues

Predictors Estimate of β t value Significance VIF

Brain

Intercept 1.47 19.57 <0.0001

Expression abundance −0.59 −180.78 <0.0001 1.12

Gene body methylation1 −0.19 −3.16 0.0016 2.34

TE methylation −0.23 −5.78 <0.0001 1.44

Promoter methylation 0.18 4.54 <0.0001 1.28

Log (gene length)a 0.015 1.54 0.12 2.10

Adjusted R2 0.87

Blood

Intercept 1.87 28.65 <0.0001

Expression abundance −0.55 −236.94 <0.0001 1.11

Gene body methylation1 −0.28 −4.95 <0.0001 1.93

TE methylation −0.22 −5.77 <0.0001 1.43

Promoter methylation 0.27 6.88 <0.0001 1.28

Log (gene length)a −0.025 −3.19 0.0014 1.81

Adjusted R2 0.92
aExclusive of transposable elements.
TE, transposable element; VIF, variance inflation factor.
significant positive associations between promoter DNA
methylation and transcriptional noise. In conclusion,
these analyses reveal that after controlling for other fac-
tors, gene body methylation and promoter methylation
are negatively and positively correlated with transcrip-
tional noise, respectively.

Accounting for technical noise and among individual
variability of DNA methylation
One potential caveat of our approach is the presence of
technical noise, or variation of gene expression caused
by technical variation among experiments, on the level
of gene expression variability. Our interest is in the bio-
logical variability of gene expression. As defined previ-
ously, we approximated ‘transcriptional noise’ as the
coefficient of variation (CV) among the replicates of ex-
pression data, as used previously [42]. However, this
measure of gene expression variability is a composite of
biological noise, which is our main interest, plus tech-
nical variation among experiments. This is problematic
because it is possible that technical noise might be con-
founded with biological noise. For example, technical
variation among experiments is negatively correlated
with the expression level of genes [56,57]. Thus, it is im-
portant to take into account the impact of technical
noise in assessing the relationship between biological
noise and DNA methylation.
To address this issue, we used a dataset on technical

and biological replicates of blood gene expression. In
this dataset, gene expression is measured in two sets of
technical replicates across two biological experiments
[58]. Using this data, we can decompose total variation
of gene expression into ‘biological’ versus ‘technical’ vari-
ation. Specifically, for a specific gene using yij as the
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expression level of the jth technical replicate from the
ith biological sample, decomposition of variance can be
expressed as in Equation 1 below:

X2
i¼1

X2
j¼1

yij−��y
� �2

¼ 2
X2
i¼1

�yi−��yð Þ2þ
X2
i¼1

X2
j¼1

yij−��y
� �2

ð1Þ

The left term represents the total sum of square in a
gene; the first term on the right-hand side is the bio-
logical sum of squares and the second term is the tech-
nical sum of squares. Using this decomposition, we can
then assess the effect of gene body methylation on the
pure biological variation and on the technical variation,
separately. In our first analysis, we used the biological
sum of squares as the response variable, and examined
the statistical effects of several predictor variables. The
results of this analysis showed that gene body methyla-
tion has a significant negative effect on biological vari-
ability among samples (model 1 in Table 4). In the
second analysis, we used the total sum of square as the
response variable and the technical sum of square as an
explanatory variable. The results from this analysis again
indicated that the effect of gene body methylation on
‘biological’ transcriptional noise, after adjusting for the
technical noise, is negative (model 2 in Table 4). Thus,
both methods provide consistent support to our finding
that gene body methylation is negatively correlated with
biological variation of gene expression.
Table 4 Multiple linear regression models in which
technical versus biological components of transcriptional
noise are separately analyzed

Predictors Estimate of β t value Significance VIF

Model 1a

Intercept 1.201 14.12 <10-4

Expression −0.442 −78.19 <10-4 1.06

Gene body methylation −0.797 −7.33 <10-4 1.07

Promoter methylation 0.613 6.17 <10-4 1.06

Adjusted R2 0.53

Model 2b

Intercept 0.769 11.157 <10-4

Expression −0.337 −61.354 <10-4 3.39

Gene body methylation −0.566 −9.463 <10-4 1.10

Promoter methylation 0.431 7.969 <10-4 1.07

Technical noise 0.608 32.467 <10-4 3.30

Adjusted R2 0.82
aModel 1 used CV calculated from biological component as response variable.
bModel 2 used CV calculated from total variation as response variable.
CV, coefficient of variation; VIF, variance inflation factor.
Another source of variability that needs to be accounted
for is variation of DNA methylation between individuals.
To determine the influence of between-individual variabil-
ity of DNA methylation on our results, we analyzed
datasets on gene body DNA methylation from the brains
of three individuals [6]. We constructed an augmented re-
gression model, allowing the effect of gene body methyla-
tion to vary across individuals. We defined an index for
each individual as an ‘individual factor’ and included it in
the new model. In addition, we included interaction terms
between individual factors and gene body methylation to
this model. The results of these analyses (Table 5, and
Additional file 6) indicate that between-individual varia-
tions of gene body methylation do not affect our findings.

