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Abstract

Background: Enhancer elements determine the level of target gene transcription in a tissue-specific manner,
providing for individual patterns of gene expression in different cells. Knowledge of the mechanisms controlling
enhancer action is crucial for understanding global regulation of transcription. In particular, enhancers are often
localized within transcribed regions of the genome. A number of experiments suggest that transcription can have
both positive and negative effects on regulatory elements. In this study, we performed direct tests for the effect of
transcription on enhancer activity.

Results: Using a transgenic reporter system, we investigated the relationship between the presence of pass-through
transcription and the activity of Drosophila enhancers controlling the expression of the white and yellow genes. The
results show that transcription from different promoters affects the activity of enhancers, counteracting their ability
to activate the target genes. As expected, the presence of a transcriptional terminator between the inhibiting
promoter and the affected enhancer strongly reduces the suppression. Moreover, transcription leads to dislodging

‘transcription interference’” mechanism for this regulation.

Pass-through transcription

of the Zeste protein that is responsible for the enhancer-dependent regulation of the white gene, suggesting a

Conclusions: Our findings suggest a role for pass-through transcription in negative regulation of enhancer activity.
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Background

The development of multicellular organisms involves dif-
ferentiation of various cell types, which is achieved by the
establishment of requisite spatial and temporal patterns of
gene expression. Regulation of transcription is a highly
complex process involving different regulatory DNA ele-
ments, enhancers in particular. Enhancers are positive
DNA sequences containing multiple binding sites for a
variety of transcription factors. These regulatory elements
can activate genes over long distances, up to several tens
of thousands of base pairs, and act independently of the
distance and orientation with respect to the promoters of
target genes [1,2].
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A number of experiments performed to date indicate
that a major portion of the genome is being transcribed
and that a large percentage of the transcripts are
accounted for by long non-protein-coding sequences
(IncRNAs), either in mammals or in Drosophila [3-6).
Recent data suggest that many of IncRNAs have important
roles in the regulation of transcription [7]. However, it was
found that the expression of IncRNA clusters did not cor-
relate absolutely, either positively or negatively, with the
expression of the nearest mRNAs [8]. For instance, tran-
scripts detected in the Drosophila bithorax complex cor-
relate with the repressed state of the locus [9]. In
vertebrates, many clusters of imprinted genes contain
IncRNAs, and some of them have been implicated in the
transcriptional silencing [10]. Similarly, the X chromo-
some inactivation relies on the expression of a IncRNA
named Xist [11]. There is also evidence that a IncRNA
expressed from the HOXC locus may negatively affect the
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expression of genes in the HOXD locus, which is located
on a different chromosome [12].

On the other hand, there are data indicative of a positive
role of IncRNAs. For example, it has been shown that
intergenic transcription through the PRE element coun-
teracts silencing [13]. Some of non-coding RNAs proved
to have a positive influence on expression of neighboring
protein-coding genes [14]. Moreover, there is a large class
of mammalian IncRNAs originating from and/or near the
enhancers, named eRNAs. They are associated with active
enhancers, and the resulting bidirectional eRNAs can be
spliced and polyadenylated. However, regulatory functions
of eRNAs remain unknown [15-17].

The detailed mechanism of the IncRNAs action is also
not clear. One possibility is that these transcripts can re-
cruit different enzymatic complexes and act as molecular
scaffolds [18]. Another possibility involves the mechanism
of ‘transcription interference’ in which the moving RNA
pol II complex can disturb protein complexes associated
with DNA [19,20]. For example, transcription across the
yeast SER3 promoter interferes with the binding of activa-
tors, resulting in gene repression [21]. Another illustration
from the yeasts is the dislodging of Rap1l and Gerl factors
from the ADH1 promoter by non-coding intergenic RNA
ZRR1 [22].

In order to evaluate the possible role of intergenic tran-
scription in modulation of enhancer action, we have exa-
mined the effect of transcription on the activity of yellow
and white gene enhancers using transgenic reporter systems.
Here, we present evidence that intergenic transcription
counteracts the ability of enhancers to stimulate the pro-
moter of the target gene. Moreover, transcription leads to
displacement of the Zeste protein that is required for activity
of the enhancer that stimulates white expression in the eyes.

Results

Transcription suppresses the activity of the enhancer that
stimulates white gene expression in the eyes

To test the role of transcription in modulation of enhancer
action, we used the yellow and white genes. The white gene
is required for eye pigmentation, with the eye-specific en-
hancer being responsible for the high level of its transcrip-
tion [23]. The yellow gene is responsible for dark
pigmentation of the larval and adult cuticle and its deriva-
tives. Two upstream enhancers stimulate its expression in
the body cuticle and wing blades [24,25]. At first, we
examined the effect of transcription on the activity of the
eye enhancer of the white gene.

As a test system, we chose the P-element-based transgenic
integration providing the possibility to obtain, in parallel,
several independent transgene insertions in different ge-
nome locations. To control the potential position effect, the
main elements in all constructs used in functional tests were
flanked by frt or lox sites for Flp- and Cre-recombinase,
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respectively. The presence of the frt and lox sites allowed
us to delete the flanked DNA fragments and to compare
the expression of the reporter gene before and after the
deletion of the regulatory elements in one genome
position.

To induce transcription, we selected the UAS promoter
consisting of the minimal /sp70 promoter (from —43
to +204 bp) and five binding sites for the GAL4 activator
[26]. To confirm the ability of this promoter to drive tran-
scription in the eyes, we constructed transgenic lines
UASAWY in which the white gene was expressed under
control of the UAS promoter (Figure 1A). In the absence
of GAL4 stimulation, flies carrying the white transgene
under control of the UAS promoter displayed eye color
phenotypes ranging from pale yellow to dark yellow,
which indicated that the UAS promoter only weakly drove
white transcription in the eyes. Induction of this promoter
by GAL4 resulted in flies with the red eye color corre-
sponding to a high level of white expression.

