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Abstract

Background: The epithelial-mesenchymal transition (EMT) is a de-differentiation process required for wound
healing and development. In tumors of epithelial origin aberrant induction of EMT contributes to cancer
progression and metastasis. Studies have begun to implicate epigenetic reprogramming in EMT; however, the
relationship between reprogramming and the coordination of cellular processes is largely unexplored. We have
previously developed a system to study EMT in a canonical non-small cell lung cancer (NSCLC) model. In this
system we have shown that the induction of EMT results in constitutive NF-κB activity. We hypothesized a role for
chromatin remodeling in the sustained deregulation of cellular signaling pathways.

Results: We mapped sixteen histone modifications and two variants for epithelial and mesenchymal states.
Combinatorial patterns of epigenetic changes were quantified at gene and enhancer loci. We found a distinct
chromatin signature among genes in well-established EMT pathways. Strikingly, these genes are only a small
minority of those that are differentially expressed. At putative enhancers of genes with the ‘EMT-signature’ we
observed highly coordinated epigenetic activation or repression. Furthermore, enhancers that are activated are
bound by a set of transcription factors that is distinct from those that bind repressed enhancers. Upregulated genes
with the ‘EMT-signature’ are upstream regulators of NF-κB, but are also bound by NF-κB at their promoters and
enhancers. These results suggest a chromatin-mediated positive feedback as a likely mechanism for sustained NF-κB
activation.

Conclusions: There is highly specific epigenetic regulation at genes and enhancers across several pathways critical
to EMT. The sites of these changes in chromatin state implicate several inducible transcription factors with critical
roles in EMT (NF-κB, AP-1 and MYC) as targets of this reprogramming. Furthermore, we find evidence that suggests
that these transcription factors are in chromatin-mediated transcriptional feedback loops that regulate critical EMT
genes. In sum, we establish an important link between chromatin remodeling and shifts in cellular reprogramming.
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Background
Differentiation and lineage commitment occurs through a
highly regulated sequence of cellular changes in response
to the environment [1]. A conserved de-differentiation
process known as the epithelial-mesenchymal transition
(EMT) occurs during physiological processes such as de-
velopment and wound healing [2]. EMT progression in-
volves coordinated cellular remodeling, which results in a
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reproduction in any medium, provided the or
less differentiated phenotype in order to reorganize tissue
structures. Induction of EMT in epithelial cells results in
loss of apical-basal polarity and the adoption of a migra-
tory and invasive mesenchymal phenotype [3]. Recent evi-
dence suggests that inappropriate induction of EMT in
tumor cells is associated with the progression of human
carcinomas (reviewed in [4,5]). During cancer progression,
tumor grade, metastasis, drug resistance, tumor hetero-
geneity, and cancer stem cell maintenance all correlate
with deregulated EMT [6-8].
An increasing body of evidence indicates that the mes-

enchymal phenotype is established through genome-wide
and locus-specific epigenetic reprogramming [9-11]. This
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suggests that epithelial and mesenchymal phenotypes are
coordinated through changes to chromatin states, and a
possible role for the so-called ‘histone code’ in EMT
[12,13]. According to one hypothesis, phenotypic switches
depend on the chromatin-mediated stabilization of tran-
scription factor (TF) activity [14,15]. Although studies
have begun to discover mechanistic roles for changes in
specific histone modifications during EMT, the combina-
torial nature of the reprogramming remains unclear [9].
A number of studies have attempted to discover func-

tional chromatin domains through a computational
process referred to as ‘chromatin profiling’ [16,17]. It has
been established that combinatorial patterns of posttransla-
tional histone modifications and covalent changes to gen-
omic DNA delineate functional elements within the
genome. These histone codes correlate with gene expres-
sion and function, enable the de-novo discovery of genomic
features such as transcription start sites and cis-regulatory
regions [17,18], and also aid in specifying cell lineages [19].
As a result, association between chromatin profiles and
molecular function has been reported on the basis of
GO-term enrichments [16,20-22]. Therefore, we sought to
discover patterns of histone modifications that contribute
to epigenomic reprogramming during EMT, and how
changes in these modifications relate to the signaling events
that are known to establish the mesenchymal phenotype.
We clustered chromatin profiles, and discovered that

genes and pathways involved in EMT show essentially the
same changes in all sixteen histone modifications, and two
variants that we profiled. We also see coordinated changes
at their local enhancers. Strikingly, these genes represent a
small minority of the total set of differentially expressed
genes. Our results suggest that specific changes in histone
modifications coordinate the regulation of genes and path-
ways involved in EMT. In concordance with previous
research that demonstrates the epigenetic regulation of
enhancer activity, we reveal distinct changes in chromatin
at enhancers during EMT [23-25]. Furthermore, we show
that the directionality of these changes can be distin-
guished by enrichments for the known binding sites of
two different groups of transcriptional regulators. Results
from our analyses are all consistent with a model of tran-
scriptional feedback loops mediated by shifts in chromatin
states. Our data-driven and integrative computational ap-
proach reveals broad epigenetic coordination of transcrip-
tion factors and signaling cascades with established roles
in EMT. We put forward the hypothesis of positive feed-
back loops involving the NF-κB and AP-1 TF families, and
analogous repression of feedback involving MYC.

Results and discussion
General strategy
Given the current research that implicates epigenetic
mechanisms in the regulation of EMT, we hypothesized
that epigenetic reprogramming broadly coordinates cellu-
lar processes that contribute to the phenotypic switch. Fur-
thermore, we hypothesized that this coordination occurs
in cancer cells that undergo EMT, despite their mutational
landscape and genomic instability. Our goal was to dis-
cover a shared epigenetic signature between known EMT
drivers and further evidence of epigenetic coordination.
To test our hypothesis, we mapped sixteen histone mod-

ifications, two histone variants, and collected gene expres-
sion data in 3D cultures of untreated (epithelial) and
cytokine-treated (mesenchymal) A549 cells (Figure 1A).
Briefly, our model system consists of creating three-
dimensional NSCLC A549 cultures by hanging droplet
[26], and subsequently treating the spheroids with tumor
necrosis factor (TNF) and transforming growth factor beta
(TGFβ) to induce EMT (Figure 1A). Similar protocols have
been utilized to induce EMT in other cell types [27]. This
model has been shown to recapitulate critical characteris-
tics of EMT. Reprogrammed cells are shown to have a
migratory phenotype, metastatic potential, stem-cell char-
acteristics, and mesenchymal markers. Specifically, we have
demonstrated an increase in the expression of master
switch EMT transcription factors, TWIST1, SNAI1, SNAI2
and ZEB2, and robust upregulation of stem-cell markers,
including KLF4, SOX2, POU5F1/Oct4, MYCN, and KIT.
We have also shown loss of CDH1, gain of VIM, greatly in-
creased invasiveness, and increased ability to form lung
metastases in nude mice. Importantly, we have demon-
strated that, in this particular system, functional character-
istics of EMT are dependent on the activity of RELA (p65)
(Kumar, M et al., PLOS ONE, in press).
The set of histone marks that were mapped includes

those that preferentially associate with transcription start
sites, gene bodies, enhancers, or heterochromatin, as well
as poorly characterized marks (Figure 1B) [25,28-31]. We
and others have shown that many of the mapped marks
correlate with transcriptional activity [32]. Here we find a
subset of marks correlated at enhancer loci (Figure 1B,
[see Additional file 1: Figure S1]). These data were used to
quantify the differences in enrichment of each histone
modification at gene and enhancer loci. To classify genes
(and separately, enhancers) based on their differential epi-
genetic profiles (DEPs), we employed an unsupervised
clustering technique [33]. This effectively groups genes
(or enhancers) that share highly similar DEPs across the
eighteen chromatin marks analyzed. We then used these
gene and enhancer clusters as the foundation of our
functional downstream analyses that integrate multiple
sources of functional annotations and molecular data
(Figure 1A). Specifically, unsupervised clustering en-
abled us to identify patterns of chromatin remodeling,
which we link to signaling pathways and transcription
factor activity associated with EMT through compre-
hensive systems-level analyses.



Figure 1 Experimental design and data. (A) Flow-chart of the experimental setup and analysis methodology. The epithelial-mesenchymal
transition (EMT) was induced using TNF and TGFβ in spheroid cultures. Cells were collected before and after treatment (4 days), and whole-genome
gene expression and chromatin profiles of 18 histone modifications and variants were obtained. From the paired data sets we measured differential
gene expression and calculated differential epigenetic profiles (DEP). The DEPs were calculated individually for gene and enhancer loci and
subsequently clustered. Analyses of the resulting epigenetic gene and enhancer clusters included functional enrichment profiling, network
partitioning / ranking, and transcription factor (TF) binding. The results were shown to be consistent with a chromatin-mediated feedback
model that involves specific TFs binding activated enhancers that upregulate expression in EMT-related gene clusters. (B) Table of histone
modifications assayed. Histone modifications shown to be correlated and enriched at enhancer loci are indicated.
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Chromatin profiling reveals epithelial-mesenchymal
transition-related gene clusters
Genome-wide application of our clustering methodology
with the combined ChIP-seq data yielded twenty-nine
non-overlapping gene clusters (GCs). Briefly, our method
clusters genes based on the epigenetic profile of gains
(positive difference of normalized levels of ChIP-seq en-
richment between the mesenchymal and epithelial states)
and losses (negative difference) of histone modifications at
gene loci during EMT. Each gene locus was partitioned
into four segments: promoter, transcription start site
(TSS), early gene, and gene body [see Additional file 2:
Figure S2]. It should be noted that genes within a given
cluster display highly similar profiles of positive and nega-
tive differences across the sixteen histone modifications
and two variants (Figure 2A). This profile similarity likely
occurs because the genes within a cluster undergo similar
epigenetic regulation and recognizably distinct regulation
of genes from different clusters.
To identify clusters that are associated with known

EMT biology, we looked for enrichments in a subset of
GO-derived molecular functions that are enriched among
genes known to be involved in EMT. Two clusters,
GC16 (378 genes) and GC19 (305 genes) (Figure 2A),
are enriched for many of the same GO-terms as a
literature-based reference list of EMT-associated genes
[see Additional file 3: Table S1] and a similar list of
genes annotated with GO-terms explicitly referencing
EMT [see Additional file 4: Table S2]. We quantify this
degree of overlap and refer to it as functional similarity
(Figure 3A, [see Additional file 5: Table S3]). Genes within
these clusters have increased expression (Figure 2B),
and possess similar patterns of chromatin remodeling
(Figure 2A, [see Additional file 6: Figure S3]). We have
listed the most significant EMT GO terms for GC16 in
Additional file 7: Table S4 (for example, cell adhesion,
False Discovery Rate (FDR) corrected P value <1e-5). A
third cluster, GC15 (385 genes), had a more modest func-
tional similarity to the reference list of EMT-associated
genes, but had high functional similarity to GC16 and
GC19 (Figure 3B, [see Additional file 5: Table S3]). How-
ever in contrast, GC15 shows a global decrease in



Figure 2 Epithelial-mesenchymal transition-related gene clusters (EMT-GCs) are differentially expressed and show antipodal patterns
of chromatin remodeling. (A) Differential epigenetic profiles (DEPs) of the EMT-GCs. Heat map shows the DEPs of genes (rows) from the
EMT-GCs (other clusters are omitted). Groups of DEP columns that distinguish clusters 16 and 19 from 15 are indicated through colored boxes.
Summary of the antipodal patterns of change in histone modification levels are provided in the table. The red box shows changes specific to
clusters 16 and 19. The blue box shows changes specific to cluster 15. (B) EMT-GCs in the differential expression-epigenetic plane. Each dot
represents a gene, colored dots are genes from the EMT-GCs: 16 and 19 (red), and 15 (blue). Differential gene expression (log2 fold-change) is on
the Y-axis. The total magnitude of epigenetic difference (sum of DEP elements) at a gene locus is on the X-axis.

