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Abstract

Background: Germ cells in animals are highly specialized to preserve the genome. A distinct set of chromatin
structures must be properly established in germ cells to maintain cell fate and genome integrity. We describe
DNA-surface interactions in activated Caenorhabditis elegans oocytes that are revealed through the activity of an
endogenous nuclease (‘endocleavage)).

Results: Our analysis began with an unexpected observation that a majority (>50%) of DNA from ovulated but
unfertilized C. elegans oocytes can be recovered in fragments of approximately 500 base pairs or shorter, cleaved

at regular intervals (10 to 11 nt) along the DNA helix. In some areas of the genome, DNA cleavage patterns in these
endoreduplicated oocytes appear consistent from cell-to-cell, indicating coherent rotational positioning of the

DNA in chromatin. Particularly striking in this analysis are arrays of sensitive sites with a periodicity of approximately
10 bp that persist for several hundred base pairs of genomic DNA, longer than a single nucleosome core. Genomic

regions with a strong bias toward a 10-nt periodic occurrence of A(n)/T(n) (so-called PATC regions) appear to
exhibit a high degree of rotational constraint in endocleavage phasing, with a strong tendency for the periodic
A(n)/T(n) sites to remain on the face of the helix protected from nuclease digestion.

Conclusion: The present analysis provides evidence for an unusual structure in C. elegans oocytes in which
genomic DNA and associated protein structures are coherently linked.

Background
Germ cells in animals are highly specialized to preserve
the genome. A distinct set of chromatin structures must
be properly established in germ cells to maintain cell fate
and genome integrity [1,2]. With the goal of understan-
ding such structures in Caenorhabditis elegans, a num-
ber of groups have been applying combinations of
genomics, biochemistry, and genetics (reviewed in [1]).
C. elegans oocytes arrest at the diakinesis stage of mei-
otic prophase I. Oocyte chromosomes at this stage are
highly condensed, giving rise to the characteristic
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appearance of six discrete bivalents [3]. Oocyte meiotic
maturation, defined by the transition between diakinesis
and metaphase of meiosis I, is triggered by a signal in-
volving the major sperm protein (MSP) released from the
sperm [4-6]. A mature oocyte signals the ovulation
process by regulating the gonadal sheath cell contraction
and inducing dilation of the hermaphrodite spermatheca
[5], and then becomes fertilized as it passes through the
spermatheca. In the absence of sperm (for example, in
mutant C. elegans that are fully feminized), oocytes usu-
ally arrest at the diakinesis stage. However, in certain mu-
tant strains that produce defective sperm, oocytes
continuously mature and ovulate, endoreduplicating their
DNA and resulting in a large number of unfertilized
polyploid oocytes accumulating in the uterus. In this
study, we use an endogenous nuclease activity present in
these oocytes to identify an unusual chromatin structure.
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Results features (endoreduplication of DNA and accumulation
Fragmented chromatin in activated fer-1(b232) C. elegans over the life of the animal) distinguish them from
oocytes oocytes progressing to embryogenesis in the presence of

Ovulated but unfertilized oocytes have been a standard
starting material for a variety of genomic and proteomic
studies of C. elegans germline development [7-9]. These
cells are a readily available germline tissue source from
C. elegans, retaining transcriptional and proteomic cha-
racteristics of the oocyte lineage [8,9], although certain

fertilizing sperm. This work began with an unexpected
observation that about 50% of the DNA in these fer-1
(b232) oocyte samples was present in fragments of <500
bp (Figure la). To examine the cleavage pattern in
greater detail, we end-labeled DNA samples by T4 poly-
nucleotide kinase assay and ATP (gamma-32P), resolving

4
&
O $
e &
3 >
<J'~”x q,o\
\&\Oo Q_Qb
> x
& ; @b& Q/é@“ ’pm 9.,,
o & \x\o ‘é\o
a b o S gd
SHFRSIAIAIA S
6\@& 6‘@6—0“’{@ ~o‘$ao$e
500 125
400
300 100™
200
75
100
3% agarose
lane