Next, we tested whether the transcription process could
influence the activity of eye enhancer ((UAS)Ey(e)YW
construct) (Figure 1B). Hereafter, parentheses in construct
designations enclose the elements flanked by the frt or lox
sites. The yellow gene was used as a spacer sequence. As a
result, the distance between the eye enhancer and the
white promoter was 7.1 kb. The eye enhancer (“e”) flanked
by frt sites was inserted in direct orientation relative to
the white gene in the genomic position between the wing
and body enhancers of the yellow gene. The UAS pro-
moter flanked by lox sites was inserted upstream of the
enhancers. In all transgenic lines tested, flies had moderate
levels of eye pigmentation, suggesting partial suppression
of the eye enhancer. In most of the lines, however, eye
pigmentation increased significantly after deletion of the
UAS promoter ((A)Ey(e)YW). Thus, the eye enhancer
was partially suppressed by the UAS promoter in the
absence of GAL4. Induction of the UAS promoter by
GAL4 led to complete suppression of the eye enhancer,
resulting in eye phenotypes identical to those observed
in the absence of enhancers ((UAS)Ey(A)YW).

At the next step, we performed RT-qPCR analysis of
RNA isolated from heterozygous mid-late pupae (the stage
of high white expression) of the one transgenic line
containing the (UAS)Ey(e)YW parental (P) construct and
from its derivatives with GAL4 activator (P + GAL4) or
with deletion of UAS promoter (PAUAS). The results
showed that the level of white transcription correlated well
with the phenotypic data (Figure 1C). Transcription from
the UAS promoter was relatively weak in the absence of
GAL4 but increased to a high level (approximately
200-fold) upon induction by GAL4. The increased tran-
scription was detected both upstream and downstream of
the white enhancer but not downstream of the yellow ter-
minator sequences. In agreement with phenotypic data,
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Figure 1 The upstream UAS promoter suppresses activity of the white enhancer. (A) UASAWY transgenic lines. The UAS promoter drives
expression of the white gene; yellow gene was used as marker to select transgenes. “T" on the 3"-side of genes indicates terminators of
transcription. Below the maps, phenotypes of parental lines and those after induction of GAL4 expression (+GAL4) are shown. The color scale for
white is indicated above the horizontal line. Only the range of grades that were actually recorded in the flies is shown. Each entry in the frame is
the number of transgenic lines with the corresponding pigmentation grade; the shaded region in each frame indicates the “mean level."T is the
total number of lines examined; for derivative constructs, N is the number of lines where the phenotype changed as compared with the parental
construct. (B) (UAS)Ey(e)YW lines. The UAS promoter drives transcription through the eye enhancer (£) of the white gene, placed between wing
(W) and body (B) enhancers of the yellow gene. Downward arrows indicate lox and frt sites. Below the maps are the expression data for the
parental construct and for those derived after in vivo excision of the elements. (C) Quantification of (UAS)Ey(e)YW transcripts by RT-qPCR.
Positions of primer pairs (1-2, 3-4, 5-6, 7-8) are indicated. Individual transcript levels were normalized relative to ras64B for the amount of input
cDNA. The transgenic material of pupae was obtained from crosses between (P) homozygous parental line and yw'''® line, (P + GAL4)
homozygous parental line and GAL4-expressing line, or (PAUAS) homozygous derivative line with deleted UAS promoter and yw'""® line. Error
bars indicate standard deviations. Statistical significance was analyzed using the Student’s t-test and expressed as a P-value. **P< 0.01; ***P< 0.005.
Photographs show eye pigmentation in the heterozygous parental line and its derivatives used in RT-qPCRs.

the level of white gene transcription (relative to parental
lines) was reduced upon GAL4 induction but increased
after deletion of the UAS promoter. A decrease in transcrip-
tion level was observed downstream of yellow enhancers.
This could be explained by the presence of AATAAA in the
enhancer sequences, which could contribute to transcrip-
tion termination.

Next, we tested the importance of eye enhancer orienta-
tion in the construct for its sensitivity to transcription

from the UAS promoter ((UAS)Eye®YW) (Figure 2A). Eye
pigmentation in transgenic flies increased after deletion of
this promoter ((A)EyeRYW); at the same time, induction
of transcription resulted in complete inactivation of the
eye enhancer. Thus, the enhancer orientation proved to
be not important for the observed suppressive effect of
transcription.

The suppression of the eye enhancer could be explained ei-
ther by transcription through the enhancers or by competition
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Figure 2 Pass-through transcription is responsible for suppression of the eye enhancer. (A) (UAS)Eye"YW transgenic lines; the eye
enhancer is inserted in the opposite orientation. (B) (UASR)EerV\/ transgenic lines; the UAS promoter drives transcription in the direction from
the enhancers. (C) (UAS)Ey(e)AYtsW transgenic lines with deletion of the yellow gene promoter (indicated by the absence of an upstream arrow
and by parentheses in front of the gene on the scheme); “ts” is the core 222-bp SV40 terminator. (D) Quantification of (UAS)Ey(e)AYtsW transcripts
by RT-gPCR. Positions of primer pairs (1-2, 3-4, 5-6, 9-10) are indicated. RT-gPCR was conducted on mRNAs isolated from transgenic lines at the
mid-late pupae stage. Error bars indicate standard deviations. For other designations, see Figure 1.
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for the enhancer between the UAS and white pro-
moters. To determine the role of transcription in sup-
pression of the eye enhancer, we inserted the UAS
promoter in the opposite orientation ((UASR)EerW)
(Figure 2B) and found that all the resulting transgenic
lines had an almost wild-type level of eye pigmenta-
tion, which did not decrease after either deletion of
the UAS promoter ((A)EyeYW) or induction of tran-
scription by GAL4. These results contradict the pro-
moter competition model, since the opposite orientation
of the white and UAS promoters should not affect their
ability to compete for the eye enhancer. Thus, tran-
scription leads to suppression of the eye enhancer.