Figure 3 Epigenetic clustering groups functionally similar genes and identifies epithelial-mesenchymal transition (EMT)-related
clusters. (A) Assessment of EMT functions in gene clusters. Degree of functional similarity between the epigenetic gene clusters and two lists of
genes associated with EMT corresponding to genes obtained by manual literature mining and those annotated with GO-terms that included
EMT. Functional Similarity Scores (FSS) of each cluster to the two reference EMT gene lists are plotted. (B) Functional similarity of gene clusters.
Heat map shows the hierarchical clustering of the Functional Correlation Matrix of epigenetic gene clusters. A trimmed dendrogram of the
clustering is shown. Each row represents a ‘source’ gene cluster while each column represents either the enrichment (E) or depletion (D) score
with a ‘target’ cluster. The sum of the E and D scores is the FSS for a given cluster pair. Columns are arranged numerically by cluster ID.
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expression (Figure 2B, [See Additional file 8: Table S5]).
The similarity of GC15, GC16, and GC19 in terms of sig-
nificant GO-terms suggests that genes from these three
clusters are engaged in a focused and coordinated process
that drives EMT. We refer to these three gene clusters as
EMT-related gene clusters (EMT-GCs) and focus our at-
tention on their characteristics and functional similarities
(Figures 2 and 3). In subsequent analyses, we provide evi-
dence that EMT is driven by genes in these clusters. Re-
markably, the EMT-GCs represent only 5.2% of all 20,707
analyzed genes, compared to 18.5% that are differentially
expressed at 5% FDR [See Additional file 8: Table S5].
Compared to differentially expressed genes [see Additional
file 7: Table S4; see Additional file 9: Table S6], EMT-GCs
show more significant and specific functional enrichments.
Thus, analysis of chromatin profiles enabled us to narrow
down the search for genes coordinated during reprogram-
ming and enrich for EMT-regulators over differentially
expressed passenger genes.
We find, in general terms, that the EMT-GCs are distin-

guished by relatively large gains (GC16, GC19) and losses
(GC15) of activating histone modifications (Figure 2A,
Additional file 6: Figure S3). We inspected the patterns of
epigenetic remodeling to discover which of the assayed
marks most uniquely identify the EMT clusters. We find
that in GC15, the histone modifications H4K20me1,
H3K79me3, H3K27ac, H3K4me3, and H3K9ac are lost
throughout gene bodies. Overall, the epigenetic changes
in GC19 are very similar to GC16 with some excep-
tions. GC16 and GC19 show relatively strong gains of
H3K4me2/3, H3K36me3, H4K20me1, H3K9ac, and
H3K27ac across gene bodies. Relative to GC16, gains in
GC19 are large for H3K79me3, and moderate for
H3K27ac, H3K9ac, and H3K4me2/3 in gene bodies.
Consistent with their chromatin changes, GC15 and
GC16 display the most antipodal changes in gene ex-
pression (Figure 2B, [see Additional file 8: Table S5]). By
comparison, clusters other than the EMT-GCs exhibit
small magnitudes of chromatin and expression changes
[see Additional file 6: Figure S3; see Additional file 10:
Figure S4]. These observations are in agreement with
many findings concerning the broad role of epigenetics
in transcriptional regulation and the transcriptional ef-
fects associated with specific marks [34-36].

Epithelial-mesenchymal transition clusters are enriched
for many epithelial-mesenchymal transition-associated
functions and phenotypes
In order to associate the EMT-GCs with a more compre-
hensive set of molecular functions and biological processes
we profiled them for enrichments for all GO-terms. We
removed a large fraction of spurious associations using a
1% FDR cutoff, which revealed that clusters GC16 and
GC19 show strong GO enrichment profiles (50 and 23
significant terms, respectively). We found hallmark EMT-
regulatory GO-terms, such as cell adhesion and migration,
in GC16 and GC19 (Table 1). The terms ‘cell motility’,
‘basement membrane’, ‘stress fiber’, and ‘focal adhesion’ are
robustly enriched in GC16 and/or GC19. GO-terms re-
lated to the physiological role of EMT such as, ‘wound
healing’ and ‘developmental process’ also appeared in
these clusters, while GC19 overlaps with the term ‘cell
morphogenesis’. In contrast, GC15 has only five significant
terms, four of which are associated with development and
growth (Table 1). Together, these GO-based analyses
reveal a broad similarity of GC15, GC16, and GC19 and
association with multiple aspects of EMT, despite differ-
ences in the enrichment for specific GO-terms.
Since pathological EMT is linked to metastasis and ag-

gressive tumors, we hypothesized that the genes in the
EMT-GCs are associated with advanced cancer pheno-
types. To test this hypothesis, we assessed the overlap
between these clusters and the sets of genes that distin-
guish advanced, aggressive cancers from less advanced
cancers. These genes sets were obtained from the Mo-
lecular Signatures Database 3.0 (MSigDB) [37]. We ob-
serve that genes overexpressed in mesenchymal versus
luminal types of breast cancer [38] are over-represented
in GC16 and GC19 (fold enrichment over background:
9.4, FDR-corrected P value: 2.3e-30) and (fold 9.6, P
1.3e-25), respectively. Consistently, the downregulated
genes from the same study are enriched in GC15 (fold
3.7, P 0.0002). Further analysis revealed that GC16
shows significant enrichment for genes upregulated in
the peripheral versus the central part of pancreatic tu-
mors (fold 5.4, P <1e-5) [39]. This cluster also contains
genes that distinguish metastatic tumors from primary
colorectal carcinomas (fold 7.89, P <1e-5) [40]. In sum-
mary, significant overlaps of EMT-GCs with expression
signatures of several advanced cancers suggests that tu-
mors of epithelial origin have a common EMT-associated
epigenetic mechanism that contributes to progression and
metastasis [see Additional file 11: Table S7].

Regulation of epithelial-mesenchymal transition signaling
pathways is chromatin-mediated
Among the GO-terms enriched for GC16 and GC19 are
several that correspond to a generic level of many different
pathways (for example, ‘receptor binding’, ‘signal transduc-
tion’, ‘protein kinase activity’, and 'transcription factor activ-
ity' (Table 1 and [see Additional file 7: Table S4]). We
hypothesized that chromatin remodeling coordinates the
activity of a signaling cascade across all levels of a specific
pathway. Since GO-terms only identify functional layers
shared by multiple pathways, rather than whole indepen-
dent pathways, we assessed whether EMT-GCs are
enriched for genes from a collection of known pathways.
This analysis provides evidence for broad coordination of



Table 1 Referenced GO-terms enriched in the epithelial-mesenchymal transition-related gene clusters (EMT-GCs)

Gene cluster GO-term Enrichment P value

16 Wound healing 13.568 0.00001057

16 Plasma membrane 1.982 0.00018160

16 Receptor binding 4.840 0.00024000

16 Seq-spec DNA binding TF activity 2.580 0.00600000

16 Signal transduction 2.523 <1e-8

16 Cellular process 2.651 <1e-8

16 Cell communication 2.358 <1e-8

16 Cell motility 4.231 <1e-8

16 Basement membrane 8.739 0.00959450

16 Cell differentiation 3.078 <1e-8

16 Aging 6.851 0.00000083

16 Growth 3.286 0.00008581

16 Cell death 3.859 <1e-8

16 Cell proliferation 3.901 <1e-8

16 Negative regulation of apoptosis 6.253 0.00000023

16 Immune system process 2.988 <1e-8

16 Cytokine production 4.981 0.00000346

16 Developmental process 3.105 <1e-8

16 MAP kinase tyr/ser/thr phosphat activity 34.020 0.02600000

16 Inactivation of MAPK activity 20.460 0.02400000

16 Pos reg of NF-kappaB TF activity 9.340 0.00150000

19 Plasma membrane 2.022 0.00142517

19 Signal transduction 2.790 <1e-8

19 Cellular process 2.108 0.00001248

19 Cell communication 2.671 <1e-8

19 Cell motility 3.425 0.00023150

19 Focal adhesion 8.441 0.00341880

19 Cell differentiation 2.532 0.00000486

19 Cell death 2.519 0.00059504

19 Cell proliferation 2.765 0.00016907

19 Immune system process 2.302 0.02549018

15 Cellular process 2.010 0.00000250

15 Sequence-specific DNA binding 2.990 0.02700000

15 Developmental process 1.930 0.00042000

15 Cell differentiation 1.910 0.05200000

15 Cell death 2.220 0.00380000

15 Anatomical structure development 1.980 0.00098000

15 Cell proliferation 1.980 0.00690000

GO-terms significantly enriched in GC15, GC16, and GC19. Only GO-terms directly referenced in the manuscript are shown. GO-term annotations are obtained
from GOA and NCBI. Enrichment is the fold-change relative to the background frequency of a GO-term annotation. P values are calculated by Fisher’s Exact Test
and are false discovery rate (FDR) corrected.
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genes involved in EMT- and cancer-related pathways
through chromatin remodeling (pathways referenced in
this section are listed in Table 2, [all enriched pathways are
in Additional file 12: Table S8]). In addition to several
novel insights, we recapitulated many of the pathways and
processes that represent the canonical EMT phenotype.
For example, both upregulated clusters are enriched for
‘focal adhesion’, ‘ECM-receptor interaction’, ‘adherens
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junctions,’ ‘tight junctions,’ and E-Cadherin (CDH1) related
pathways. GC19 shows enrichment for additional pathways
involved in cell motility such as ‘regulation of actin cyto-
skeleton,’ and ‘leukocyte transendothelial migration’.
Since we assessed the histone modification and expres-

sion levels from cells that had been exposed to TNF and
TGFβ over an extended time course, we expected to find
delayed early and late response genes within the EMT-
GCs. Some well known delayed early and late genes
confirmed our hypothesis, including EGFR (GC16, log2
fold-change: 2.45), SNAI2 (GC16, log2fc 4.06), INHBA
(GC16, log2fc 8.01), INHBB (GC15, log2fc −3.24), COL1A1
(GC16, log2fc 4.25), SKIL (GC19, log2fc 3.22), TGFBR1
(GC19, log2fc 3.53). Surprisingly, we also observed persist-
ent epigenetic and transcriptional activation of genes asso-
ciated with the immediate early response to TNF and
TGFβ exposure. Gene expression profiling indicates that
many immediate early genes (IEGs) remained upregulated
rather than returning to basal levels. For example JUN,
MAF, MYCN, and KLF7 show strong overexpression and
Table 2 Referenced pathways enriched in the epithelial-
mesenchymal transition-related gene clusters (EMT-GCs)