12 3 4

5

lane 6 7 8

Figure 1 Fragmented chromatin in activated fer-1(b232) mutant oocytes. Genomic DNA extracted from fer-1(b232) oocytes was resolved

on a 3% (native) agarose gel (a) or a denaturing 12% polyacrylamide gel (8 M urea) (b). For ‘direct lysis', frozen oocytes were ground in liquid
nitrogen and directly mixed with worm lysis buffer without initial thawing (see Methods). For ‘buffer A + 10 mM EGTA', ‘buffer A + 2 mM CaCly/,
or ‘buffer A + 2 mM CaCl, + 0.002 U/ul MNase’, ground oocytes were mixed with corresponding buffer, followed by incubation at 37°C for

2 minutes and DNA extraction. DNA samples in panel b were radioactively labeled at the 5" end. For ‘direct lysis + 10 nt ladder’, a mixture of fer-1
(b232) oocyte DNA and 10 nt ladder was resolved in the same lane.
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the products at single base resolution on denaturing 12%
polyacrylamide gels (PAGEs). We observed that oocyte
DNA fragments exhibit a clearly quantized size distribu-
tion with a periodicity of 10 to 11 bp on electrophoretic
separation (Figure 1b). The bands define a ‘ladder’ with
sizes 21/22, 31/32, 41/42, 51/52 bp, etcetera. Such ap-
proximately 10-nt ladder patterns were not evident in
undigested genomic DNA extracted from adult animals
lacking activated oocytes (wild type (N2) young adult ani-
mals). Likewise the pattern was not observed in MNase-
digested chromatin from L1 larvae or adult N2 animals
[Additional file 1: Figure S1]. Aruscavage and colleagues
[10] had observed an apoptosis-dependent population of
10 to 11 bp quantized short DNA fragments in prepara-
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tions of DNA from C. elegans embryos, but with a consid-
erably lower concentration relative to the total DNA
present (with the low concentration of cleaved DNA in
embryos likely reflecting the small fraction of cells under-
going apoptosis). With a direct comparison of the approxi-
mately 10-nt periodic ladder pattern between embryos and
activated oocytes (Figure 2), we confirmed that the acti-
vated oocytes were much more strongly enriched for short
quantized DNA fragments [Additional file 1: Figure S1].

DNA fragmentation as a general property of activated

C. elegans oocytes

To determine the generality of the observed fragmenta-
tion, we obtained unfertilized oocyte DNA from a variety
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Figure 2 Genetic requirement for the DNase activity present in unfertilized oocytes. Genomic DNA extracted from purified oocytes
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(fer-1 oocytes’) or from liquid-nitrogen-flash-frozen samples (N2 (wild type) embryos and adults of various genotypes) was radioactively-labeled
using T4 polynucleotide kinase and gamma-32P-ATP, and resolved on a denaturing 12% polyacrylamide gel (8 M urea). A total of 2 ug of DNA
were used for labeling and PAGE analysis for all samples except DNA from isolated fer-1(b232) oocytes (<30 ng).
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of sources and by a variety of protocols. In particular, we
wished to determine whether the observed approximately
10-nt ladder was dependent on either the specific genetic
background of the original fer-1(6232) strain or the oocyte
isolation procedure used. An approximately 10-nt ladder
pattern similar to that observed from purified fer-1(b232)
was observed for DNA extracted from whole animals
from a different fer-1 mutant stock (fer-1(hc13)) raised at
the restrictive temperature of 25°C (Figure 2). This isola-
tion used flash frozen animals extracted directly for DNA
(without an oocyte preparation step), indicating that DNA
cleavage is not due to the oocyte preparation procedure.
Two other sperm-defective mutants, spe-9(hc52) [11,12]
(required for sperm-oocyte interaction) and spe-26(hci38)
[13] (required for spermatid formation) were tested and
showed the same approximately 10-nt ladder pattern as
fer-1 mutant oocytes (Figure 2). These results are consis-
tent with endogenous DNase activity and consequent
DNA cleavage in an approximately 10-nt ladder pattern as
a general property of activated C. elegans oocytes.

A role for the type Il DNase NUC-1 in activated oocyte
endocleavage, independent of the apoptosis machinery
Chromosome fragmentation is a hallmark of apoptotic
cells in mammals, as well as in lower metazoans (reviewed
in [14]). Aruscavage and colleagues had showed that the
endogenous cleavage activity observed in C. elegans em-
bryos depends on programmed cell death machinery (the
caspase-homolog CED-3) and an associated type-II DNase
NUC-1 [10,15-17].