In the transgenic lines described above, the eye enhancer
should stimulate white across the yellow promoter, which
could reduce the activity of the enhancer and affect the ob-
served result of intergenic transcription. To test this possi-
bility we made the construct with the deleted yellow
promoter (Figure 2C). The core 222-bp SV40 terminator

(ts) fragment was added downstream of the yellow termi-
nator to stabilize it. In general, lines with deletion of the
yellow promoter showed darker eye pigmentation (cf.
Figures 1B and 2C), providing indirect evidence for the
ability of the yellow promoter to partially insulate the eye
enhancer. However, deletion of the UAS promoter in-
creased eye pigmentation in most of the transgenic lines
tested, suggesting that the low level of transcription pro-
duced by the UAS promoter was still sufficient for affecting
the activity of the eye enhancer (Figure 2C). As expected,
induction of strong transcription by GAL4 completely
repressed the eye enhancer.

One of the transgenic lines with this construct and its
derivatives was selected for RT-qPCR analysis (Figure 2D).
As in the previously tested line with the (UAS)Ey(e)YW
construct, weak transcription from the UAS promoter
increased drastically (approximately 440-fold) upon induc-
tion by GAL4. Once again, we observed a significant de-
crease in transcription downstream of the enhancers,



Erokhin et al. Epigenetics & Chromatin 2013, 6:31
http://www.epigeneticsandchromatin.com/content/6/1/31

suggesting partial termination of transcription in this re-
gion. In agreement with phenotypic data, the level of white
gene transcription was reduced upon GAL4 induction but
increased after deletion of the UAS promoter (Figure 2D).
Thus, promoter of the yellow gene in this system did not
affect the suppressive effect of transcription from the UAS
promoter.Taken together, these results suggest that the
ability of the eye enhancer to stimulate the white promoter
is sensitive to pass-through transcription.

The effect of transcription is not unique for the eye
enhancer: yellow gene enhancers

In all transgenic lines described above, the eye enhancer
was inserted between the wing and body enhancers of
the yellow gene. We noticed that the UAS promoter
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weakly affected wing and body pigmentation only when
it was located in direct orientation relative to the yellow
enhancers (Additional file 1: Figure S1).

To further test the suppressive effect of transcription
on the yellow enhancers, we primarily tested the ability
of the UAS promoter to drive transcription in tissues
where the yellow gene is transcribed. For this purpose,
we constructed transgenic lines carrying the yellow
gene under control of the UAS promoter (Figure 3A).
In the absence of GAL4 stimulation, the wings and
bodies of transgenic flies were pigmented only slightly
(grade 2), indicating a low level of yellow transcription,
while induction of GAL4 stimulated a high level of
transcription, resulting in the wild-type phenotype
(grade 5) of flies.
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Figure 3 Transcription through the yellow enhancers leads to their inactivation. (A) UASAYW transgenic lines. The UAS promoter drives
expression of the yellow gene. The downstream white gene was used as a marker to select transgenes. The color scale for yellow (grades 5 to 2) is
indicated above the horizontal line. Grade 5 corresponds to wild-type pigmentation; grades 4 and 3 correspond to partial stimulation of the
yellow gene by enhancers; grade 2, to the basal level of yellow expression in the absence of enhancers. Grade 1, corresponding to complete loss
of yellow expression, is not shown, because no lines with such a phenotype were obtained in this study. (B) (U/—\S)(Ey)AWAY; the UAS promoter
drives transcription through the yellow enhancers. The white gene with deleted promoter was used as a spacer. (C) Quantification of (UAS)(Ey)
AWAY transcripts by RT-PCR. Positions of primer pairs (11-12, 5-6, 13-14) are indicated. RT-qPCR was conducted on mRNAs isolated from
transgenic lines at the mid-late pupae stage. Error bars indicate standard deviations. *P< 0.05; ***P< 0.005. For other designations, see Figure 1.
(D) Summarized results of eye phenotype analysis in (UAS)(Ey)AWAY transgenic lines. (E) (UASR)(Ey)AWAY; the UAS promoter drives transcription in
the direction from the enhancers.
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Next, we tested whether the transcription process could
influence the activity of yellow enhancers (Figure 3B). In
the (UAS)(Ey)AWY construct, the white gene with the de-
leted promoter and 3’-Wari insulator (AW?) was used as a
spacer inserted between the enhancers flanked by frt sites
and the yellow promoter, so that the distance between the
enhancers and the promoter was 4.6 kb. To induce tran-
scription through the enhancers, the UAS promoter
flanked by lox sites was placed immediately upstream of
the enhancers.

In all transgenic lines obtained, flies had weak pigmenta-
tion of the wing and body cuticle that corresponded to the
basal level of yellow transcription in the absence of
enhancers (grade 2) or to its weak stimulation (grade 3).
Induction of GAL4 resulted in the basal level of wing and
body pigmentation in all transgenic lines, suggesting
complete inactivation of the enhancers (Figure 3B). Dele-
tion of the UAS promoter ((A)(Ey)A\X/AY) in the transgenic
lines provided for a darker pigmentation of flies, indicating
that enhancers recovered their ability to stimulate the tar-
get promoter. This result confirmed that the yellow en-
hancers were strongly suppressed in the presence of the
UAS promoter. Deletion of the yellow enhancers ((UAS)
(A)AW™Y) resulted in the basal level of wing and body pig-
mentation of flies in all transgenic lines, confirming that
the enhancers accounted for weak yellow stimulation in
parental lines. These results showed that the yellow en-
hancers are very sensitive even to uninduced UAS pro-
moter and that a high level of transcription completely
inhibited their activity.

An RT-qPCR analysis of RNA isolated from mid-late
pupae of one transgenic (UAS)(Ey)AW"Y line and its
derivatives (the stage of high yellow expression) showed
that transcription from the UAS promoter was relatively
weak in the absence of GAL4 but increased approxi-
mately 250-fold upon induction by GAL4, with a higher
transcription level being detected both upstream and
downstream of the yellow enhancers but not down-
stream of white terminator sequences (Figure 3C). In
agreement with phenotypic data, the level of yellow gene
transcription (relative to that in the parental line) was
reduced upon GAL4 induction but increased after dele-
tion of the UAS promoter (Figure 3C). As in constructs
tested previously, transcription was partially terminated
on the yellow enhancers.