GC Pathway name Enrichment p-value

16 Pathways in cancer 4.618 0.00000627

16 Direct p53 effectors 8.279 0.00000023

16 p53 signaling pathway 7.100 0.09600000

16 Focal adhesion 5.298 0.00013609

16 ECM-receptor interaction 6.963 0.01242671

16 Cytokines and inflammatory response 18.189 0.00875280

16 Interleukin-1 processing 54.274 0.01740033

16 T cell receptor signaling pathway 8.320 0.00000663

16 TNF-alpha/NF-kB signaling pathway 4.280 0.03567735

16 CD40/CD40L signaling 13.097 0.04278382

16 MAPK signaling pathway 3.493 0.09603616

19 Pathways in cancer 5.303 0.00000226

19 Focal adhesion 6.245 0.00003282

19 E-cad sig in the nasc adherens junction 24.776 0.00000267

19 Regulation of actin cytoskeleton 6.012 0.00571942

19 Adherens junction 13.011 0.00000273

19 Junction 14.070 0.00496435

19 Canonical NF-kappaB pathway 20.435 0.00422071

19 MAPK signaling pathway 4.918 0.08357500

19 Leukocyte transendothelial migration 8.442 0.00006173

19 T cell receptor signaling pathway 8.321 0.00000663

19 TGF-beta receptor signaling 15.678 0.00001359

Pathways significantly enriched in GC16 and GC19. Only pathways directly
referenced in the manuscript are shown. Pathways have been sourced from
the NCBI Biosystems. Enrichment is the fold-change relative to the background
frequency of a pathway annotation. P values are calculated by Fisher’s Exact
Test and are false discovery rate (FDR) corrected.
have an active chromatin profile (GC16 and GC19). Other
IEGs including JUNB, GADD45B, ZFP36, ZFP36L1, HES1,
EPHA2, IER3, SOX9, and MAFG show moderate
overexpression, but appear in the epigenetically repressed
GC15. In many cases, IEGs are induced by MAP kinase
(MAPK) signaling after growth hormone stimulation [41].
These IEGs then induce the transcription of delayed early
genes (DEGs). A negative feedback mechanism exists
through the repressive activity of DEGs on IEG expression
and MAPK signaling.
We observed that the EMT-induced cells upregulated

protein phosphatases that attenuate MAPK signaling,
including dual-specificity phosphatases (DUSPs). The
EMT-GCs contained a significant number of these phos-
phatases. Specifically, GC16 and GC19 contain DUSP1/5/
6/8/10/16, while DUSP4 is a member of GC15. We gained
additional support for the activation of MAPK attenuation
through GO analysis. We found that GO-terms for ‘MAP
kinase phosphatase activity’ and ‘inactivation of MAPK ac-
tivity’ were enriched in GC16 (Table 1). In summary, we
observed sustained IEG expression despite an enrichment
of DUSP family members in the EMT clusters. The appar-
ent continued transcription of both IEGs and DUSPs, well
beyond the early response, suggests loss of negative feed-
back regulation of MAPK signaling in our system.
We used TNF as a proinflammatory cytokine to en-

hance TGFβ-induced EMT in our model system, and
we find that genes that propagate TNF signaling are
upregulated and strongly enriched in GC16 and GC19.
Specifically, the TNF / NF-κB signaling pathway is
enriched in both upregulated EMT-GCs, while GC16 is
enriched for signaling from the TNF receptor, CD40.
An enrichment of genes related to the ‘positive regula-
tion of NF-κB’ in GC16 further supports sustained NF-
κB activity. Interestingly, cluster GC15 also contains
several NF-κB-related proteins. For example, we ob-
served downregulation of the β-arrestin 1 and 2 genes
(ARRB1/2, log2fc −1.62 and −2.61, respectively).
Arrestins show increased expression in differentiated cells
and inhibit cellular responses to growth stimuli. Although,
their role in EMT remains unclear, overexpression of ei-
ther ARRB1 or ARRB2 in HeLa cells inhibits NF-κB-medi-
ated transcription. This inhibition occurs primarily
through interactions and stabilization of IκBα (NFBIA), as
well as interactions with the IκB kinases [42,43]. Clinical
data shows that serum levels of arrestins are lower in pa-
tients with NSCLC, and that these decreased levels correl-
ate with poor survival [44]. In our system we have
validated that constitutive activity of NF-κB is required for
induction of EMT and potentiates a mesenchymal pheno-
type (Kumar, M et al., PLOS ONE, in press). Taken to-
gether, these data indicate that constitutive NF-κB
activation during EMT occurs through the epigenetic re-
programming of genes that regulate TNF signaling.
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The EMT-GCs also contain many genes that participate
in the EGFR signaling pathway, including the receptors
themselves. The EGFR gene is upregulated and contained
in GC16, while ERBB2 and ERBB3 (GC15) are signifi-
cantly downregulated (log2fc −2.30 and −2.04, respect-
ively). Upregulation of the active ErbB2/3 heterodimer
occurs in more differentiated cancers, and therefore
downregulation of ERBB2/3 and upregulation of EGFR
may constitute a receptor switch associated with the core
basal phenotype [45]. Such events may affect ligand speci-
ficity and enable cellular reprogramming. Importantly,
EMT is associated with resistance to EGFR inhibition [46].
This analysis indicates that epigenetic reprogramming
contributes to altered EGF signaling in our model system.
Further examination of GC16 and GC19 revealed en-

richment for additional pathways broadly associated with
cancer and EMT [see Additional file 12: Table S8], most
of which overlap or crosstalk with TNF, MAPK, or EGFR
signaling. For example, GC16 and GC19 are enriched
for genes from large cancer-related pathways including:
‘KEGG: pathways in cancer’, ‘direct p53 effectors’ and the
‘p53 signaling pathway’. Furthermore, the intersection of
these pathways includes many highly upregulated genes
from the EMT-GCs such as SNAI2 (log2fc 4.06),
PRDM1 (log2fc 3.60), JUN (log2fc 3.62), and EGFR
(log2fc 2.45). We also observed an overrepresentation of
several immune response pathways in the EMT-GCs.
GC16 is enriched for the ‘cytokines and inflammatory
response’ and ‘interleukin-1 processing’ pathways, while
GC19 is enriched for ‘T cell receptor signaling’. These
findings agree with recent studies that establish a strong
association of paracrine cytokine signaling and inflam-
matory pathways with EMT and metastatic cancer-
progression [47-49].

Epigenetic switches at enhancers correlate with
differential gene expression
Since previous studies have indicated a strong associ-
ation between the chromatin state at enhancers and ex-
pression of proximal genes [31,50-52] we extended our
epigenetic analysis to putative enhancer loci. This ana-
lysis provided insight into the role of specific TFs in the
induction of EMT. Moreover, integration of the gene
and enhancer clustering showed coordinated changes in
chromatin states at genes and enhancers during EMT.
We hypothesized that differential gene expression cor-

relates with epigenetic modulation of proximal en-
hancers. To test this hypothesis, we identified 75,937
putative enhancers in epithelial and mesenchymal cells
based on promoter-distal H3K4me1 and H3K27ac peaks,
which mark enhancers in promoter-distal regions [25].
Next we identified additional ‘enhancer-associated’
marks, which correlate with either H3K4me1 or
H3K27ac at these putative enhancer sites [see Additional
file 1: Figure S1]. The enhancer-associated marks in-
clude H3K4me1/2, H3K27ac, H3K9ac, H4K8ac, and
H3R17me2asym. Of the 75,937 putative enhancers,
30,681 were found to be differentially marked by the
enhancer-associated marks between the epithelial and
mesenchymal states. We then grouped these differential
enhancers into thirty-eight clusters based on their differen-
tial levels of the enhancer-associated marks. We observed
that within a given cluster all enhancer marks had the same
trend of either gain or loss. Correspondingly, few clusters
show simultaneous gain and loss of different marks. These
observations guided our binary division of enhancer clus-
ters into two groups: ‘gain’ or ‘loss’. Within these two broad
classes, clusters show distinct magnitudes of change for
specific marks [see Additional file 13: Figure S5].
The enhancer-associated marks are generally associated

with open chromatin and active enhancers, which suggests
that gain and loss clusters correspond to activation and re-
pression, respectively. To test the association of enhancer
remodeling to gene expression, we assigned a ‘gain-loss’
score to each enhancer cluster. We define this score as the
mean of the difference between gains and losses across
the enhancer-associated marks. These gain-loss scores of
enhancer clusters are strongly correlated with the mean dif-
ferential expression of genes associated with the clusters
(r = 0.89, Figure 4A and [see Additional file 14: Figure S6]).
Therefore, our analysis establishes a link between gain clus-
ters and activated genes, as well as a link between loss clus-
ters and repressed genes.
The EMT clusters also showed strong association with

differential enhancers relative to other gene clusters
(Figure 4B). Examination of these clusters revealed that
GC16 and GC19 show striking enrichment for genes asso-
ciated with activated enhancer clusters. Consistently,
GC15 shows strong association with erased enhancer clus-
ters. Interestingly, GC17 also shows overlap with activated
enhancer clusters despite lacking noteworthy EMT func-
tional similarity. However, this cluster contains some
highly upregulated genes associated with EMT, such as
MMP1, MMP9, and MMP10, which are upregulated 453-
fold, 278-fold, and 1,910-fold, respectively. Together, these
observations indicate a widespread co-regulation of en-
hancers and genes involved in EMT through chromatin
remodeling.