Discussion
The human genome and other vertebrate genomes are
heavily methylated in most tissues and developmental
stages, a pattern referred to as ‘global’ DNA methylation
[23]. This pattern is very different from what is observed
in other animals and plants. In most invertebrates exam-
ined, DNA methylation is targeted to the transcription
units (gene bodies) of a subset of genes [7,9,23]. Notably,
gene body methylation appears to have existed well be-
fore the emergence of DNA methylation of promoters
and TEs, as an ancestral form of DNA methylation in di-
verse animal and plant genomes [23,60,61].
Determining the role of gene body methylation is of

much interest, and studies are revealing associations be-
tween gene body methylation and gene expression
[9,21,62,63], transcript composition [17,18,64] and chro-
matin structures [16]. Nonetheless, the global role of
gene body methylation remains unresolved. In this re-
spect, two long-standing hypotheses stand out. The first
hypothesis posits that gene body methylation reduces
transcriptional noise [27]. Another hypothesis focuses
on the impact of DNA methylation to suppress the pro-
liferation of TEs [15]. Many TEs are found in gene bod-
ies, thus methylation of TEs may have caused expansive
methylation of gene bodies [15].
In this study we examined the predictions of these two

hypotheses using whole genome methylation data and
statistical methods. Because gene body methylation and
transcriptional noise are both significantly correlated
with expression abundance, it is important to analyze
the impact of gene body methylation while considering
the effect of expression abundance. We used several
statistical methods to achieve this goal. We also exam-
ined the impact of noise due to technical variation
among experiments, as well as between-individual vari-
ation of DNA methylation on our results. These analyses
all indicate that gene body methylation, when viewed in
the context of other biological factors, has a negative re-
lationship with transcriptional noise.



Table 5 Regression analysis accounting for individual variation indicates little effect of between-individual variability
of DNA methylation on transcriptional noise

Predictors Sum of square Degrees of freedom (df) F value P value VIFa

Intercept 214.6 1 578.390 <10-4 1.03

Expression 28,164.2 1 75,900.35 <10-4 1.30

Gene length 7.6 1 20.352 <10-4 2.00

Gene body methylation 17.3 1 46.541 <10-4 1.04

Promoter methylation 43.2 1 116.420 <10-4 3.89

Individual 0.3 2 0.430 0.651 4.05

Individual:gene body methylation 0.3 2 0.455 0.634

Adjusted R2 0.87
aVariation inflation factor (VIF) approximated as (generalized VIF)1/(2*df) [59].
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Transcriptional noise is abundantly present in diverse
taxa. The origin of transcriptional noise may be related
to ‘transcriptional bursts’, referring to the phenomenon
that transcription tends to occur in bursts [65-67]. Tran-
scriptional noise also occurs due to transcription of non-
canonical promoters within gene bodies, potentially due
to the overabundance of RNA polymerase II in cellular
environment [38]. Our results showing that more heavily
methylated gene bodies exhibit less transcriptional noise
are consistent with the idea that transcriptional noise is
reduced by pervasive gene body methylation. Alterna-
tively, the negative relationship between gene body DNA
methylation and transcriptional noise may reflect an in-
direct association due to a third, yet unknown biological
factor(s) that influence both variables.
The details of the actual underlying molecular mecha-

nisms of such process are yet to be fully characterized.
There are some well established epigenetic modifications
of gene bodies are shown to directly suppress the initi-
ation of non-canonical transcripts within coding se-
quences [68-70]. Emerging evidence indicate that gene
body DNA methylation is likely to complement or func-
tion together with other epigenetic modifications to gen-
erate chromatin states that are repressive of the initiation
and elongation of spurious transcripts. For example, DNA
methylation of gene bodies reduces the efficiency of tran-
scriptional elongation, by excluding RNA polymerase II
occupancy and recruiting several repressive histone marks
[16]. Gene body DNA methylation effectively excludes de-
position of the histone variant H2A.Z, which tend to mark
lowly expressed genes with high expression variability
among tissues and biological conditions [71]. The iden-
tities of molecular components of the crosstalk between
DNA methylation and histone modifications continue to
be discovered (see, for example, [72]).
Interestingly, our analyses indicate that promoter DNA