Termination of transcription by yellow enhancers was
also observed by white phenotype (Figure 3D). The white
gene contains an IRES-like element [27], which allows its
expression to be used for measuring the level of upstream
transcription from a distantly placed promoter. Deletion of
the yellow enhancers from transgenic lines with the (UAS)
(Ey)AWAY construct resulted in increasing eye pigmenta-
tion, suggesting that transcription from the UAS promoter
was partially terminated on these enhancers. Induction of
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UAS promoter by GALA4 led to red eye phenotype in trans-
genic flies (Figure 3D), indicating that the level of tran-
scription downstream of the yellow enhancers was
relatively high.

To exclude the role of promoter competition in repres-
sion of the yellow enhancers, we reinserted the UAS pro-
moter in the opposite orientation ((UAS®)(Ey)AW™Y)
(Figure 3E). The deletion of the UAS promoter or its in-
duction by GAL4 did not lead to decrease in wing and
body pigmentation, indicating that transcription through
the yellow enhancers was responsible for their inactivation.
The deletion of the yellow enhancers resulted in the basal
level of wing and body pigmentation, confirming the role
of the enhancers in yellow stimulation.

Taken together, the results of these experiments confirm
that transcription through the yellow enhancers leads to
their inactivation. Moreover, as in case of eye enhancer,
even the very low level of transcription produced by the
UAS promoter in the absence of GAL4 is sufficient for
strong suppression of the enhancer activity.

Transcription from the Ef1 promoter inhibits the activity
of the enhancers

To verify that the observed effect was not unique to the
UAS promoter, we tested the strong constitutive pro-
moter of the Elongation factor 1a48D (Ef1).

The (EF1)Ey(e)YW construct was made for the eye en-
hancer (Figure 4A). In these transgenic lines, all flies had
the weak eye pigmentation indicative of strong suppression
of the enhancer. Deletion of enhancer ((EF1)Ey(A)YW) did
not change pigmentation, indicating that the enhancer is
completely inactivated in the presence of Efl promoter,
while deletion of the promoter ((A)Ey(e)YW) resulted in
darker pigmentation, restoring the ability of the enhancer
to stimulate transcription. Thus, the Efl promoter was also
found to effectively inhibit the activity of eye enhancer.

We also confirmed that the Efl promoter could sup-
press the activity of the yellow enhancers (Figure 4B). In
(EF1)(Ey)AWA Y transgenic lines, all flies had the basal
level of wing and body pigmentation, indicative of strong
suppression of the yellow enhancers. Deletion of
enhancers ((EF1)(A)AW2Y) confirmed that they were in-
active in the presence of the Efl promoter. At the same
time deletion of the promoter ((A)(Ey)AWAY) restored
the ability of these enhancers to stimulate transcription.
Thus, the Efl promoter effectively inhibits the activity of
yellow enhancers.

The SV40 transcription terminator strongly reduces the
inhibiting effect of transcription on activity of the
enhancers

To further confirm that transcription is responsible for
repression of enhancer activity, we used the strong tran-
scriptional terminator from SV40 to stop transcription
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from the UAS promoter. To test the UAS promoter-eye
enhancer pair, we inserted the 702-bp SV40 terminator
flanked by lox sites between the UAS promoter and the
eye enhancers (UAS(Ts)Ey(e)AYtsW) (Figure 4C). The
UAS promoter was placed at 1 kb from the SV40 termin-
ator. As a result, the distance between the UAS promoter
and the eye enhancer was 3.1 kb. As expected, induction
of the UAS promoter by GAL4 did not affect the activity
of the eye enhancer, confirming that SV40 terminator pro-
tects enhancer from the negative effect of the transcrip-
tion. At the same time, deletion of the terminator (UAS
(A)Ey(e)AYtsW) resulted in reduction of eye pigmentation
in only three out of nine transgenic lines, suggesting that
suppressive effect of transcription produced by the UAS
promoter was weaker then at 1.2 kb (cf. Figures 4C and
2C). However, induction of transcription by GAL4 consid-
erably reduced white expression, indicating that the eye
enhancer was still sensitive to high level of transcription.
In the next construct, the SV40 terminator was
inserted between the UAS promoter and the yellow en-
hancers ((UAS)Ts(Ey)AWAY) (Figure 4D). The UAS pro-
moter was flanked by lox sites and inserted immediately
upstream of the SV40 terminator. All flies in the
resulting transgenic lines had a wild-type level of wing
and body pigmentation. This level decreased upon dele-
tion of the enhancers ((UAS)Ts(A)AW?Y), which con-
firmed that they were active in the parental transgenic
lines. On the other hand, no changes in pigmentation
were observed upon deletion of the UAS promoter ((A)
Ts(Ey)AW2Y) or its induction by GAL4, indicating that
terminator effectively protected from suppressive effect
of transcription. Thus, the SV40 transcription terminator
protects the enhancers from repression mediated by
transcription through the enhancer in transgenic lines.

Transcription through eye enhancer leads to dislodging
of Zeste protein from the enhancer

Several mechanisms may be involved in suppression of
the enhancer activity by pass-through transcription. In
particular, transcription may disturb binding of proteins
forming active complexes on the enhancers. To test such
a possibility, we compared binding of the Zeste protein
to the eye enhancer in absence or presence of pass-
through transcription. The white gene enhancer contains
five binding sites for Zeste, the protein that is known to
be important for communication of the eye enhancer
with the white promoter [23,28].