Transcriptional control of epithelial-mesenchymal
transition-related gene clusters through epigenetic
reprogramming of enhancers
Because modification of histone tails in enhancer regions
influences DNA accessibility, we wanted to determine if
the binary regulation (activation or repression) of en-
hancers corresponds to the binding of specific TFs during
EMT. We compared the activated and repressed enhancer
clusters for differences in preferential binding of specific



Figure 4 Activated and repressed enhancers associated with epithelial-mesenchymal transition-related gene clusters (EMT-GCs) and
different sets of transcription factors. (A) Box plots of percentile ranks of differential expression for genes associated with each enhancer
cluster. Boxes are colored by average magnitude of gain (blue) or loss (red) of enhancer-associated marks. (B) Overlap between gene clusters and
genes linked to enhancer clusters. Bubbles are colored with respect to enhancers in the same manner as the boxes in panel A. Size of the
bubbles represents the -log10 P value of the overlap. (C) Association of activated and repressed enhancer clusters with transcription factor
binding sites. Significance of overlap between ENCODE transcription factor binding sites (columns) and the 10 enhancer clusters with the
strongest activated signatures as well as the 10 equivalent repressed enhancer clusters (rows). Each spot on the heat map is the -log10 P value of
the overlap, which is Z-score normalized by row. (D) Association of p65 binding sites with gene clusters via enhancers. Enrichment of p65
binding sites (ENCODE) in the enhancers assigned to each gene cluster.
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TFs. Transcription factors mapped by ENCODE were clus-
tered by the enrichment of their binding sites in enhancer
clusters with the lowest and highest gain-loss scores. As
expected, the TFs sharply partition into two non-
overlapping sets that correspond to enhancer activation
and repression (Figure 4C). The presence of this sharp dis-
tinction between activated and repressed enhancers indi-
cates that the epigenetic regulation of enhancers is tightly
coupled to TF binding.
Several TFs downstream of the pathways enriched in

the EMT-GCs (that is, TGFβ, TNF, and EGFR) are
enriched in activated and repressed enhancer clusters.
For example, p65 (RELA), c-Fos (FOS), and c-Jun (JUN)
binding sites show significant enrichment in the acti-
vated enhancer clusters. Interestingly, in addition to c-
Fos and c-Jun, many AP-1 family members are enriched
in the activated enhancer clusters as well, namely fra-1
(FOSL1), jun-B (JUNB), jun-D (JUND), and B-ATF
(BATF). Together with our pathway analyses, these re-
sults demonstrate a chromatin-mediated activation of
enhancers that bind NF-κB and AP-1 family members.
We used ENCODE transcription factor binding site data
to determine whether NF-κB and AP-1 binding sites asso-
ciated with the EMT-GCs via binding sites at enhancers.
We found a strong association of the p65 binding sites
with enhancers linked to GC16 (P <0.0001) and GC19
(P <0.0001), but a weak association with GC15-linked en-
hancers (P 0.32) (Figure 4D). Moreover, we observed a
similar pattern for AP-1 family member binding sites [see
Additional file 15: Figure S7]. These results strongly sug-
gest that genes in GC16 and GC19 are regulated through
the differential epigenetic activation of enhancers that
contain p65 and AP-1 family member binding sites.
In addition to the connection between EMT-GCs and

activated enhancers that bind AP-1 or NF-κB TFs, we
observed other evidence that regulation of these tran-
scription factors contribute to EMT (statistical associa-
tions shown in Figure 5A as black arrows). First, AP-1
and NF-κB family members show high transcriptional
upregulation, and are found in GC16 and GC19 see
Additional file 8: Table S5]. Additionally, genes with pre-
dicted AP-1 or NF-κB binding sites in their promoters



Figure 5 Evidence for broad feedback regulation by AP-1 and NF-κB family members, and c-Myc. (A) Statistical enrichments of AP-1 and
NF-κB binding sites link these transcription factors to activated enhancers and the upregulated epithelial-mesenchymal transition-related gene
clusters (EMT-GCs). EMT clusters themselves are enriched for in pathways and functions associated with positive regulation of AP-1 and NF-κB.
Some genes in GC16 and GC19 that are known to regulate either AP-1 or NF-κB are listed. (B) c-Myc binding sites are enriched in repressed
enhancers and the repressed EMT gene cluster, GC15. Moreover, GC16 is enriched for genes that are repressed by c-Myc.
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are enriched in GC16 (fold 5.6, P 0.00004) and GC19
(fold 8.9, P <1e-5), respectively. GC19 is also enriched
for genes with predicted AP-1 binding sites in their pro-
moters (fold 2.7, P 0.009). Examination of GC16 revealed
a strong enrichment of genes induced by NF-κB signal-
ing in primary human keratinocytes (fold 19.5, P <1e-5)
and fibroblasts (fold 13.4, P <1e-5) [53], as well as the
core NF-κB signaling proteins (fold 54.4, P 0.003) [54]
themselves. Taken together, these results provide evi-
dence that AP-1 and NF-κB are major regulators of the
genes in the upregulated EMT clusters (Figure 5A).
Examination of the erased enhancer clusters identified c-

Myc as the only enriched TF that is downstream of the
pathways enriched in the EMT-GCs. Association of c-Myc
binding sites to EMT-GCs via enhancers revealed a signifi-
cant association with GC15, and a lack of association with
GC16 and GC19. It should be noted that this analysis also
demonstrates an association between enhancers with c-
Myc binding sites and other gene clusters with more mod-
est differential expression [see Additional file 15: Figure S7].
This may be explained by the expansive role of c-Myc in
gene regulation [55]. Comparison to experimental data re-
vealed that GC15 possesses significant enrichment for val-
idated c-Myc targets from two sources (fold 4.5, P 0.002)
and (fold 2.2, P 0.04), respectively [56,57]. Furthermore,
GC16 significantly overlaps the subset of negatively regu-
lated c-Myc targets [57] (fold 5.7, P 7.8e-7), suggesting
that c-Myc has opposing transcriptional effects on GC15
and GC16. Finally, from microarray we observed a nearly
2-fold decrease in MYC expression after induction of
EMT in our system. We validated that MYC was in fact
downregulated by QT-PCR and observed a significant and
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almost four-fold reduction in transcript [see Additional file
16: Figure S8]. These results suggest that decreased c-Myc
activity contributes to EMT progression in our model sys-
tem, through both the de-activation and de-repression of
genes in the EMT-GCs (Figure 5B).

Links between enhancer clusters, gene clusters,
and transcription factors indicate a mechanism of
chromatin-mediated transcriptional feedback
Strikingly, AP-1 and NF-κB transcription factors, as well
as c-Myc, reside in the EMT-GCs. Thus, these TFs po-
tentially regulate their own expression and undergo
chromatin regulation that is similar to their targets. For
example, a large fraction of the AP-1 family of genes res-
ide in the EMT-GCs, including FOSL1 (log2fc 3.12),
FOSL2 (log2fc 0.88), JUN (log2fc 3.62), MAF (log2fc
7.27), and MAFF (log2fc 1.21), which are in GC16; while
FOS (no significant change), MAFG (log2fc 1.05), JUND
(no significant change), and JUNB (log2fc 1.80) belong
to GC15. Genes that encode TFs that are not AP-1 fam-
ily members, but which can heterodimerize with AP-1
members also reside in the EMT-GCs, including CEBPD
(GC15, log2fc −3.49), CEBPB (GC15, log2fc 0.89), and
CEBPG (GC16, log2fc 0.61). Additionally, GC16 con-
tains three NF-κB family members: NFKB2 (log2fc 1.76),
RELA (log2fc 1.23), RELB (log2fc 2.27); NFKB1 (log2fc
1.89) appears in GC19. As expected, the downregulated
MYC gene resides in GC15. Based on these coordinated
changes in chromatin state for a small set of TFs and
their respective pathways, enhancer binding sites, and
downstream targets, we put forward a hypothetical
model that EMT is maintained by chromatin-mediated
transcriptional feedback mechanisms involving the TF
families that we have highlighted. This model provides
a plausible explanation for the sustained activity and
critical role of NF-κB in our experimental system.

Chromatin remodeling coordinates a modular protein
interaction network
To understand at the system level how chromatin remod-
eling coordinates signaling pathways in EMT, we analyzed
the gene clusters through an unbiased protein-protein
interaction (PPI) network. First, a sub-network (‘EMT-net-
work’, Figure 6) of the whole cell interactome was defined,
based on the genes found in the EMT-GCs. We then char-
acterized the network in terms of functions and pathways.
The resulting analysis showed integration of several signal-
ing pathways, such as TGFβ, EGF, and TNF, which con-
verge on the TFs that were identified in the enhancer
analysis, including AP-1 and NF-κB family members.
We defined the EMT-network as the PPI network that

includes all of the genes in the EMT-GCs that connect
to each other either directly, or through an intermediate
gene, in which case the intermediate gene is included in
the network. Therefore, we created a PPI network of
genes that show coordinated, EMT-specific chromatin
remodeling, along with common immediate neighbors.
The EMT-network contains a total of 2,534 genes and
16,922 interactions.
We further resolved the network by delineating ‘hubs’

and ‘modules’. Modules are sets of densely connected
genes within a network, and typically contain genes that
are functionally associated. By definition, any two modules
must show relative independence from each other in
terms of connectivity. Hubs are important genes within a
network. They mediate interactions among other less
connected genes, and determine the modular organization
of PPIs [58]. We used the PageRank score to identify hubs,
and we used an unsupervised algorithm to delineate the
modules [59].
We ranked genes in the EMT-network based on their

PageRank (PR). Hubs with the highest PR come exclu-
sively from the EMT-GCs, and include: ACTB (rank 1),
CTNNB1 (2), PRKCA (3), EGFR (4), RAC1 (8), ABL1 (9),
and a number of TFs: SMAD3 (5), JUN (6), RELA (7),
and MYC (14) [see Additional file 17: Table S9]. By def-
inition these genes are the most important mediators of
interactions between genes from EMT clusters and po-
tentially coordinate their function.
We found that the pathways most significantly associ-

ated with the network hubs are: (1) the pro-inflammatory
TNF signaling cascade through CD40 (fold 2.09, P <1e-5)
and the canonical NF-κB pathway (fold 2.03, P 0.0013), (2)
EGF receptor signaling pathways including EGFR (fold
2.01, P 0.00090), and ErbB2/3 (fold 2.01, P 0.00074), and
(3) the TGFβ (fold 1.99, P 0.00082) and Wnt (fold 1.92, P
0.006) signaling pathways. The enrichment of the hub
genes for these pathways, along with their transcriptional
regulation, strongly suggests that chromatin maintains the
upregulation of these pathways in an EMT-specific man-
ner, hence, driving cells to the mesenchymal state.

Cytosolic modules within the epithelial-mesenchymal
transition-network correspond to distinct signaling cascades
We partitioned the EMT-network into nine modules and
focused our analyses on the four largest and most densely
connected modules (M1, M4, M6, M7). They contain 86%
of the 2,543 genes in the EMT-network, while the re-
maining six modules were either small or dispersed
throughout the network [see Additional file 8: Table S5].
An enrichment of cell surface receptors and membrane
proteins exists within three of the modules (M1, M4, M7).
We refer to this group as the ‘upstream’ modules. Based
on this observation, we hypothesized that distinct network
modules could have distinct molecular characteristics. To
test this we further characterized the modules through
GO-terms, molecular signatures, and pathways. We found
that the three upstream modules correspond to three



Figure 6 The translational readout of the epithelial-mesenchymal transition-related gene clusters (EMT-GCs) forms a modular
protein-protein interaction network of EMT signaling (EMT-network). The EMT-network is based on experimentally determined interactions
and induced by genes from the EMT-GCs. Nodes are genes from the EMT-GCs and additional genes that directly mediate their interactions. Node
sizes are proportional to PageRank scores. Genes with high scores are network hubs. The EMT-network is partitioned into eight modules, four of
them labeled and color-coded. The predominant functional characteristic of each module is indicated. The side table lists genes with the highest
PageRanks in each of the four core modules.
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signaling cascades: TGFβ, TNF / NF-κB, and receptor
tyrosine kinases.