To investigate whether the canonical programmed cell
death pathway and/or NUC-1 are required for the endo-
cleavage activity in activated oocytes, we constructed
double mutants fer-1(hcl3);ced-3(n717) and fer-1(hcl3);
nuc-1(e1392), growing each at the restrictive temperature
(25°C) to allow oocyte accumulation. DNA from fer-1
(hc13);ced-3(n717) double mutant animals yields an ap-
proximately 10-base periodic ladder similar to that ob-
served in apoptosis-competent fer- and spe-strains,
indicating that CED-3 activity (and thus the canonical
cell death pathway) is not required for the observed
oocyte endocleavage. In contrast, the fer-1(hci3);nuc-1
(e1392) double mutant fails to yield an evident 10-nt lad-
der pattern (Figure 2). These results implicate NUC-1,
induced by a CED-3-independent mechanism, in the
observed activated oocyte endocleavage.

Construction of DNA libraries from endocleavage
products

To understand the relation between fragmentation activ-
ities and the arrangement of DNA packaged in oocyte
chromatin, we set out to characterize the precise sites of
DNA cleavage. Fragmented fer-1(b232) oocyte DNA
from different size ranges (20 to 80, 40 to 130, 80 to
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230, and 130 to 430 bp) was isolated by using an agarose
gel. The majority of these DNA fragments were double-
stranded with a 2 to 3 nt overhang at the 3’ ends (see
later section and Methods). Size-selected DNA fragments
were treated with T4 DNA polymerase to produce blunt
ends, followed by linker ligation. The resulting libraries
were analyzed by paired-end sequencing (Illumina HiSeq
2000 sequencing system), allowing both ends to be
mapped. With the criterion that paired reads match
perfectly to a unique position of the reference genome,
approximately 6.1, 8.0, 15.6, and 15.5 million alignments
were obtained by this process for the 20 to 80, 40 to 130,
80 to 230, and 130 to 430 nt size ranges, respectively. We
also performed single-end Illumina sequencing for endo-
cleaved oocyte DNA in the 40 to 90, 90 to 140, and 140
to 240 nt size ranges.

The size of captured DNA fragments can be assessed
by the distance between paired reads. The distributions
of the distances between paired reads show approxi-
mately a 10-bp periodicity (Additional file 1: Figure S2),
consistent with the DNA electrophoresis profile on the
denaturing PAGE (Figure 1b). The peak sizes determined
from sequencing are approximately 2 to 3 nt shorter than
the sizes determined from a denaturing gel (Additional
file 1: Figure S2 and Figure 1b), a difference that can be
explained by a 2 to 3 nt single stranded overhang at
the 3’ end on each strand (See Methods section and
Additional file 1: Figure S3). The 130 to 430 nt size range
DNA had a more continuous distribution, with maximal
frequency at 145 nt. We note, however, that an approxi-
mately 10-bp periodic component remains in the 130 to
430 nt size range (for example, peaks at 178, 189, 199 nt)
[Additional file 1: Figure S2].

Activated oocyte DNA is constrained in its rotational
positioning at the genomic level

The detailed structure of chromatin in a region can de-
termine which face of the DNA double helix is protected
by an underlying surface (for example, core histone octa-
mer) and which face is accessible. At any given locus in
the genome, the accessible face can be random among
individual cells (that is, variable rotational positioning)
or, in the other extreme, a particular face can be
consistently accessible in all cells (that is, exhibiting a
constrained rotational positioning). The 10-nt ladder ap-
pearance of the fragmented DNA in activated fer-1
(b232) oocytes indicates that the endogenous DNA
cleavage events tend to occur periodically for every
helical turn in the DNA double helix.

Positional auto-correlation analysis is a sensitive
method to detect non-random DNA packaging configu-
rations (for example, local positional constraints or long-
range phasing characteristics) [18-20]. The algorithm is
briefly described here. For each cleavage site (site A), the
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distance to each of the nearby cleavage sites (site B) is re-
corded. In this analysis, tags associated with sites A or B
are mapped to the same strand of genomic DNA. To
avoid the same pair being counted twice, site B is set
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is then plotted as a function of the distance between site
A and B. As an explicit example, if there are 2 and 3 tags
that are mapped to sites A and B, respectively, and A and
B are separated by a distance of 20 bp in the genome, the

downstream of site A (when referenced to the plus strand
of genome) (Figure 3a). The number of such coincidences