We compared binding of Zeste to the eye enhancer by
chromatin immunoprecipitation (X-ChIP) assay in trans-
genic lines homozygous for either the (UAS)Ey(e)YW con-
struct or its (A)Ey(e)YW derivative obtained by deletion of
the UAS promoter (Figure 5A). In all experiments, the Ubx
promoter region known to be bound by Zeste [29] and
the ras64B coding region were used as the positive and
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Figure 5 Transcription through eye enhancer leads to
dislodging of Zeste from the enhancer. Results of ChIP with
antibodies to the Zeste protein from (A) (UAS)Ey(e)YW, (B) UAS(Ts)Ey
(e)AYtsW and (C) (EF1)Ey(e)YW transgenic lines. Diagrams summarize
the results of ChIP with specific antibodies followed by real-time
PCR. The ordinate shows the percentage of target sequences in the
immunoprecipitated material relative to the input (10% of total
crosslinked chromatin), with the genome regions for which DNA
enrichment was tested being indicated on the abscissa: pUbx,
promoter of the Ubx gene, positive control; rasé4B, negative control;
E, eye enhancer of the white gene; pW, promoter of the white gene;
codW, coding part of the white gene. “P" indicates that ChIP
experiments were performed with a parental transgenic line
indicated above diagram; “PAUAS"deletion of the UAS promoter;
"PATs"deletion of the 702-bp SV40 terminator; “PAEF1"deletion of the
EF1 promoter. Vertical lines indicate standard deviations. All ChIP
experiments were performed with chromatin isolated from heads of
2-to 5-day-old males from transgenic lines homozygous for the test
construct. Background immunoprecipitation (the average normalized
level after chromatin treatment with a nonspecific antibody) was
subtracted from normalized specific ChIP signals (obtained with

A (UAS)Eye)YW
5%
Zeste
4% - ]
o 3% T
: J
(=9
=
)
X 2% 1
1% -
. _ | ~ W
P P P P P P P P P P
AUAS AUAS AUAS AUAS AUAS
pUbx ras64B E W codW
B
UAS(Ts)Ey(e)AYtsW
4,0%
3,5%
I Zeste
3,0%
= 2,5% -
=
o
E2,0% -
<
1,5% -
1,0%
0,5% -
0,0% - = =
P P P P P P P P P P
ATs aTs aTs ATs aTs
pUbx ras64B E rw codW
C  (EFDEy@eYW
4,0%
3,5%
Zeste
3,0% I
= 2,5% -
=
="
,_.": 2,0% -
=
1,5%
1,0% -
!
0,5%
TP P PP P P P P P P
AEfl AEf1 AEfl AEfL AEfl
pUbx ras64B E pw codW

specific antibodies) at each position.

negative control sequences, respectively. As a result, we
detected an enrichment of Zeste on the eye enhancer
only in derivative transgenic line carrying the transgene
lacking the UAS promoter (AUAS) (Figure 5A), which
indicated that even low level of transcription interfered
with Zeste binding to the eye enhancer.

To further confirm these results, we performed the
same experiment with a pair of transgenic lines carrying
either the transgene with the SV40 transcriptional termi-
nator inserted between the UAS promoter and the eye en-
hancer or its derivative in which this transcriptional
terminator was deleted (Figure 5B). In accordance with
the previous observation, the Zeste protein was detected
by X-ChIP on the eye enhancer only in the presence of
the transcriptional terminator.

When we tested Zeste binding to the eye enhancer in
the presence or absence of the Efl promoter, a positive
result was also obtained in the transgenic line lacking
the Efl promoter (Figure 5C). Taken together these re-
sults suggest that transcription through the enhancer
leads to dislodging of Zeste from DNA.

Finally, we tested whether pass-through transcription
could recruit repression complexes to the enhancer. As
shown previously, the Zeste protein is involved in regula-
tion of transcription by Trx/PcG proteins [30,31].
Therefore, we used X-ChIP to examine binding of PcG
proteins, PH, the core subunit of PRC1 [32], and Sfmbt,
the core subunit of the PhoRC complex [33], to the eye
enhancer in transgenic lines used for the analyzes of the
Zeste binding (Additional file 2: Figure S2). As a result, we
observed no enrichment with these proteins on the eye en-
hancer in either of these lines (Additional file 2: Figure S2).
Thus, our current results do not support the model
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that pass-through transcription leads to recruitment of
the PcG complex to the eye enhancer.

Discussion

In this study we have demonstrated that transcription sup-
presses the activity of enhancers. Several mechanisms may
be involved in suppression of the enhancer activity by
pass-through transcription. The first possibility is ‘tran-
scription interference’ by transcription complex that can
disturb the association of enhancer-bound proteins with
DNA [19,20]. There are several examples demonstrating
that transcription leads to dissociation of transcription
factors from the promoters in yeast [21,22]. In Drosophila,
transcription initiated from the distal promoter of the Adh
gene can repress activity of the proximal promoter at the
late developmental stages [34]. Similarly bxd untranslated
RNAs are involved in repression of Ubx expression [9]. In
mammalian cells, it has been shown that pass-through
transcription induces dissociation of a CTCF protein from
an insulator [35]. Here we have found that transcription
through the white enhancer prevents binding of Zeste.
Since this protein is critical for communication between
the white enhancer and promoter [28], reduction of Zeste
binding may account for inactivation of the eye enhancer
by pass-through transcription. Such an explanation may
also hold for inactivation of the yellow enhancers by
transcription.

Suppression of enhancers might be also explained by
the ability of some transcripts to recruit chromatin re-
modeling complexes, known in vertebrates [36]. In par-
ticular, experiments with mammals provided evidence
for the recruitment of PcG complexes via ncRNA
[37,38]. Our results suggest that inactivation of the white
enhancer by transcription is not accompanied by the
recruitment of the PRC1 and PhoRC complexes. How-
ever, we cannot exclude the recruitment of other chro-
matin remodeling complexes capable of suppressing the
activity of enhancers.

Suppression of enhancer activity by transcription may
play a general role in the regulation of enhancer activity.
It is well known that many functionally active enhancers
are located in the introns and exons of transcribed genes
[39,40], and the activity of these enhancers is likely to
depend on the level of interfering transcription. These
types of enhancers could be regulated by a negative feed-
back mechanism: an increase in transcription leads to a
decrease in enhancer activity, thereby preventing exces-
sive activation of the target gene.