TGFβ receptor signaling
Module M1 most significantly associates with the TGFβ,
and BMP signaling pathways, but is also enriched for
genes related to development, cell proliferation, apop-
tosis, and differentiation. From GO, the most enriched
biological processes are EMT (fold 35.44, P 0.000085)
and mesenchymal differentiation (fold 99.73, P 0.0080).
In terms of pathways, we found that this module is most
significantly enriched for the TGFβ pathway (fold 46.20,
P <1e-5) and other molecular functions related to TGFβ
signaling. For example, BMP signaling events (fold 57.47,
P <1e-5) and proteins known to bind activin A (fold
203.15, P <1e-5) are strongly enriched. Both BMPs, and
activin A belong to the TGFβ superfamily. Canonically,
TGFβ utilizes receptor S/T kinases to activate the SMAD
proteins. As expected, we observed overrepresentation of
genes that regulate SMADs through phosphorylation (fold
310.28, P <1e-5) and mediate their nuclear import (fold
201.15, P <1e-5) in M1. These findings indicate that mod-
ule M1 captures the TGFβ and BMP signaling pathways,
which are critical to EMT induction.

TNF/NF-κB signaling
Module M4 includes the TNF / NF-κB signaling network
and is also enriched for genes from the MAPK signaling
pathway. The majority of genes that are annotated as me-
diators of apoptosis signaling reside in this module. Specif-
ically, M4 contains all annotated genes of the extrinsic
apoptosis pathway (P <1e-5), and high enrichments for
the intrinsic (fold 73.7, P <1e-5), general (fold 92.12,
P <1e-5), and caspase (fold 52.54, P <1e-5) apoptosis
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pathways. Another defining characteristic of M4 is TNF
signaling, since all annotated genes in this pathway are in-
cluded (P <1e-5). Consistently, this module contains genes
involved in signaling pathways upstream of NF-κB (fold
82.80, P <1e-5). Furthermore, we observed enrichment of
the IL1 (fold 409.41, P <1e-5), Toll-like (fold 29.48, P <1e-5),
and NOD-like (fold 27.84, P <1e-5) pathways. All of these
receptors are activated by pro-inflammatory signals, and
converge on NF-κB. We also noted an overrepresentation
of cytosolic mediators of immune responses. In particular,
there are enrichments for the IKK complex (fold 215.98,
P <1e-5), the TAK1/JNK cascade (fold 104.81, P <1e-5),
and the MAPK stress activated cascade (fold 19.50,
P <1e-5). These findings are consistent with the critical
role of inflammation in EMT (reviewed in [60]). For ex-
ample, IL-1 activity is known to induce the ZEB1 and
ZEB2 master-switch EMT TFs through NF-κB [61]. Fur-
thermore, both TNF and IL-1 induce the expression and
nuclear localization of several AP-1 family members, such
as FOSL1 and FOSB, in addition to NF-κB [62]. These re-
sults suggest, that unlike the developmental and mesen-
chymal bias in M1, this module associates more strongly
with the immune response and apoptosis and groups the
interactions important for the propagation of TNF / NF-
κB signaling in our model of EMT.
Module M7 includes signaling pathways from cell

surface interactions and from receptor tyrosine kinases
(RTKs). Cytosolic and signal transduction proteins
show significant enrichment in this module (fold 5.07,
P 1.25e-86; and fold 4.86, P 4.0e-55, respectively). We
found several EGF receptor signaling pathways overrepre-
sented in M7: EGFR (fold 19.79, P <1e-5), ERBB4 (fold
19.16, P <1e-5), and ERBB2/3 (fold 13.20, P <1e-5). Inter-
estingly, this module also overlaps with genes that are
upregulated in response to EGF signaling in HeLa cells
(fold 6.87, P <1e-5) [63]. In our model system, we ob-
served clear differential regulation of the EGF receptors.
ERBB2 and ERBB3 are epigenetically and transcription-
ally repressed, while EGFR is activated (see ‘Regulation
of EMT signaling pathways is chromatin-mediated’). Re-
pression of ErbB2/3 signaling coincides with the repres-
sion of many of its interaction partners [See Additional
file 18: Figure S9]. Interestingly, among these repressed
binding partners are other RTKs, including FGFR2 and
FGFR3. Further examination of M7 revealed an enrich-
ment of signaling cascades that are downstream of cellular
junctions, most significantly the focal adhesion pathway
(fold 19.90, P 1.2e-68). Other over-represented cell adhe-
sion pathways include integrins (fold 31.42, P <1e-5),
adherens junctions (fold 27.61, P <1e-5), nectins (fold
87.22, P <1e-5), and tight junctions (fold 12.11, P <1e-5).
Together, these results illustrate the co-regulation of EGF
receptors, their downstream signaling pathways, and their
transcriptional targets.
In summary, we find three modules (M1, M4, M7)
within the EMT-network that correspond to signal
transduction networks associated with TNF / TGFβ
stimulation, as well as EGF signaling. Remarkably, we
find that the same pathways associate with hubs of the
EMT-network. Together, these results suggest that coor-
dinated changes in chromatin maintain the activity of
pathways associated with the response to TNF / TGFβ
into the mesenchymal state. A plausible mechanism for
how signaling from these pathways is integrated into a
transcriptional response is provided by the remaining
module, six.

Transcriptional integration of upstream signaling
Examination of M6 revealed an enrichment for TFs and
other nuclear proteins involved in cell-cycle regulation,
chromatin modifications, and epigenetic regulation. GO-
terms enriched in this module include ‘nucleus’ (fold
13.51, P <1e-16), ‘activating transcription factor binding’
(fold 30.19, P 4.7e-7), and ‘repressing transcription factor
binding’ (fold 57.79, P 7.1e-12). Therefore, in contrast to
the three upstream signaling modules, we refer to M6 as
‘downstream’. Interestingly, we observed enrichment of
TNF-related regulators of NF-κB activity (fold 10.74,
P 1.8e-30). This functionally links modules M6 and M4. A
highly significant enrichment for TGFβ signaling (fold
34.64, P 2.5e-79), particularly through SMAD2 and 3 (fold
52.01, P 6.1e-51) indicates that M6 similarly associates with
M1. Finally, the overrepresentation of EGF receptor signal-
ing pathways from EGFR (fold 10.03, P <1e-5) and ERBB2/
3 (fold 11.86, P 2.1e-05) suggests signaling from M7 to
M6. There is also an over-representation of the MAPK
targets and nuclear events mediated by MAP kinases in
this module (fold 49.94, P <1e-5), as well as the inclusion
of all genes in Reactome annotated as known regulators of
the AP-1 family TFs (P<1e-5). In summary, we found evi-
dence that M6 integrates signaling events from all three
upstream modules.
We identified transcription factors within M6 that are

also major hubs in the EMT-network (Figure 6) and hence
are likely to mediate the transcriptional response. We
found that SMAD3, JUN, MYC, and RELA satisfy these
criteria. Interestingly, JUN and MYC are immediate early
genes, while SMAD3 and RELA are post-translationally
activated in response to TGFβ and TNF, respectively. All
four TFs reside in the EMT-GCs. Together, these data
suggest sustained activation, coordination and mainten-
ance of the early cytokine response pathways through con-
certed changes in histone modifications.
Furthermore, JUN, MYC, and RELA represent mem-

bers of each of the transcription factor families identified
in the enhancer analysis, which we implicate in our
chromatin-mediated transcriptional feedback hypothesis
(see ‘Links between enhancer clusters, gene clusters, and
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TFs, indicate a mechanism of chromatin-mediated tran-
scriptional feedback’). Thus, we looked for evidence of
regulatory loops within the EMT-network. To test this we
examined the upstream modules for targets of AP-1, NF-
κB, and c-Myc. Strikingly, we found enrichment of genes
that are transcriptionally regulated by two AP-1 family
members, FOSL1 and FOSL2 (fold 30.15, P <1e-5), in M1;
enrichment of NF-κB target genes involved in the regula-
tion of apoptosis (fold 219.36, P <1e-5) in M4; enrichment
of targets of AP-1 (fold 2.60, P <1e-5) in M7; and enrich-
ment of predicted NF-κB targets (fold 6.10, P <1e-5) in
M6 itself. This implicates the AP-1 (which includes JUN)
and NF-κB (which includes RELA) transcription factor
families as positive transcriptional regulators of the up-
stream components of EMT-network.
There is also evidence that suggests an analogous, but

inverted role for c-Myc (MYC). We found enrichment of
genes that are downregulated by c-Myc in M1 (fold
10.39, P 2.0e-11), M6 (fold 14.66, P 2.84e-14), and M7
(fold 4.19, P 4.5e-9). This agrees with our previous re-
sults, which provide evidence for the repression of en-
hancers that bind c-Myc, the activation of genes in
GC16 that are known to be repressed by c-Myc, and the
repression of genes in GC15 that are activated by c-Myc.
These data suggest opposing roles for AP-1 / NF-κB and
c-Myc in the regulation of genes from the EMT-GCs.
Overall, these results are consistent with the GO and
pathway enrichment analyses of the EMT clusters, as
well as the enhancer TFBS analysis.

Conclusions
A rapidly growing body of research demonstrates that
EMT is an epigenetically regulated process (for recent re-
views see [64,65]). The known mechanisms of regulation
involve miRNAs, chromatin structure, DNA methylation,
and changes to histone modification levels. EMT in non-
transformed cells has been likewise linked to remodeling
of specific chromatin domains (that is, the so-called
‘LOCKs’) [9]. It was therefore plausible to hypothesize that
genes involved in EMT are broadly coordinated through
epigenetic mechanisms. We have made five key observa-
tions in support of this:

1. Genes known to be associated with the EMT
phenotype are shown to have strong, specific, and
highly similar differential chromatin profiles.

2. Epigenetic regulation at gene and enhancer loci linked
to EMT is consistent in terms of chromatin activation,
repression and differential gene expression.

3. Two distinct classes of enhancers associated with
activated or repressed chromatin, are significantly
enriched for binding sites of two different sets of TFs.

4. The upstream pathways and downstream targets of
the TFs linked to activated enhancers (AP-1 and
NF-κB family members) are enriched for genes with
EMT-specific epigenetic profiles.