y-axis is incremented by 6 (2 times 3) at the distance of 20
bp (x-axis). If rotational positioning were completely
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Figure 3 Autocorrelation analysis of DNA fragments from Caenorhabditis elegans fer-1(b232) oocytes and wild type (N2) embryos.
(a) A schematic diagram showing an example of global positional correlation analysis. For each pair of tags that match to the same strand, the
distance between the tags is recorded. (b-d) The coincidence of tag pairs is plotted as a function of the distance between two tags that match
to the same strand for endo-cleavage DNA fragments (40 to 90 nt size range, single-end lllumina sequencing tags) from activated fer-1(b232)
oocytes (b), 40 to 70 nt fragments from N2 embryo (c), or MNase-generated nucleosome core DNA from activated fer-1(b232) oocytes (d). (e) Fast
Fourier transform analysis of coincidence over positional correlation analysis.
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flexible, the coincidence number would tend to be a flat
function of distance between sites A and B. If rotational
positioning were to be constrained, the coincidence num-
bers should reveal a periodic signal that corresponds to
the DNA helical period.

The auto-correlation analysis for activated oocyte DNA
fragments reveals a prominent approximately 10-nt peri-
odic signal for the coincidence numbers (for example,
peaks at 10, 21, 31, 41, 51, 62, 72, and 82 nt, efcetera)
(Figure 3b), indicating that the cleavage sites in the acti-
vated oocyte chromatin have a strong tendency for con-
sistent placement on an ‘accessible’ face of the DNA
double helix in different cells. This type of result suggests
an underlying surface that may locally protect one face of
the DNA from digestion while leaving the other face
open to the enzyme. A previous whole-genome analysis
of DNase I-generated chromatin fragments using human
cells revealed a similar 10-nt periodic signal for DNase
I-sensitive sites; however the observed phasing character
was restricted to a distance that would be contained in a
single mononucleosome [21]. In contrast, the 10-nt peri-
odic signal observed in the C. elegans oocyte endo-
cleaved chromatin fragments is maintained in aggregate
over a distance ranging up to 500 bases and above, indi-
cated by the 10-nt periodicity in this region of the auto-
correlation plot (Figure 3b). By this analysis, 34% of the
autocorrelation signal with a 100-nt window derives from
sites with constrained rotational positioning (8.9 for 101
to 200 nt, 2.8% for 201 to 301 nt, 1.1% for 301 to 400 nt,
and 0.64% for 401 to 500 nt). Fast Fourier transform
(FFT) analysis of this signal indicated that the periodicity
of the coincidence frequency is 10.1 nt (Figure 3c). How-
ever, we note that the Fourier analysis may represent a
situation that in reality is considerably more complex
than can be modeled with a single peak - indeed DNA in
different physical and biological configurations is known
to have helical periodicity ranging between 10 and 11
(for example, [22]) with the underlying physical situ-
ation expected to vary both between cell types and (as
a consequence of DNA sequence, base composition, or
underlying physical structure) between regions in the ge-
nome. Numerous large-scale chromatin structures have
been proposed in diverse systems, each with different
detailed consequences in terms of the balance of helical
periodicity across any localized region [23-25]. Experi-
mental analysis of accessibility [26,27], likewise supports a
somewhat variable periodicity within the nucleosomal
repeat that varies somewhat for different sub-nucleosomal
regions (in particular around the dyad).

To obtain an indication of the extent of periodic struc-
ture underlying the DNA as a function of position in the
genome, we performed the autocorrelation analysis se-
parately for endo-cleavage ends that occur in each of six
chromosomes. All chromosomes exhibit similar degrees
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of rotational positioning in this analysis [Additional file 1:
Figure S4]. We also performed the autocorrelation ana-
lysis separately for endo-cleavage ends that occur within
introns or exons. Both exonic and intronic ends exhibit
similar high degrees of rotational positioning [Additional
file 1: Figure S4]. These observations implicate an under-
lying periodic structure as a consistent and extensive fea-
ture of activated oocyte chromatin.

When the auto-correlation analysis was performed for
the MNase-generated DNA fragments from the longer
fer-1(b232) oocyte chromatin, the coincidence numbers
oscillate with additional periodicity that corresponds to
an approximately 178-nt nucleosome-like repeat length
(that is, nucleosome core DNA + spacer) (Figure 3d
and 3e), consistent with at least a fraction of DNA in
the oocyte preparations being packaged in regularly
spaced, positionally constrained nucleosomes. The pro-
minent approximately 10-nt phasing signal observed for
the endocleaved oocyte DNA fragments is absent in the
MNase-generated nucleosome core DNA fragments.