It is known today that some enhancer regions are tran-
scribed into non-coding RNAs [15,16]. Similarly to feed-
back regulation, transcription from one cell-type-specific
active enhancer can suppress the activity of neighboring
enhancers that would be negatively regulated in a given
group of cells or a tissue.
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Conclusions

We have analyzed the relationship between the presence
of pass-through transcription and the activity of Dro-
sophila enhancers using a transgenic reporter system.
The results confirm that pass-through transcription sup-
presses the ability of enhancers to stimulate the target
gene promoters. The effect of enhancer suppression has
been observed in experiments with the enhancers of two
different genes transcribed from two different pro-
moters. Thus, the effect of transcription appears to be
common to different Drosophila enhancers and not spe-
cific to the promoter driver. Even the low level of tran-
scription induced by the UAS promoter in the absence
of GAL4 activator is sufficient for noticeable inactivation
of the enhancers. Accordingly, the presence of the
uninduced UAS promoter leads to dislodgement of Zeste
protein from the enhancer, which is important for
enhancer-promoter communication.

Methods

Drosophila strains, germline transformation, and genetic
crosses

All flies were maintained at 25°C on the standard yeast
medium. The construct, together with a P element
containing defective inverted repeats (P25.7wc) that was
used as a transposase source [41], was injected into
yacw'!'® preblastoderm embryos as described [42,43]. The
resulting flies were crossed with yacw''*® flies, and the
transgenic progeny were identified by their eye or cuticle
pigmentation. The transformed lines were tested for
transposon integrity and copy number by Southern blot
hybridization. Only single-copy transformants were
included in the study.

The lines with DNA fragment excisions were obtained
by crossing the transposon-bearing flies with the Flp
(w''15; §2Cy0, hsFLR, ISA/Sco; +) or Cre (y'w’; Cyo, Pfw+,
cre]/Sco; +) recombinase-expressing lines [44,45]. All exci-
sions were confirmed by PCR analysis. To induce GAL4
expression, we used the modified yw''’%; Pfw, tubGAL4]
117/TM3,Sb line (Bloomington Stock Center #5138), in
which the marker mini-white gene was deleted as
described [46].

To estimate the levels of yellow and white expression,
we visually determined the degree of pigmentation in
the abdominal cuticle and wing blades (yellow) and in
the eyes (white) of 3-to 5-day-old males developing at
25°C, with reference to standard color scales. Pigmenta-
tion of all flies was analyzed in heterozygote. For white,
the pigmentation scale ranges from red (R) in wild type,
through brownish red (BrR), brown (Br), dark orange
(dOr), orange (Or), dark yellow (dY), yellow (Y) and pale
yellow (pY), to white (W) in the absence of expression.
For yellow, grade 5 corresponds to wild-type pigmenta-
tion; grades 4 and 3 correspond to partial stimulation of
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the yellow gene by enhancers; grade 2, to the basal level
of yellow expression in the absence of enhancers; grade
1, to complete loss of yellow expression.The pigmenta-
tion scores were independently determined by two
investigators.

The details of crosses used for genetic analysis and for
excision of functional elements are available upon request.

Plasmid construction

The constructs were made on the basis of the CaSpeR vec-
tor [47]. The 5-kb BamHI-BglIl fragment containing the
yellow coding region (yc) was inserted in direct orientation
into the CA plasmid [48] cleaved with BamHI (CA-yc).
The 3-kb Sall - BamHI fragment containing the yellow
gene regulatory region (yr) was cloned into the pGEM7
cleaved with Xhol and BamHI (yr-pGEM7). The Xbal-
BamHI fragment containing the yellow regulatory region
(yr) was then cloned from the yr-pGEM7 vector into CA-
yc cleaved with Xbal and BamHI (CA-y). The 5-kb
BamHI-Bg/Il fragment of the yellow gene coding region
(yc) was cloned into the pCaSpeR2 plasmid (yc-C2). The
production of the pCaSpeRA700 plasmid, containing dele-
tion of the Wari insulator at the 3’-side of the mini-white
gene was described previously [49]. The DNA sequences of
the white gene corresponding to the promoter region
(-328 to +169) were deleted from the pCaSpeRA700 vector
[50] [Aprw-pCaSpeRA700]. The Aorl-Smal fragment of
the yellow coding region (yc) with 893-bp upstream se-
quence lacking enhancers was then cloned from the CA-y
vector into Aprw-pCaSpeRA700 cleaved with EcoRI
[Aprw-C2A700-y(-893)]. The Hindlll-EcoRI fragment
containing the minimal hsp70 promoter with five GAL4
binding sites upstream of it was excised from the pUAST
vector (26) and cloned into the pBluescript SK + vector
between lox sites to produce the lox(UAS) plasmid.

UASAWY
The Xbal-Xbal fragment of the lox(UAS) plasmid was
inserted into Aprw-C2A700-y(-893) cleaved with Xbal.

(UAS)Ey(e)YW

The eye enhancer (Ee) corresponding to the white gene
regulatory sequences from position—1180 to —1849 bp
relative to the transcription start site (23) was cloned
into pBluescript SK + between frt sites to produce the
frt(Ee) plasmid. The Hincll-BamHI fragment (containing
the eye enhancer) of the frt(Ee) plasmid was inserted in
direct orientation into the yr-pGEM?7 plasmid cleaved
with BglIl [yr-frt(Ee)]. The Xbal-BamHI fragment of the
yr-frt(Ee) plasmid was cloned into the yc-C2 plasmid
cleaved with Xbal and BamHI [yr-frt(Ee)-yc-C2]. The
Xbal-Xbal fragment of the lox(UAS) plasmid was
inserted into the yr-frt(Ee)-yc-C2 plasmid cleaved with
Xbal.
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(UAS)Eye®yw

The eye enhancer without flanking frt sites was cut out
of the Ee-pBluescript SK + plasmid and cloned in re-
verse orientation into the yr plasmid cleaved with BglII
(yr-EeR). The Xbal-BamHI fragment from the yr-EeR
plasmid was cloned into the yc-C2 plasmid cleaved with
Xbal and BamHI (yr-Ee®-yc-C2). The Xbal-Xbal frag-
ment of the lox(UAS) plasmid was inserted into the
yr-Ee®-yc-C2 plasmid cleaved with Xbal.