5. Network analysis of interactions among genes with
EMT-specific epigenetic profiles highlights these TFs
as protein-protein interaction hubs.

Therefore, epigenetic regulation of genes that drive
EMT is coordinated and specific in our A549 model sys-
tem. These findings link chromatin remodeling to shifts
in cellular signaling networks. They are also consistent
with a model of positive feedback that maintains the
phenotypic switch (Figure 5A). The constitutive activa-
tion of NF-κB in our system and the extensive repro-
gramming at NF-κB target loci provide further support
for this data-driven hypothesis.
Although we have been able to associate combinatorial

epigenetic profiles with clear functional roles, our results
do not address the specific cooperative mechanism of
chromatin remodeling. However, we identified a number
of candidate chromatin modifying enzymes that are dif-
ferentially expressed. Upregulated chromatin modifiers
include the histone deacetylase HDAC9 (log2fc 3.53),
methyltransferase EZH2 (log2fc 1.13), and demethylases
JHDM1D (log2fc 3.38) and KDM1B (log2fc 1.38).
Downregulated enzymes include the deacetylase HDAC1
(log2fc −1.15), methyltransferases ELP3 (log2fc −0.92) and
NCOA2 (log2fc −1.43), and the demethylase EHMT2
(log2fc −1.10). In addition, genes and enhancers with
EMT-specific chromatin remodeling patterns are enriched
for targets of specific chromatin remodeling complexes.
For example, ENCODE-mapped Sin3a and HDAC2 bind-
ing sites are enriched in repressed enhancers. These factors
have been implicated in EMT by a study that has shown
that the master switch factors SNAI1 and SNAI2 recruit
the Sin3a/HDAC1/HDAC2 complex to silence CDH1
in EMT [66]. We also observe enrichments of known
HDAC1 and HDAC2 targets among upregulated genes
and within EMT-GCs. Consistently, we observe evidence
for a decrease in HDAC1 and HDAC2 activity through the
downregulation of HDAC1 expression, and repression en-
hancers with HDAC2 binding sites. These associations
point toward select chromatin modifying complexes and
enzymes as likely epigenetic drivers of EMT.
We also found that chromatin modulates, and effect-

ively maintains the activation of pathways involved in
the response to TNF / TGFβ after prolonged stimulation
with these cytokines. Surprisingly, many canonical im-
mediate early response genes, such as JUN, remained ac-
tive transcriptionally and epigenetically. Many of the
pathways downstream of TNF / TGFβ show further evi-
dence of chromatin-mediated transcriptional switching.
Within the TGFβ signaling pathway we observe a strik-
ing bidirectional regulation of TGFβ superfamily cyto-
kines, their receptors, and their downstream signaling
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components. We also see differential regulation of MAPK
phosphatases and a pronounced switch in EGF receptors.
Within these examples, genes that are upregulated often
have the GC16 or GC19 activated epigenetic signature,
while downregulated genes have the opposite GC15 re-
pressed differential profile. These results are consistent
with previous findings that EMT involves switches among
receptor tyrosine kinases that activate the MAP-ERK path-
way [67]. Thus, we conclude that modulation of critical
pathways during EMT involves coordinated epigenetic ac-
tivation and repression.
One of our most unexpected findings is that epigeneti-

cally active and repressed enhancer regions are enriched
for the binding sites of two non-overlapping sets of spe-
cific TFs. This lends support to the model that chromatin
and TF profiles jointly govern the locus specific regulation
of gene expression. The magnitude of the differential
epigenetic regulation that we observe at enhancers is in
agreement with several studies that highlight the epigen-
etic plasticity of enhancers relative to promoters [24,31].
Our results suggest that global availability of TF binding
sites at enhancers distinguish epithelial and mesenchymal
phenotypes. Consistently, several studies have demon-
strated the cell-type specificity of enhancers and TF bind-
ing patterns [68,69]. There is also evidence that the
observed regulation of enhancers is specific to epithelial
and mesenchymal phenotypes. For example, we linked
FOXA1 and FOXA2 with enhancers that are repressed in
EMT. These so-called ‘pioneer’ factors are believed to
facilitate opening of chromatin at enhancers to enable
lineage specific transcriptional regulation [70-72]. Interest-
ingly, these TFs have been shown to promote the epithelial
phenotype and block EMT in various systems [73-76].
In summary, we have shown extensive epigenetic repro-

gramming at both gene and enhancer loci between the
end states of the EMT. Changes to chromatin states enable
the constitutive activation of transcription factors (some of
which are associated with an immediate early response),
their upstream signaling pathways, and target enhancers.
Based on these results we put forward a hypothesis in
which EMT is driven in large part by chromatin-mediated
activation of transcriptional positive feedback loops. The
linchpins of this feedback are two TF families: AP-1 and
NF-κB. Interestingly, of all gene clusters, GC15 and GC16
show the highest fractional composition of transcription
factors, which includes a large number of AP-1 and NF-κB
family members. This suggests that epigenetic reprogram-
ming during EMT alters the transcriptional profile of the
cell by broadly altering chromatin accessibility, and by
regulating genes that directly mediate transcription–a po-
tential feedback mechanism in itself. Together, our results
suggest a high-level mechanism for how complex signaling
networks can be coordinated during EMT, and cellular
state transitions, generally.
Methods
Cell culture
NSCLC lines A549 were purchased from ATCC (Manassas,
VA) and grown in DMEM (Mediatech, Manassas, VA),
10% FBS (Life Technologies, Grand Island, NY) and peni-
cillin/streptomycin (Life Technologies). Spheroid (3D) cul-
tures were resuspended in DMEM/10%FBS as 25000 cell
aggregates using the hanging droplet technique. Newly
formed spheroids were transferred onto polyhema plates
containing DMEM/2% FBS to prevent aggregates from
attaching to the dish. For EMT-induction, monolayer or
spheroid cultures were incubated in DMEM/2% FBS and
treated with vehicle or with TNF (10 ng/mL) and TGFβ (2
ng/mL) for 48 hours. The 2D and 3D cultures were then
treated with vehicle or TNF and TGFβ a second time for
an additional 48 hours. The samples were subsequently
collected and subjected to RNA isolation or ChIP-seq.
TGFβ (PHG 9204) and TNF (PHG 3015) were purchased
from Life Technologies.
ChIP-seq
Chromatin immunoprecipitation (IP) followed by sequen-
cing (ChIP-seq) assays were performed in spheroid cul-
tures only. TGFβ / TNF treated and control cells were
cross-linked in 1% formaldehyde. The cross-linking reac-
tion was quenched using 125 mM glycine, and the sam-
ples were collected for ChIP-seq analysis according to the
Myers lab protocol as described in [77]. Approximately
1.2e7 cells were used per IP, and the DNA was sheared to
approximately 400 bp fragments by sonication with a
bioruptor. After DNA recovery, we used standard Illumina
protocols and reagents to prepare the ChIP-seq library
(Illumina 11257047 rev A). The antibodies used for IP are
listed: H2A.Z (Abcam, ab4174), H3K4me1 (Active Motif,
39635), H3K4me2 (Active Motif, 39141), H3K4me3 (Ac-
tive Motif, 39159), H3K27ac (Abcam, 4729), H3K27me2
(Active Motif, 39245), H3K27me3 (Active Motif, 39155),
H3K14ac (Active Motif, 39599), H3K36me3 (Abcam,
ab9050), H3K79me3 (Abcam, ab2621), H3K9ac (Active
Motif, 39137), H3K9me1 (Active Motif, 39249),
H3K9me3 (ab8898), HeR17me2asym (Abcam, ab8284),
H4K8ac (Millipore, 17–10099), H4R3me2asym (Abcam,
ab5823), H4K20me1 (Active Motif, 39175), pan-H3 (Ac-
tive Motif, 39163).
Microarray and gene expression analysis
Microarray analysis of gene expression was performed on
technical duplicates of TGFβ / TNF treated and untreated
cells in both two-dimensional and spheroid cultures. Total
isolated mRNA was hybridized to Affymetrix U133 plus
2.0 microarrays. The raw data was analyzed using
Bioconductor [78]. Background subtraction was per-
formed using GCRMA. The Limma [79] package was



Cieślik et al. Epigenetics & Chromatin 2013, 6:28 Page 16 of 22
http://www.epigeneticsandchromatin.com/content/6/1/28
used to perform differential expression analysis, in
which a 5% FDR-adjusted P value cutoff was chosen.
Normalized expression values for all probes were propa-

gated onto genes considered in this analysis. We used a
comprehensive, but non-redundant, set of high-confidence
protein-coding transcripts. We eliminated the majority of
redundant transcripts coding for isoforms of a single gene,
together with pseudo- and RNA-coding genes. For the full
list of 20707 canonical transcripts represented by UCSC
IDs [80] and gene symbols (HGNC) [see Additional file 8:
Table S5]. Further, each gene was annotated with expres-
sion values from all probes that map to any of the genes’
transcripts and isoforms as defined by all the transcripts
known to UCSC (July 2011). In analyses of differential gene
expression the probe set with the largest log2 fold-change
(log2fc) magnitude between treated and untreated samples
has been chosen to represent a set of transcripts and was
reported in Additional file 8: Table S5.

Enhancer-associated histone modifications
Within our panel of epigenetic modifications we identified
a subset of marks that are associated with enhancer activ-
ity. Marks that showed clear position-dependent correl-
ation with either H3K4me1 or H3K27ac differential
enrichment include: H3K4me2, H3K9ac, H3R17me2asym
and H4K8ac [see Additional file 1: Figure S1]. Together
with the initial two, these marks comprised our set of six
enhancer-associated marks.

ChIP-seq data processing
Images generated by the Illumina sequencer were initially
processed using the Illumina pipeline. Sequences were
mapped to the human reference genome, hg19 (GRCh37),
using the BWA software [81] with all default options. In
cases where a tag aligned to multiple sites the match with
the smallest edit distance was chosen. In the event of an
exact tie a single mapping site was randomly chosen.
Sequences that fully or partially overlapped problematic
regions were discarded. We defined problematic regions
as those with known mapability issues, (for example, re-
petitive sequences (from the UCSC genome browser
microsatellite track (downloaded July 8, 2011))) and gen-
omic coordinates with high false positive rates of enrich-
ments, as identified by [82]. All remaining mapped tags
were extended to 200 bp in the 3’ direction to account of
the expected length of nucleosome-bound DNA.

Scaled differential enrichments
To generate chromatin enrichments the genome was
segmented into 200 bp bins. The extended tags were
assigned to each genomic bin they overlapped. The raw
enrichment (RE) is simply the per-window overlap
count. REs have been calculated for each of the mapped
histone marks from both epithelial (3D untreated) and
mesenchymal (3D treated) samples. To allow for com-
parisons of enrichment profiles between the epithelial
(E) and mesenchymal (M) samples, we normalized pairs
of REs for each histone modification or variant. We used
an in-house implementation of the normalization pro-
cedure used in the DESeq algorithm [83] to calculate
scale factors for each pair. Scaled enrichments (SE) were
obtained by multiplying REs window-wise by the appro-
priate scale factors. Finally, we calculated scaled differen-
tial enrichments (SDE) by subtracting (for all histone
modifications separately) the epithelial SE (ESE) from
the mesenchymal MSE at each genomic window (that is,
SDE = ESE − MSE).