When the auto-correlation analysis was performed for
the endo-cleavage DNA fragments from wild type em-
bryos, the degree of non-random rotational positioning
is approximately 5-fold lower than that observed for
fer-1(b232) oocyte endo-cleaved DNA fragments in the
size range of 1 to 100 nt (and approximately 7-fold in the
size range of 101 to 200 nt) (Figure 3c); the stronger
amplitude and persistence of autocorrelation deriving
from fer-1(b232) oocytes argues for differentiating fea-
tures of oocyte chromatin that produce greater long-range
periodicity and greater cell-to-cell rotational consistency
than was observed in the somatic embryo tissue.

In summary, the prominent approximately 10-nt peri-
odic signals in the oocyte auto-correlation analyses indi-
cate that a particular face of the activated oocyte DNA
in a large fraction of the genome is preferentially cleaved
by the endogenous DNase activity. For this portion of
the genome, we can infer that the activated oocyte DNA
has been operationally constrained in its rotational posi-
tioning relative to an underlying protective surface.

Packaging of activated oocyte DNA at the 5’ ends of
H3K4me3-anchored genes exhibits unusual phasing
characteristics

Genome-wide nucleosome mapping studies from a num-
ber of model organisms have shown nucleosome posi-
tioning that appears to be variable for a substantial
fraction of the genome [18,28]. A small fraction of nucle-
osomes, on the other hand, are constrained to occupy
specific positions. These so called positioned nucleo-
somes are often found near transcription start sites of ac-
tive genes [20,29-32]. The first nucleosome downstream
of the transcription start site (conventionally referred to
as the plus-one nucleosome) often exhibits the highest



Gu et al. Epigenetics & Chromatin 2013, 6:37
http://www.epigeneticsandchromatin.com/content/6/1/37

degree of positional constraint. In addition, the plus-one
nucleosome tends to include a distinct set of histone var-
iants (for example, H3.3) [33] and post-translationally
modified histones (for example, H3K4me2/3) [34].

Previously, we assigned the plus-one nucleosomes for
3903 C. elegans genes by mapping nucleosomes that are
enriched for H3K4me2/3 [20]. House-keeping genes in
C. elegans are highly over-represented in this set of
H3K4me2/3-anchored genes. To evaluate the expression
status of these genes in oocytes, we used serial analysis
of gene expression (SAGE) data from purified oocytes
[35]. Out of the 3903 H3K4me2/3-anchored genes, at
least 1,593 (40%) appear to be expressed in oocytes, as
evidenced by the presence of >2 oocyte SAGE tags (we
note that the presence of SAGE reads in oocytes does
not imply oocyte-restricted expression; indeed, expres-
sion of many of these genes might be expected to be
broadly expressed ‘housekeeping’ genes). To characterize
chromatin in active genomic regions, we examined acti-
vated oocyte DNA fragments at the 5" ends of the 1,593
H3K4me2/3-anchored genes. In Figure 4, we plot the
average frequency of the activated oocyte DNA fragment
ends as a function of distance from the dyad position of
the plus-one nucleosome (see Figure 4c for the scheme).
Ends that match the sense strand of genes are plotted
separately from ends matching the anti-sense strand.
This analysis reveals two overlaying patterns: (1) a long-
range oscillation that corresponds to regularly spaced
nucleosomes with approximately 160-bp repeat length,
and (2) a local oscillation with approximately 10-nt peri-
odicity (Figure 4).

Two additional features of the endo-cleavage in acti-
vated oocyte chromatin were revealed upon detailed
examination of the plots in Figure 4.

1. The ends of the activated oocyte DNA fragments
tend to be within regions that are packaged into
nucleosome cores in mixed-tissue preparations. For
example, at the plus-one nucleosome position
(marked by peak frequencies of MNase-generated
nucleosome core DNA ends at -73 and 73 nt for
the sense- and anti-sense-strand tags, respectively,
Figure 4), the sense-strand tags of the activated oo-
cyte DNA of 40 to 90 nt size range have the highest
frequencies in the first half (highest frequencies
occur at positions -39 and -29 nt). The profile of
anti-sense-strand tags is a near mirror image of the
sense-strand tags with the reference to the dyad pos-
ition of the plus one nucleosome.