(UASF)Eyeyw

The eye enhancer without flanking frt sites was cut out
of the Ee- pBluescript SK + plasmid and cloned in direct
orientation into the yr plasmid cleaved with Bg/II
(yr-Ee). The Xbal-BamHI fragment from the yr-Ee plas-
mid containing enhancers was cloned into the yc-C2
plasmid cleaved with Xbal and BamHI (yr-Ee-yc-C2).
The Xbal-Xbal fragment of the lox(UAS) plasmid was
inserted into the yr-Ee-yc-C2 plasmid cleaved with Xbal.

(UAS)Ey(e)AYtsW

The 222-bp SV40 terminator from the pGL3basic vector
(Promega) was inserted into the pBluescript SK + plasmid
cleaved with EcoRV [SV40(s)-pSK]. The Xhol-BamHI
fragment of the SV40(s)-pSK was cloned into yc-C2
cleaved with Bg/II [yc-SV40(s)-C2]. The Spel-Kpnl frag-
ment of the (UAS)Ey(e)YW construct (containing the
minimal hsp70 promoter with GAL4-binding sites and the
enhancers of yellow and white genes) was inserted into
yc-SV40(s)-C2 cleaved with BamHI.

UASAYW

The yellow translation start containing AfIII-AfIII
fragment was cut out of the CA-y plasmid and inserted
into the pBluescript SK + plasmid cleaved with EcoRV
[y(ATG)-pSK]. The Xbal-Xbal fragment of the lox(UAS)
plasmid was inserted into the y(ATG)-pSK plasmid
cleaved with Smal. The BamHI-BamHI fragment corre-
sponding to the lox(UAS)-y(ATG) was cloned into the
yc-C2 cleaved with BamHI.

(UAS)(Ey)AWY

The Xbal-Aorl fragment containing the yellow gene
enhancers was cut out of the yr plasmid and inserted
between frt sites in pGEM-7zf [frt(yr)]. The lox(UAS)
sequence was inserted into the frt(yr) plasmid cleaved with
Xbal [lox(UAS)-frt(yr)]. The Kpnl-Notl fragment of the
lox(UAS)-frt(yr) plasmid was cloned into Aprw-C2A700-y
(-893) cleaved with Xbal.

(UAS®)(Ey)aw?Y

The Sall-BamHI fragment of the frt(yr) plasmid was
inserted into the lox(UAS) plasmid cleaved with BamHI
[lox(U)®-frt(yr)]. The sequence corresponding to the lox
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(UAS)R—frt(yr) was cloned into Aprw-C2A700-y(-893)
cleaved with Xbal.

(EF1)Ey(e)YW

The promoter of Elongation factor 1a48D gene was PCR-
amplified with primers 5-attgttaactgatttcgcaagc-3’ and 5'-
tggatgattacactatggctgtt-3’. The PCR product was inserted
into pBluescript SK + between lox sites [lox(prEfl)]. The
resulting lox(prEfl) plasmid was sequenced to confirm
that no unwanted changes had been introduced into the
promoter sequence. The Xbal-Xbal fragment of the lox
(prEF1) plasmid was inserted into the yr-frt(Ee)-yc-C2
plasmid cleaved with Xbal.

(EF1)(Ey)AWY

The Sall-Sacll fragment of the frt(yr) plasmid was
inserted into Aprw-pCaSpeRA700-y(-893) cleaved with
Xbal [frt(yr)-Aprw-C2A700-y(-893)]. The Xbal-Xbal
fragment of the lox(prEfl) plasmid was inserted into frt
(yr)-Aprw-C2A700-y(-893) cleaved with Xbal.

UAS(Ts)Ey(e)AYtsW

The HindIll-EcoRl fragment of the pUAST vector
(containing the minimal hsp70 promoter with five GAL4
binding sites upstream of it) was cloned into pBluescript
SK + [UAS-pSK]. The 717-bp fragment consisting of the
GFP coding region (used as a spacer) was cloned into the
UAS-pSK plasmid cleaved with Hincll [UAS-gfp]. The
Xbal-BamHI fragment of the pUAST vector containing
the 702-bp SV40 terminator was inserted into pBluescript
SK + between lox sites [lox(SV40b)-pSK]. The Xbal-Xbal
fragment of lox(SV40b)-pSK was cloned into the UAS-gfp
plasmid cleaved with Xhol [UAS-gfp-lox(SV40b)]. The
Xbal-Kpnl fragment containing the yellow and white en-
hancers was cut out of the yr-frt(Ee) plasmid and cloned
into UAS-gfp-lox(SV40b) cleaved by BamHI [UAS-gfp-lox
(SV40b)-yr-frt(Ee)]. The Spel-Spel fragment of UAS-gfp-
lox(SV40b)-yr-frt(Ee) was inserted into yc-SV40(s)-C2
cleaved with BamHI.

(UAS)Ts(Ey)AWY

The Xbal-BamHI fragment of the pUAST vector
containing the 702-bp SV40 terminator was inserted into
the lox(UAS) plasmid cleaved with Apal [lox(UAS)-
SV40b]. The Xbal-Xbal fragment of the lox(UAS)-SV40b
plasmid was inserted into Aprw-C2A700-y(-893) cleaved
with Xbal.

RT-PCR

RNA was isolated from 20 mid-late pupae with TRI re-
agent (Ambion) according to the manufacturer’s instruc-
tions. Purified RNA pools were digested by RNase-free
DNase I (BioLabs) and re-purified using the RNeasy
Mini kit (Quagen). For reverse transcription, 3 pg of the
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generated RNA was incubated with ArrayScript Reverse
Transcriptase (Ambion) in the presence of dNTPs,
Oligo(dT) (Fermentas) and RNase inhibitor (Ambion) in
the supplied reaction buffer at 42°C for 1.5 h, according
to the manufacturer’s instructions. The reverse tran-
scriptase was inactivated by heating at 95°C for 5 min.
To control DNA digestion by DNase I, additional nega-
tive control experiments were performed without reverse
transcriptase in the reaction mixture. The generated
c¢DNA pools were used as templates in real-time qPCR
using a C1000™ Thermal Cycler with the CFX96 real-
time PCR detection module (Bio-Rad). Each PCR was
performed in triplicate; cDNA pools were obtained in
technical duplicate. Relative levels of mRNA expression
were calculated in the linear amplification range by cali-
bration to a DNA fragment standard curve (for genomic
DNA) to account for differences in primer efficiency.
The results of RT-PCR detection of ras64B were used to
standardize the overall amount of ¢cDNA used in PCR
assays. Primers used for Q-PCR are given in Additional
file 3: Table SI.