Definition of putative enhancer loci
We have adapted the methodology of [25] to locate puta-
tive enhancer sites using histone modifications. A set of
initial putative loci was derived from the raw enrichments
of two ‘core enhancer’ marks H3K27ac and H3K4me1 that
have been previously shown to be sufficient to distinguish
enhancers from other genomic elements. The SICER soft-
ware [84] was used to call peaks of both marks in the epi-
thelial and mesenchymal states, using corresponding
panH3 samples as a control. Peak calls with gaps less than
or equal to 600 bp were merged. The final calls were based
on a FDR-corrected P value <0.01. These peaks were sub-
sequently used to delineate enhancer regions. Potential en-
hancer sites were anchored on the window within a given
peak call that had the maximum nominal enrichment of
one of the two marks, corresponding to the mark for
which the peak was called. Since enhancers discovered by
profiling p300 occupancy have been shown to be depleted
of H3K4me3, these anchor sites were filtered to exclude
those that overlapped H3K4me3 SICER peaks (called in
the same manner as H3K4me1 and H3K27ac). Finally, an-
chor sites based on H3K4me1 peaks that were within 1 kb
of sites based on H3K27ac peaks were collapsed to the
H3K27ac-based site. The 200bp sites were extended by
1000 bp at both ends resulting in set of 75,937 putative en-
hancers all 2200 bp in length.

Filtering and gene assignment of enhancer loci
The initial set of 75,937 putative enhancers was further fil-
tered to enrich for regions with significant epigenetic
changes during EMT. We retained enhancers with a sig-
nificant change for at least one ‘enhancer-associated’ his-
tone modifications. The significance calls were based on a
extreme-value null-model derived from the set of all en-
hancers. For each enhancer a single extreme-value is
retained that corresponds to the largest magnitude of
change in either the positive (gain) or negative (loss) direc-
tion. The details of how these changes are calculated at
each enhancer are described in ‘Signal Quantification and
Scaling’. The distribution of maximal magnitudes was
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represented through a kernel density estimate (Gaussian
kernel, bandwidth 0.025). The left tail of this distribution
was used to calculate a Gaussian null model of the noise
regime of the differential signals. This Gaussian null model
has parameters and, where μ̂ is equal to the mode of the
kernel density estimate, and σ̂ is calculated using the
following equation:

σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

Xxi≤ μ̂
i

xi − μ̂ð Þ2
vuut

Potential enhancers that had a P value >0.05 were
filtered, yielding a final set of 30,681 putative differential
enhancers. These enhancers were assigned to genes they
likely regulate using a heuristic method described by
[52]. Briefly, each gene was assigned a cis-region defined
as the region from the given gene’s TSS to the neighbor-
ing TSSs in either direction, or 1 Mb if the nearest TSS
is further than 1 Mb. Enhancers that fall within a gene’s
cis-region are assigned to that gene.

Differential epigenetic profiles
We calculated differential epigenetic profiles (DEP) at
both gene and enhancer loci. We base the DEPs on
scaled differential enrichments (SDEs, see ‘Scaled Differ-
ential Profiles’) for all mapped histone modifications at
gene loci, and enhancer associated marks at putative en-
hancer loci. The calculation is a multistep procedure
that results in a profile (fixed-sized feature vector) that
summarizes the multivariate differences in histone modi-
fication levels between the paired samples at each locus.
In the first step, gene loci are split into segments (see
‘Gene Segmentation’), while enhancers are kept whole.
Next, within all segments, SDEs for each considered his-
tone modification are quantified (see ‘Signal Quantifica-
tion and Scaling’).

Gene segmentation
The calculation of the raw epigenetic profile is based on
four segments delineated for each gene. The sizes of all
but one segment are fixed. The remaining one accom-
modates the variable length of genes. The fixed size seg-
ments are: promoter (PR), transcription start site (TSS)
and gene start (GS). The whole gene (WG) segment is
variable in size but is at least 1.2 kb long. We define the
sizes and boundaries of segments based on windows,
which have a fixed size of 200 bp and have boundaries
that are independent of genomic landmarks such as
TSSs. The location of the TSS defines the reference win-
dow, which together with its two adjacent windows, de-
fines the TSS segment. The two remaining fixed-size
segments, PR and GS, have a size of 25 windows (5 kb).
The PR and GS segments are located immediately
upstream and downstream, respectively, of the TSS seg-
ment, while the WG segment begins at the TSS reference
window and extends 5 windows (1 kb) beyond the window
containing the transcription termination site. Enhancers
were treated as single-segment, contiguous 11-window
(2,200 bp) regions (see ‘Enhancer Definition’).

Signal quantification and scaling
The genome-wide scaled differential enrichments (SDEs)
quantify epithelial to mesenchymal differences for each
mark at 200 bp resolution across the genome. Each gene
segment comprises a set of bookended windows [see
Additional file 2: Figure S2]. For each histone modifica-
tion, and within each segment, we reduce the SDE to
two numeric values, which intuitively capture the level
of gain and loss of the mark in the epithelial to mesen-
chymal direction. Strictly speaking, we independently
calculate the absolute value of the sum of the positive
(gain) and negative (loss) values of the SDE within a seg-
ment. Hence, we obtain a gain and loss value for all his-
tone modifications within each segment of a gene (or an
enhancer region). The differential epigenetic profile
(DEP) of each gene (or enhancer) is a vector of gains
and losses of multiple histone modifications at all seg-
ments (single segment for enhancers). In the case of
gene loci we quantify all histone marks, and in the case
of enhancer loci only the enhancer-associated modifica-
tions are quantified (see ‘Enhancer-Associated Histone
Modifications’). DEPs are arranged into a DEP matrix in-
dividually for genes and enhancers (Figure 2A, [see Add-
itional file 6: Figure S3 and Additional file 7: Table S4]).
Each row represents a DEP for a gene (or enhancer) and
each column represents a segment-mark-direction com-
bination (features). Columns (features) were non-linearly
scaled using the following equation:

z ¼ 2

1þ e
−2x
u

� 1

Where, z is the scaled value, x is the raw value and u
is the value of some upper percentile of all values of a
feature. We have chosen the 95th percentile. Intuitively,
this corrects for differences in the dynamic range of
changes to histone modification levels and for differ-
ences in segment size. Scaled values (DEP elements) are
within the 0 to 1 range. The scaling is approximately lin-
ear for about 95% of the data points.

Data integration
To enable a broad, systemic view of genes, pathways, and
processes involved in EMT, we have integrated a number
of publicly available datasets containing functional annota-
tions and other types of information within a semantic
framework. Our experimental data and computational
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results were also semantically encoded and made inter-
operable with the publicly available data. This connected
resource has the form of a graph and can be flexibly quer-
ied across original datasets. External, publicly available,
data have been retrieved as database dumps, files or batch
queries to web services / servers depending on the design
of the original resource. We have processed the raw files
using Python scripts and transformed them into RDF-XML
files. Within the RDF-XML files a subset of entities from
the original resource are ‘encoded’ based on an in-house
ontology. The full set of RDF-XML files has been loaded
into the Sesame OpenRDF triple-store. We have chosen
the Gremlin graph traversal language for most queries.

Annotation with GO-terms
Each gene was comprehensively annotated with Gene
Ontology terms combined from two primary annotation
sources: EBI GOA (retrieved 20110905) and NCBI
gene2go (retrieved September 4, 2011). These annotations
were merged at the transcript cluster level (see ‘Micro-
array and Gene Expression Analysis’), which means that
GO-terms associated with isoforms were propagated onto
the canonical transcript. The translation from source IDs
(UniProt IDs, and Entrez Gene IDs for EBI and NCBI re-
spectively) onto UCSC IDs was based on the mappings
provided by UCSC and Entrez and was done using an
in-house probabilistic resolution method. Every protein-
coding gene was re-annotated with terms from two GO-
slims provided by the Gene Ontology consortium. The
re-annotation procedure takes specific terms and translates
them to generic ones. We used the map2slim tool and the
two sets of generic terms: ‘PIR’ (Protein Informatics Re-
source) and ‘generic terms’. Besides GO, we have included
two other major annotation sources: NCBI BioSystems,
and the Molecular Signature Database 3.0 (MSigDB).

Mining for genes associated with epithelial-mesenchymal
transition
We attempted to construct a representative list of genes
relevant to EMT. This list was obtained through a man-
ual survey of relevant and recent literature. We ex-
tracted gene mentions from recent reviews on the
epithelial-mesenchymal transition. A total of 142 genes
were retrieved and successfully resolved to UCSC tran-
scripts. The resulting list of protein-coding genes is
available in Additional file 4: Table S2. A second set of
genes associated with EMT was based on GO annota-
tions. This set included all genes that were annotated
with at least one term from a list of GO-terms clearly
related to EMT [see Additional file 5: Table S3].

Functional similarity scores
We developed a score to quantify functional similarity for
any two sets of genes. Strictly speaking, the functional
similarity score (FSS) measures the degree of overlap be-
tween the two lists of GO-terms enriched for the two sets.
First, we obtain two lists of significantly enriched GO-
terms for the two sets of genes. The enrichment P values
were calculated using Fisher’s Exact Test and FDR-
adjusted for multiple hypothesis testing. For each enriched
term we also calculate the fold change (that is, whether it
is enriched or depleted relative to the background fre-
quency). The similarity between any two sets is given by:

FSS A;Bð Þ ¼
XC
c

log pAc � pBc
� �þ

XD
d

log pAd � pBd
� �

where A and B are two lists of significantly enriched GO-
terms (here FDR-corrected P <0.01). C and D are sets of
GO-terms that are either enriched or depleted in both
lists, but not enriched in A and depleted in B and vice-
versa. Intuitively, this score increases for every significant
term that is shared between two sets of genes, with the re-
striction that the term cannot be enriched in one, but de-
pleted in the other cluster. If one of the sets of genes is a
reference list of EMT-associated genes, this functional
similarity score is, in general terms, a measure of related-
ness to the functional aspects of EMT.

Functional correlation matrix
The functional correlation matrix (FCM) (Figure 2B)
contains functional similarity scores (FSS) for all pairs of
gene clusters with the difference that enrichment (E)
and depletion (D) scores are not summed but are shown
separately. Each row represents a ‘source’ gene cluster
while each column represents either the enrichment (E)
or depletion (D) score with a ‘target’ cluster. The FSS is
the sum of the enrichment and depletion scores, (that is,
FSS = E + D). Columns are arranged numerically by
cluster ID, rows are arranged by Ward hierarchical clus-
tering using the cosine metric. The FCM and clustering
dendrogram have been visualized in Java TreeView.