2. The plus-one nucleosome in activated oocytes ex-
hibits the highest degree of constraint on the appa-
rent rotational positioning, indicated by the most
dramatic approximately 10-nt periodic oscillation of
the activated oocyte DNA ends at this region. DNA
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in what would be the plus-two nucleosome has a
strong tendency to be constrained in the same rota-
tional positioning as the plus-one nucleosome. Re-
markably, the approximately 10-nt phasing character
is maintained through the dyad positions of these
two nucleosome positions and even the linker re-
gion. The constrained rotational positioning shared
by plus-one and plus-two nucleosome regions di-
minishes outside of these nucleosome regions (com-
pared to the plus-two nucleosome, the minus-one
nucleosome shows a weaker but still significant ten-
dency to be constrained in the same rotational posi-
tioning as the plus-one nucleosome). We note the
possibility that the underlying structure in these re-
gions may be non-nucleosomal in some or all oo-
cytes (or may be a very unusual nucleosome-like
structure): whether the surface of interaction being
revealed by these cleavages is indeed a pair of nucle-
osomes remains to be determined.

Periodic A(n)/T(n) clusters (PATCs) characteristic of
germline-expression in C. elegans are positioned on the
inaccessible surface of activated oocyte DNA

DNA with short A(n)/T(n) sequences that are distributed
along one face of the DNA double helix exhibits unusual
curvature and a tendency for the A(n)/T(n) sequence to
face inward towards the nucleosome, at least in vitro
[36-40]. A significant fraction of the C. elegans genome
has a strong approximately 10-nt periodic A(n)/T(n) sig-
nal [41-43], with high PATC frequency associated with
oocyte-expressed genes [41]. Although this DNA can ex-
hibit DNA bending in vitro [44] (and can be packaged
into nucleosomes [18,20,28]) the structural consequences
of this sequence characteristic for the organization of
chromatin are presently unknown.

To test if the 10-nt periodic A(n)/T(n) signal is associ-
ated with the rotational positioning in activated oocytes,
each position in the PATC regions was assigned an inte-
ger phase (0 to 9] based on the DNA sequence alone,
indicating a position relative to the A(n)/T(n) face
(a schematic example is shown in Figure 5a). The accessi-
bility for each of the ten bins was measured, summing
the respective cleavage incidences. To avoid any con-
founding effect caused by intrinsic DNA sequence bias of
the endogenous cleavage activity, the cleavage events at
different PATC positions (0 to 9) were evaluated for each
of the 256 classes based on the bases flanking potential
cleavage sites (N_,N_;|N;N,). Regardless of the sequence
composition at the cleavage site, we observed a consist-
ent bias for the A(n)/T(n)-rich face to be protected from
cleavage in the activated oocyte DNA (Figure 5b). Con-
versely, the face of the DNA helix that is, opposite to the
A(n)/T(n) sites consistently shows the highest accessibility
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tss: transcription start site
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(face 6 Figure 5b). This pattern is not observed for MNase
digested nucleosome core DNA (Figure 5c).

Discussions and conclusions
The patterns of DNA fragmentation in activated C. ele-
gans oocytes provide evidence for a large-scale chromatin
organization in which long segments of DNA (>500 bp)
are consistently organized on a surface that constrains
accessibility of one helical face. That these organized seg-
ments are larger than individual nucleosomes argues ei-
ther (i) for a stereotyped multi-nucleosome structure
that might allow an uninterrupted approximately 10-bp
periodicity, (ii) for a larger ‘mega’ nucleosome-like struc-
ture that might accommodate several hundred base pairs
of DNA, or (iii) for a large non-nucleosomal surface that
might organize DNA. We consider each of the three
models to be potentially valid hypotheses for further
study.

A number of previous structural discussions (see for
example, [24,45,46] for relevant discussion) have dealt
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with questions related to the potential persistence of an
approximately 10-bp periodicity in sequence accessibility
over multiple adjacent conventional nucleosomes. While
nucleosomes separated by a variable spacer length would
be expected to lose helically periodic accessibility at se-
parations significantly beyond a single unit nucleosome
length, certain fixed or constrained linker lengths would
allow retention of a periodic pattern. Such arrangements
might have the effect (with potential advantage to the
organism) of allowing a single underlying periodicity in
some regions of the genome to constrain incremental
sliding of nucleosomes in response to lateral forces,
while potentially increasing nucleosome dissociation in
response to such forces.