methylation is positively correlated with the level of tran-
scriptional noise. The underlying molecular mechanism of
this phenomenon is of great interest. One possibility is
that this is related to the intrinsic susceptibility of specific
promoters toward transcriptional bursting. In the simplest
case, promoters appear to switch randomly between ‘ON’
and ‘OFF’ states with respect to the initiation of transcrip-
tion [37,47]. Some promoters, however, remain perpetu-
ally in the ‘ON’ state (permissive to transcription) and do
not exhibit bursting [73]. Such promoters exhibit less
transcriptional variability compared to those undergoing
switches between different transcriptional states [73]. In
other words, the degree of transcriptional bursting likely
varies between promoters according to their propensity
toward different transcriptional states, leading to different
levels of transcriptional noise among genes.
Given that there exists considerable evidence that un-

methylated promoters can maintain a ‘permissive’ chroma-
tin state [72,74], we hypothesize the following: promoters
with lower level of DNA methylation are more likely to
adopt and maintain a permissive transcriptional state
(similar to the ‘ON’ state referred to above) and exhibit lit-
tle transcriptional bursting. However, promoters that are
more susceptible to DNA methylation may be more likely
to undergo stochastic fluctuations between different
states, facilitating transcriptional bursts, and as a conse-
quence exhibit increased transcriptional noise. The actual
molecular mechanisms underlying these processes are
again likely to involve highly orchestrated interactions be-
tween DNA methylation and other epigenetic mecha-
nisms: in particular, studies in yeast have revealed the role
of nucleosome positioning in regulation of gene expres-
sion variability [31,33].
Reducing transcriptional noise is particularly import-

ant for genes that perform housekeeping functions and
are therefore constantly expressed [28]. Indeed, methyla-
tion maps of distantly related animal genomes reveal
that gene body methylation usually targets genes that
function in ‘housekeeping’ cellular processes [26,28,75].
Thus, we hypothesize that gene body methylation func-
tions as a primary mechanism to suppress transcriptional
noise of essential housekeeping genes in diverse
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organisms. Gene body DNA methylation is the main
mode of DNA methylation in many invertebrate species.
Reducing transcriptional noise may serve as the primary
function of DNA methylation in such genomes. Further-
more, the human genome is characterized by heavy
transcription of non-coding regions [76,77]. Global
methylation of the whole genome may have evolved as a
molecular mechanism to reduce global transcriptional
noise [27].
Moreover, we found that methylation of TEs within

gene bodies also contributes to the suppression of tran-
scriptional noise. Several studies now indicate that
methylation of TEs may have evolved after the evolution
of gene body methylation [23,61]. It will be interesting
to determine whether the origin of TE methylation is re-
lated to its function to reduce intragenic transcriptional
noise. Our study cannot provide a clear resolution to
this question. Analyses of genomic methylation patterns
of species straddling the invertebrate-vertebrate bound-
aries (near the origin of global DNA methylation) will be
informative to determine the evolutionary sequences of
these processes.
DNA methylation is known to vary among different

tissues [5,6]. Given the potential role of gene body
methylation in regulating transcriptional noise, it is pos-
sible that among-tissue variation of DNA methylation
levels may be related to among-tissue variation of tran-
scriptional noise. In our data, the prefrontal cortex
(brain) exhibited higher methylation levels than blood
(P <0.0001 by Mann–Whitney test, Figure 2). Since gene
body DNA methylation is negatively correlated with tran-
scriptional noise, we tested whether the brain exhibits
lower noise compared to blood. Indeed, we found that
prefrontal cortex samples (brain) exhibited significantly
lower transcriptional noise compared to blood samples
(Figure 2). Thus, regulation of transcriptional noise may
Figure 2 Comparison of gene expression noise and DNA methylation
noise between the two tissues. The brain exhibits significantly lower transcri
levels, however, are significantly higher in the brain compared to blood (paired t t
noise data exist in both tissues (total no. of genes = 3,644).
be one mechanism determining tissue-specific or cell
type-specific levels of gene body DNA methylation.

Conclusion
We explored the relationship between transcriptional
noise and DNA methylation, using gene expression vari-
ability among different populations of cells as a proxy
for transcriptional noise. Our analysis confirms the in-
verse relationship between gene expression abundance
and transcriptional noise, while revealing novel relation-
ships between DNA methylation and transcriptional
noise. In particular gene body DNA methylation exhibits
a negative correlation with transcriptional noise. This
observation supports a longstanding hypothesis that
gene body DNA methylation may reduce transcriptional
noise. In light of evolutionary findings that gene body
methylation is a widespread, conserved form of DNA
methylation, the ancestral role of DNA methylation may
have been related to the reduction of transcriptional
noise. On the other hand, promoter DNA methylation is
positively related to transcriptional noise, raising the
possibility that epigenetic status of promoters may affect
transcriptional bursts.