Selection of optimal clustering
We have followed a heuristic benchmarking approach to
select a suitable unsupervised clustering method to group
genes based on differential epigenetic profiles, while maxi-
mizing the biological interpretability of DEPs. Because
there is no correct solution to unsupervised machine
learning tasks, we evaluated clustering solutions based on
their interpretability in the domain of the epithelial-
mesenchymal transition. Intuitively, a ‘good’ clustering
method groups genes with similar functions together.
Therefore, we expected a small number of the clusters to
be enriched for genes related to the EMT process (see
‘Mining for Genes Associated with EMT’). However, such
straightforward approach would have the drawback of be-
ing strongly biased towards what is known, whereas the
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goal of unsupervised machine learning is to uncover what is
not. To alleviate this problem, rather than calculating en-
richments for genes known to be involved in EMT, we cal-
culate the FSS that measures the degree of functional
similarity between a cluster and a reference set of genes as-
sociated with EMT. Our goal was to find a combination of
gene segmentation, data scaling and machine learning algo-
rithm that performs well in grouping functionally related
genes together. We evaluated three markedly different
unsupervised learning methods: hierarchical clustering,
AutoSOME [33], and WGCNA [85]. We further profiled a
number of ways to partition gene loci into segments,
and three methods to scale the columns of the DEP matrix
(no scaling, non-linear scaling, non-linear-scaling with
detrending). Based on the distribution of EMT-similarity
scores (preferred few highly enriched clusters) and a number
of semi-quantitative indicators such as cluster size (preferred
small enriched clusters), differential gene expression (pre-
ferred up or down regulated clusters) we chose a final com-
bination of clustering algorithm: AutoSOME, segmentation
approach (see ‘Gene and Enhancer Segmentation’), and
scaling method (see ‘Signal Quantification and Scaling’).

Clustering of gene and enhancer loci
DEP matrices (see ‘Signal Quantification and Scaling’) as-
sociated with each of the 20,707 canonical transcripts
(genes) and each of the 30,681 final enhancers were clus-
tered using AutoSOME with the following settings: -P
-g10 -p0.05 -e200. The output of AutoSOME is a crisp as-
signment of genes (or enhancers) into clusters and each
cluster contains genes (enhancers) with similar DEPs. For
visualization, columns (features) were clustered using hier-
archical Ward clustering and manually rearranged if ne-
cessary. The matrices were visualized in Java TreeView.

Transcription factor binding sites within promoters and
enhancers
Transcription factor binding sites were obtained from the
ENCODE transcription factor ChIP track of the UCSC gen-
ome browser [86] (downloaded December 15, 2011). This
dataset contains a total of 2,750,490 binding sites for 148
different factors pooled from variety of cell types from the
ENCODE project. The enrichment of each transcription
factor in each enhancer and gene cluster was calculated as
the cardinality of the set of enhancers or promoters (5,400
bp, centered on the window containing the transcription
start site) that have a nonzero overlap with a given set tran-
scription factor binding sites. The significance of the en-
richment was calculated using a one-tailed Fisher’s Exact
Test (cluster membership versus TF enrichment).

Protein-protein interaction networks
The source of protein-protein interactions (PPIs) within
our integrated resource is STRING9 [87]. This database
collates multiple smaller sources of PPIs, but also applies
text-mining to discover interactions from literature and
further gives confidence values to network edges. For
the purpose of this work, we focused on experimentally
determined physical interaction with a confidence cut-off
of 400, which is also the default from the STRING9
website. We obtained identifier synonyms that enabled
us to cross-reference the interactions with entities from
the protein aliases file. We explored the interaction
graph from each of our 20,707 reference genes, by tra-
versing along the interactions that met the type and cut-
off requirements. Genes that had at least one interaction
were retained. This full interaction graph has been
exported as a GraphML file for further analysis and
visualization.
We have constructed two sub-networks that highlight

the interactions within smaller sets of genes than the full
STRING9-derived interactome. A subnetwork contains
interactions only between genes that induce it. These in-
ducing sets of genes have been obtained by expanding
seed gene lists. We used two seeds: (1) gene lists that
were based on EMT-related gene clusters and (2) a list
of down-regulated genes. The expansion of seeds into
inducing sets included all genes that interacted with at
least two genes from the seed. In other words, all genes
that mediated interactions between genes in the seed list
were discovered and appended and formed the inducing
set. Genes within the EMT-GCs (GC15, GC16, GC19)
were merged together into a single seed gene list, which
formed the basis of the EMT-network (Figure 6). The
downregulated gene expression network [See Additional
file 18: Figure S9] has been constructed analogously to
the epigenetic one, with the alteration that the seed lists
were obtained by taking genes below a log2 fold-change
−2 cut off.
Hubs and modules
Within each network (or sub-network) we identified
hubs [88] and modules [89]. We have employed the
PageRank algorithm to identify hubs. We have used the
fast heuristic algorithm of Blondel et al. [90] to discover
dense communities, or modules, within our protein-
protein interaction networks. Intuitively, modules within
a PPI graph are groups of highly interconnected genes.
We used a version of the Blondel et al. algorithm that
depends on a resolution parameter, which we fixed for
all analyses to 1.66 to yield slightly simpler solutions
(fewer modules) [91]. All PageRank scores and modules
have been calculated within the Gephi software.
Data access
Data have been submitted to GEO: SubSeries GSE42373,
gene expression GSE42374, ChIP-seq GSE42375.
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Additional files

Additional file 1: Figure S1. Correlation of histone modifications at
enhancers. (A) Correlation of histone modifications with H3K4me1 at
putative enhancer loci. (B) Correlation of histone modifications with
H3K27ac at putative enhancer loci.

Additional file 2: Figure S2. Gene segmentation and differential signal
quantification. Gene loci were segmented into four regions: promoter,
transcription start site (TSS), gene start, and gene body. Within each
segment, two values were computed for each mark: the sum of the
differential gain in the mark and the sum of the differential loss in the
mark (absolute value, mesenchymal minus epithelial). These values
together form the differential epigenetic profile (DEP) for each gene.
Enhancers were treated similarly; however, enhancer loci were not
segmented.

Additional file 3: Table S1. Literature-based list of genes associated
with epithelial-mesenchymal transition (EMT). List of genes associated
with EMT from a manual search of recent literature.

Additional file 4: Table S2. List of GO-terms associated with
epithelial-mesenchymal transition (EMT). List of GO-terms associated with
EMT, mesenchymal-epithelial transition (MET), or the regulation thereof.

Additional file 5: Table S3. Functional similarity scores of
epithelial-mesenchymal transition-related gene clusters (EMT-GCs). For each of
the EMT-GCs, this table presents the 9 most similar (in terms of the GO-based
functional similarity score) clusters and reference lists of EMT-associated genes.

Additional file 6: Figure S3. Epigenetic epithelial-mesenchymal
transition-related gene cluster (EMT-GCs) (detailed). (A) Differential
epigenetic profiles (DEP) of the EMT-related clusters. Same as Figure 3A,
but the rows (epigenetic features) and columns (clusters) have been
swapped to show all epigenetic features. The naming of each feature
follows a convention. The first three segments separated by ‘_’
correspond to: gene segment: pr - promoter, ts - transcription start site,
gs - gene start, gr - gene body. The following numbers correspond to
clusters at different resolutions (fine, coarse).

Additional file 7: Table S4. GO-terms most significantly enriched for
GC16. A list of the most significantly enriched GO-terms in the
epithelial-mesenchymal transition (EMT)-cluster 16, which has the highest
functional similarity score to lists of EMT-associated genes. The
enrichment P values were calculated using Fisher’s Exact Test and false
discovery rate (FDR) corrected.

Additional file 8: Table S5. Gene expression, cluster membership, and
module membership.

Additional file 9: Table S6. GO term enrichments for upregulated
genes.

Additional file 10: Figure S4. Clusters in the differential
expression-epigenetic plane.

Additional file 11: Table S7. EMT-GC MSigDB enrichments.

Additional file 12: Table S8. Epithelial-mesenchymal transition-related
gene cluster (EMT-GC) pathway enrichments.

Additional file 13: Figure S5. Heat map of differential enhancer clusters.
Heat map showing differential enhancer clusters that are either activated or
repressed. These clusters generally show gain (G) or loss (L) across all marks,
corresponding to activation or repression, respectively. While
H3R17me2asym shows correlation with differential H3K27ac levels at
enhancers, it has relatively little coherence across the globally activated and
repressed clusters. Additionally, of the marks that correlate with differential
H3K27ac or H3K4me1 levels at enhancers, H3R17me2asym shows the
weakest correlation (Supplementary Figure S1).

Additional file 14: Figure S6. Activation and repression of enhancers
correlate with changes in gene expression. The plot shows the
correlation between differential gene expression (log2 fold-change color)
and the ‘activation’ Y-axis, and ‘repression’ X-axis of proximal enhancers.
Each dot represents a gene. Its position in the X-Y plane indicates
whether its proximal enhancers are rather ‘activated’ (dot close to Y) or
‘repressed’ (dot close to X).
Additional file 15: Figure S7. AP-1 and c-Myc enrichment in gene
clusters via enhancers. Association of (A) AP-1 and (B) c-Myc binding sites
with gene clusters via enhancers. Enrichment of each factor’s binding
sites (ENCODE) in the enhancers assigned to each gene cluster.

Additional file 16: Figure S8. PCR of MYC from cells before and after
induction of the epithelial-mesenchymal transition (EMT). Three dimensional
cultures of A549 cells were left alone (No Add) or treated with TNF and
TGFb (TNF/TGF) for ninety-six hours. Expression of c-Myc (MYC) was
measured by QRT-PCR using MYC, forward 5’-TCAAGAGGCGAACACACAAC-
3’ and reverse 5’-GGCCTTTTCATTGTTTTCCA-3 primers. MYC expression levels
were normalized to GAPDH using forward 5’-GAAGGTGAAGGTCGGAGTC-3’
and reverse 5’-GAAGATGGTGATGGGATTTC-3’ primers. Results shown were
calculated mean ± S.D, *p <0.05, of three independent experiments.

Additional file 17: Table S9. Hubs in the epithelial-mesenchymal
transition (EMT)-network. List of hubs in the protein-protein interaction
network induced by genes from the EMT-GCs. For each hub gene, its
epigenetic cluster, PageRank and module number is reported.

Additional file 18: Figure S9. Protein-protein interaction (PPI) network
induced by downregulated genes. This network contains genes that are
four-fold or more downregulated and genes that mediate interactions
between down-regulated genes. Color of nodes corresponds to
differential gene expression (blue – down, red – up, white – no change).
Size of nodes corresponds to the PageRank.
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