While conventional single-octamer nucleosome-based
structures are certainly prevalent in virtually every sys-
tem analyzed, there have been additional observations
(see [23] for review) suggesting flexibility in the under-
lying structure that might be expected under specific
constraints to also allow larger histone-based complexes

-
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(‘Mega-nucleosomes’?) as scaffolds for larger segments
of DNA. While certainly requiring confirmation and fur-
ther analysis, such larger structures are consistent with
early studies on at least one system with actively repli-
cating DNA [47].

Beyond the category of nucleosome-like protein: DNA
structures, additional non-nucleosomal surfaces within
the nucleus (and the semi-consistent association of these
surfaces with the DNA) could account for a periodicity
as we have observed; candidate surfaces might include
nuclear lamina and envelope structures, meiotic conden-
sation cores, and (potentially) yet-to-be-discovered
protein-DNA interfaces.

Whatever their structural basis, the biochemical pat-
terns revealed by our analysis match features associated
with promoter organization and periodic nucleotide se-
quence composition in germline-expressed C. elegans
[41] genes, suggesting (despite the endoreduplicated
character of oocytes isolated in bulk from C. elegans)
that the chromosome organization described here would
have been present and functionally relevant on a suffi-
cient evolutionary timescale to influence the underlying
sequence, either through selection at the organismal
level or through mutational biases introduced by the
anisotropic activity.

Methods

DNA extraction

C. elegans oocytes were purified from the fer-1(h232)
mutant worms grown at the restrictive temperature of
25-26°C as described [35]. Oocytes were flash frozen
upon harvest. Frozen oocytes were ground to a fine
powder in liquid nitrogen. For direct lysis (that is, no
micrococcal nuclease treatment), DNA was isolated by
incubating the worm sample with 400 ul lysis buffer
(100 mM Tris-Cl, pH 7.5, 0.1 M NaCl, 1% SDS, 50 mM
EDTA, 0.2 mg/ml protease K) at 65°C for 1 hour,
followed by extraction with an equal volume of phenol/
chloroform (1:1), extraction with an equal volume of
chloroform, and by precipitation with ethanol (1 ml).
Approximately 5 to 20 pg of DNA was obtained from
this procedure. In cases where micrococcal nuclease
(MNase) treatment was applied, liquid-nitrogen-ground
oocytes (or similar samples from other stages) were dir-
ectly resuspended in buffer A (15 mM Hepes-Na, pH
75, 60 mM KCI, 15 mM NaCl, 0.15 mM beta-
mercaptoethanol, 0.15 mM spermine, 0.15 mM spermi-
dine, 0.34 M sucrose) containing 0.5 mM PMSE, 1/100
dilution of HALT protease and phosphatase inhibitor
cocktail (Thermo Scientific)) 1 mM DTT, and 2 mM
CaCl,. For micrococcal nuclease (MNase) digestion, 0.1
ml oocyte crude lysate was first pre-warmed to 37°C for
one minute, then treated with 0.002, 0.02, or 0.1 U/l
MNase (Roche). The reaction mix was incubated at 37°C
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for two minutes and digestion was then stopped by add-
ing EGTA to a final concentration of 20 mM. DNA was
isolated by incubating the worm sample with 400 pl lysis
buffer (100 mM Tris-Cl, pH 7.5, 0.1 M NaCl, 1% SDS,
50 mM EDTA, 0.2 mg/ml protease K) at 65°C for 1 hour,
followed by organic extraction and DNA precipitation as
above.