X-ChIP
For each experiment, 200 heads from 2-to 5-day-old flies
were collected. The material was homogenized in 5 ml of
buffer A1 (15 mM HEPES, pH 7.6; 60 mM KCI, 15 mM
NaCl, 4 mM MgCl,, 0.5% Triton X-100, 0.5 mM DTT)
supplemented with the EDTA-free protease inhibitor cock-
tail (Roche, Switzerland) and formaldehyde as a crosslinking
agent (final concentration 1.8%). The reaction was stopped
by adding glycine (final concentration 225 mM). The ho-
mogenate was cleared by passing through 100-pm nylon cell
strainer (BD Falcon) and pelleted by centrifugation at 4,000 g
4°C for 5 min. After washing in three 3-ml portions of
buffer Al at 4°C (5 min each) and 3 ml of lysis buffer
without SDS, the pellet was treated with 0.5 ml of complete
lysis buffer (15 mM HEPES, pH 7.6; 140 mM NaCl, 1 mM
EDTA, 0.5 mM EGTA, 1%Triton X-100, 0.5 mM DTT, 0.1%
sodium deoxycholate, 0.1% SDS, 0.5% N-lauroylsarcosine,
EDTA-free protease inhibitor cocktail) and sonicated to break
chromatin into fragments with an average length of 700 bp.
The material was pelleted by centrifugation at 18,000 g for
5 min, and the supernatant fluid was transferred to a new
tube. The pellet was treated with the second 0.5-ml portion
of lysis buffer, and the preparation was centrifuged at 18,000
g for 5 min. The two portions of the supernatant fluid were
pooled, cleared by centrifuging twice at 18,000 g for 10 min,
and the resultant chromatin extract (1 ml) was used in four
ChIP experiments after preincubation with A-Sepharose or
G-Sepharose (see below). One aliquot (1/10 volume) of
chromatin extract after preincubation with Sepharose was
kept as a control sample (Input).

ChIP experiments involved incubation with rat antibody
to Zeste, rabbit antibody to Sfmbt and rabbit antibody to
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PH. Corresponding nonimmune IgGs were used as
nonspecific antibody controls. Antibody-chromatin com-
plexes were collected with either protein A-Sepharose
(Sfmbt and PH) or G-Sepharose (Zeste) beads (Thermo
Scientific). The enrichment of specific DNA fragments was
analyzed by real-time qPCR, using a C1000™ Thermal
Cycler with CFX96 real-time PCR detection module
(Bio-Rad).Primers used in ChIP/real-time PCR analyses are
listed in Additional file 4: Table S2.

Antibodies

Antibodies against Zeste (C-end 105 aa of Zeste protein)
were raised in rats. Antibodies against Sfmbt (1-348 aa of
Sfmbt protein isoform B) and PH (87-521 aa of Ph-p pro-
tein isoform A) were raised in rabbits. In all cases, epitopes
for antibody production were expressed as 6 x His-tagged
fusion proteins in Escherichia coli, affinity purified on Ni
Sepharose 6 Fast Flow (GE Healthcare) according to the
manufacturer’s protocol and injected into rats/rabbits fol-
lowing the standard immunization procedure. Antibodies
were affinity-purified on the same epitope as was used for
immunization and tested by Western blotting from
wild-type and null material or by IP to confirm their speci-
ficity (Additional file 5: Figure S3 and Additional file 6:
Supplementary methods).

Additional files

Additional file 1: Figure S1. Summarized results of wing and body
phenotype analysis in (a) (UAS)Ey(e)YW and (b) (UAS®)EyeYW transgenic
lines.

Additional file 2: Figure S2. Results of ChIP with antibodies to (a) Ph
and (b) Sfmbt. Diagrams summarize the results of ChIP with specific
antibodies followed by real-time PCR. The ordinate shows the percentage
of target sequences in the immunoprecipitated material relative to the
input (10% of total cross-linked chromatin), with the genome regions for
which DNA enrichment was tested being indicated on the abscissa: bxd,
positive control; ras64B, negative control; E, eye enhancer of the white
gene. "P" indicates that ChiIP experiments were performed with a parental
transgenic line indicated above the diagram; “PAUAS,"deletion of the
UAS promoter; “PATs,"deletion of the 702-bp SV40 terminator;
"PAEF1,"deletion of the EF1 promoter. Vertical lines indicate standard
deviations. All ChIP experiments were performed with heads of
homozygous transgenic lines in the w'’’® background lacking the
endogenous eye enhancer and white gene. Background
immunoprecipitation (the average normalized level after chromatin
treatment with a nonspecific antibody) was subtracted from normalized
specific ChIP signals (obtained with specific antibodies) at each position.

Additional file 3: Table S1. Primers used for RT-qPCR analysis of
transcripts from transgenic flies.

Additional file 4: Table S2. Primers used for PCR in X-ChIP
experiments with DNA fragments from the genome or transgenic
constructs.

Additional file 5: Figure S3. (A) Testing of Zeste antibodies by Western
blot. Protein extract was prepared from wild-type (WT) or 277" larvae.
Upper panel, antibodies against Zeste; lower panel, control anti-tubulin
antibodies. (B) Western blot analysis of nuclear extracts (Input line), PH
immunoprecipitates (PH line) and control IgG immunoprecipitates (IgG
line) from Sg4 cells with antibodies against PH. (C) Western blot analysis
of nuclear extracts (Input line), Sfmbt immunoprecipitates (Sfmbt line)
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and control IgG immunoprecipitates (IgG line) from Sg4 cells with
antibodies against Sfmbt.

Additional file 6: Supplementary methods. Western blotting,
preparation of the nuclear extracts and immunoprecipitation.
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