Methods
Data sources
Gene expression data was obtained from National Center
for Biotechnology Information (NCBI) Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/) (Additional
file 7). Because there are considerable technical variations
between platforms, we restricted platforms to only the
Affymetrix Human Genome U133 series. After quality
control, we obtained a total of 52 datasets (12 datasets for
the prefrontal cortex and 40 datasets for blood). Gene
lengths were determined based upon the RefSeq annota-
tion provided by the UCSC genome browser. Nucleotide
between studied tissues (A) Comparison of mean transcriptional
ptional noise compared to blood (paired t test, P<0.001). (B) Methylation
est, P<0.001). We only used genes for whichmethylation and transcriptional

http://www.ncbi.nlm.nih.gov/geo/
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resolution whole DNA methylation maps of the human
prefrontal cortex (brain) were obtained from a recent
study ([6], data available at NCBI Gene Omnibus under
the record number GSE37202). DNA methylation maps of
mature peripheral blood mononuclear cells were from Li
et al. [44], generated using a similar method.

DNA methylation
To obtain gene body methylation levels of non-repetitive
portions of genes, we used the annotation of TEs from
the RepeatMasker database (http://www.repeatmasker.
org). A custom Perl script was used to mask the TEs in
gene bodies. For each mapped cytosine, the fractional
methylation value was calculated as: total number of ‘C’
reads/(total number of ‘C’ reads + total number of ‘T’
reads), following previous studies [5,8,44]. We then cal-
culated the fractional methylation level of each tran-
scription unit, using the RefSeq database of hg18. Gene
body methylation level for each gene was estimated as
the mean fractional methylation value for all the mapped
cytosines within each transcription unit. When alterna-
tive transcripts were present, we chose the longest tran-
script for each gene. The promoter methylation level for
each gene was estimated as fractional methylation for re-
gions spanning 1,500 bp upstream and 500 bp down-
stream of the transcription start site (TSS), similar to
Zeng et al. [6].

Microarray data processing
Microarray raw data files were first processed using raw
intensity using the MAS5.0 method [78]. Using other
normalization methods provided similar results. We
used the median probe intensities assigned to each gene
as gene expression levels. We then analyzed correlation
between pairwise samples, to assess similarities between
datasets from the same tissue. Datasets within the same
tissues exhibiting correlation coefficient greater than 0.8
are included in this study (Additional files 1 and 2). Quan-
tile normalization using the R package ‘preprocesscore’
[79] was conducted within each tissue. Transcriptional
noise was defined as the coefficient of variation (CV:
standard deviation/mean) of transcriptional abundance
within each tissue, following Yin et al. [42].

Multiple linear regression models of transcriptional noise
We performed multiple linear regression analyses to elu-
cidate relationships between transcriptional noise and
several biological factors (gene expression abundance,
gene body methylation, promoter methylation, and gene
lengths) simultaneously. CV and gene length were log
transformed to improve normality. Our analyses indi-
cated that the gender is not a significant variable and
thus excluded from further analyses. We also examined
the significance of the interaction terms between
predictors. The results showed that the interaction terms
were generally not significant and they were therefore
removed from subsequent analyses.
Robust regression analysis was performed using vari-

ous loss functions. We summarized the result of quantile
regression in Table 3. We also used other well-known
loss functions such as bisquare, Hampel and Huber
(Additional file 6) [53-55]. All these approaches provided
consistent results to those of the ordinary least squares
method. Therefore, we conclude that the significance
and magnitude of the explanatory variable effect is
essential.

Functional enrichment analyses
Functional enrichment pattern of specific subsets of
genes was assessed using the DAVID tools (http://david.
abcc.ncifcrf.gov/) [80]. We used the list of genes in-
cluded in our analyses as the background, and tested en-
richments of specific gene ontology terms using the GO
FAT annotation. We examined the mean transcriptional
noise of genes in the two tissues and investigated the
specific gene ontology terms for top 5% high transcrip-
tional noise genes and 5% low transcriptional noise
genes. A Benjamini multiple testing correction of the
EASE score (a modified Fisher exact P value) was used
to determine statistical significance of gene enrichment.

Additional files

Additional file 1: Correlation between 12 brain microarray datasets
used.

Additional file 2: Correlation between blood microarray datasets
used. For the interest of space, we only show 12 microarray datasets.
The remaining data exhibit similarly high correspondence between
datasets.

Additional file 3: GO enrichment analyses of genes exhibiting high
or low transcriptional noise.

Additional file 4: No enrichment of low noise genes according to
gene essentiality.

Additional file 5: Robust regression analysis using transcriptional
noise as a response variable and other biological variables as
explanatory variables.

Additional file 6: Multiple linear regression analyses incorporating
individual factors indicate little effect of between-individual DNA
methylation on transcriptional noise.

Additional file 7: List of microarray datasets used in this study.
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