DNA library preparation

DNA was treated with 0.5 U/pl T4 polynucleotide kinase
(NEB) in 1x T4 DNA ligase buffer (NEB, containing 1
mM ATP) at 37°C for 1 hour to phosphorylate 5° ends
and dephosphorylate 3" ends. Ends were then blunted in
a reaction containing 0.75 U/ul of T4 DNA polymerase
(NEB), ANTP (100 uM each, Roche), and 1x NEB buffer
1 at 12°C for 15 min. DNA was then ligated to previ-
ously annealed DNA oligonucleotides AF-SG-133 (5’
Pi-AGATCGGAAGAGCTCGTATGCCGTCTTCTGCT
TG-OH 3') and AF-SG-134 (5° OH-CCCTACACGAC
GCTCTTCCGATCT-OH 3’) (NEB Quick Ligation Kit).
DNA captured by linker oligonucleotides was resolved
using 6% polyacrylamide (acrylamide:bis-acrylamide =
19:1) gels containing 8 M urea, followed by PCR amplifi-
cation with primers AF-SG-135 (5" OH-AATGATACGG
CGACCACCGAGATCTACACTCTTTCCCTACACGAC
GCTCTTCCGATCT-OH 3’) and AF-SG-137 (5" OH-CA
AGCAGAAGACGGCATACGAGCT-OH 3'). We care-
fully selected cycle numbers for which product levels have
not saturated (that is, product levels were still able to in-
crease substantially with additional cycles); this protocol
ensures that the majority of amplified segments are still
annealed to a true complement, avoiding reannealing
distortion in the resulting sequence libraries [48]. After
separating PCR products on 2% agarose gels, DNA
bands of the expected size were extracted (Qiagen Gel
Extraction Kit (Invitrogen); omitting the 50°C heating
step), followed by massively parallel DNA sequencing
using Illumina HiSeq 2000 sequencing system.

Accession numbers
All sequencing data used in this study have been depo-
sited in GEO ( GSE46499).

Characterization of the ends of fragmented DNA from
activated oocytes

We radioactively labeled 5'-ends of fer-1(b232) oocyte
DNA by using T4 polynucleotide kinase and ATP gamma
[32] D, followed by treatment with T4 DNA polymerase
and dNTPs to produce blunt ends. End-labeling and T4
DNA polymerase reactions were performed when DNA
was double-stranded. T4 DNA polymerase converts 5" or
3’ single-stranded overhangs to blunt ends by either DNA
polymerase or 3'-5' exonuclease activity, respectively.
When the T4 DNA polymerase-treated oocyte DNA was
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resolved on a denaturing PAGE, we observed that the
sizes of oocyte DNA fragments consistently decreased by
2 to 3 nt when compared with the untreated sample
[Additional file 1: Figure S3], indicating a 2 to 3-nt single-
stranded overhang in the 3" ends of oocyte DNA frag-
ments (that is, two nearby cleavage events on the opposite
strands are staggered by 2 to 3 nt).

SAGE data were obtained from the Genome BC C.
elegans Gene Expression Consortium http://elegans.
bcgsc.be.ca/.

Additional file

Additional file 1: Figure S1. DNA extracted from MNase digested
chromatin and naked DNA treated with. MNase digestion was resolved
on a 3% agarose gel (a) or a denaturing 12% polyacrylamide gel (8 M
urea) (b).Figure S2. Size distributions of fragmented fer-1(b232) oocyte
DNA determined by paired-end lllumina sequencing for each of the four
libraries prepared from fragmented DNA in different size ranges (20-80,
40-130, 80-230, and 130-430 bp). Figure S3. Characterization of the
ends of fragmented fer-1(b232) oocyte DNA. Denaturing PAGE analysis of
fragmented fer-1(b232) oocyte DNA treated with T4 DNA polymerase and
a full set of ANTP. Figure S4. A positional correlation analysis of
endo-cleaved DNA fragments from fer-1(b232) C. elegans oocyte for each
chromosome (A) A positional correlation analysis of endo-cleaved DNA
fragments from fer-1(b232) C. elegans oocyte (B) and wild type (N2)
embryo (C) chromatin using endo-cleavage ends that fall in intronic or
exonic sequence. Figure S5. (A) Coverage by endo-cleaved DNA
fragments (left panels) or MNasegenerated nucleosome DNA (right
panels) from fer-1(b232) C. elegans oocytes was plotted as a function of
position for each of the C. elegans six chromosomes. (B) A density scatter
plot comparing the coverage of endo-cleaved DNA fragments and
coverage of MNase-generated nucleosome DNA from fer-1(b232)

C. elegans oocyte for each one-kb window throughout the genome.

The density of dots are indicated by color. (C) Aggregate coverages of
endo-cleaved DNA fragments or MNase-generated nucleosome DNA
from fer-1(b232) C. elegans oocyte were plotted as a function of positions
at the 5" end and 3' ends of annotated C. elegans genes. Genes are
grouped as high, median, and low based on the levels of oocyte
expression.

Abbreviations
PATCs: periodic A(n)/T(n) clusters; SAGE: serial analysis of gene expression.
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