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Abstract

Background: The INK4b-ARF-INK4a tumour suppressor locus controls the balance between progenitor
cell renewal and cancer. In this study, we investigated how higher-order chromatin structure modulates
differential expression of the human INK4b-ARF-INK4a locus during progenitor cell differentiation, cellular

ageing and senescence of cancer cells.

Results: We found that INK4b and INK4a, but not ARF, are upregulated following the differentiation of
haematopoietic progenitor cells, in ageing fibroblasts and in senescing malignant rhabdoid tumour cells. To
investigate the underlying molecular mechanism we analysed binding of polycomb group (PcG) repressive
complexes (PRCs) and the spatial organization of the INK4b-ARF-INK4a locus. In agreement with
differential derepression, PcG protein binding across the locus is discontinuous. As we described earlier,
PcG repressors bind the INK4a promoter, but not ARF. Here, we identified a second peak of PcG binding
that is located ~3 kb upstream of the INK4b promoter. During progenitor cell differentiation and ageing,
PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b and
INK4a. The expression pattern of the locus is reflected by its organization in space. In the repressed state,
the PRC-binding regions are in close proximity, while the intervening chromatin harbouring ARF loops out.
Down regulation of EZH2 causes release of the ~35 kb repressive chromatin loop and induction of both

INK4a and INK4b, whereas ARF expression remains unaltered.

Conclusion: PcG silencers bind and coordinately regulate INK4b and INK4a, but not ARF, during a variety
of physiological processes. Developmentally regulated EZH2 levels are one of the factors that can
determine the higher order chromatin structure and expression pattern of the INK4b-ARF-INK4a locus,
coupling human progenitor cell differentiation to proliferation control. Our results revealed a chromatin
looping mechanism of long-range control and argue against models involving homogeneous spreading of

PcG silencers across the INK4b-ARF-INK4a locus.
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Background

Development and homeostasis require the coordinate
regulation of cell proliferation and differentiation. The
INK4b-ARF-INK4a tumor suppressor locus (Figure 1A)
plays a central role in controlling the equilibrium between
progenitor cell renewal and cancer risk [1-8]. This locus
encodes three cell cycle inhibitory proteins: p15!NKéb,
pl4ARF and p16!NK4a [3,8]. p15INK4b gnd p16INK4a are
closely related proteins and both act on the Rb-pathway
through the inhibition of the proliferation-promoting

http://www.epigeneticsandchromatin.com/content/2/1/16

cyclin-dependent kinases CDK4 and CDK6. pl14ARF jg
structurally and functionally unrelated to p15INK4b or
p16INK4a and works primarily through activation of the
p53 pathway. A large number of studies have suggested a
role for the INK4b-ARF-INK4a locus in cancer suppression
and promotion of ageing. p16!NK4a, in particular, has been
implicated in balancing the need for tissue renewal and
the risk of tumourigenesis [ 1-8]. Perhaps not surprisingly,
the regulation of the INK4b-ARF-INK4a locus is highly
complex. INK4b-ARF-INK4a expression is controlled by
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Expression of the INK4b-ARF-INKa locus during cellular ageing and differentiation. (A) Organization of the human
INK4b-ARF-INK4a locus (not drawn to scale), encoding three distinct proteins, p | 5/NK# | 4ARF and p | 6/NK4a, The untranslated
regions (yellow boxes), the coding sequences of p|5NK4b (green), p | 4°RF (blue) and p | 6/NK4a (red) are indicated. (B) INK4b and
INK4a, but not ARF, are upregulated in ageing human diploid fibroblasts (HDFs). RT-qPCR analysis of INK4b-ARF-INK4a expres-
sion in neonatal (yellow bar) versus adult (blue bar) HDFs. Bar graphs represent the mean of three independent biological rep-
licate experiments, each analyzed in triplicate by RT-qPCR. mRNA levels are expressed relative to Gapdh. Error bars represent
standard error of the mean. (C) INK4b and INK4a are selectively upregulated in ageing human embryonic fibroblasts (HEFs).
Comparison of INK4b-ARF-INK4a expression in HEF cells (TIG3) at a low passage doubling (PDL 26, yellow) and high PDL (PDL
64, blue). (D) Flow cytometrical analysis of umbilical cord blood cells showing forward scatter (FSC) on the x-axes and CD34
staining on the y-axes. The immature CD34* cells (blue) and mature CD34- cells (red) were sorted (left hand panel). Isolated
CD34* cells were reanalysed (middle panel; red dots represent 65% of the population). Following 6 weeks of culture these cells
stained negative for CD34 (less than ~15%; right hand panel). (E) INK4b-ARF-INK4a expression in CD34* (yellow) cells, CD34-
(red) cells, and the progeny of seeded CD34* cells after 6 weeks of culture (blue). (F) Erythroblasts (EB) kept under prolifera-
tion conditions for 2 days following induction of differentiation towards erythrocytes. Cells were cytocentrifuged onto glass
slides and stained for haemoglobin (brown colour) and with standard cytologic dyes. (G) Expression of INK4b-ARF-INK4a in
proliferating (yellow) erythroblst cells and cells differentiating towards erythrocytes (blue).
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various signal transduction pathways and patterns of
expression vary depending on physiological circum-
stances. Coordinated regulation of the whole locus, as
well as differential gene expression, has been described
[3]- Unfortunately, regulation of INK4b has received sig-
nificantly less attention than that of ARF and INK4a.

The polycomb group (PcG) silencers form an important
class of transcriptional corepressors that control the
expression of the INK4b-ARF-INK4a locus [9]. This was
first suggested by the finding that the PcG protein, BMI1,
promotes oncogenesis in mice through the silencing of
INK4a [10]. Since then, other PcG proteins have also been
implicated in the silencing of the INK4b-ARF-INK4a locus,
including the histone H3 lysine 27 (H3K27) methyltrans-
ferase EZH2 [9-22]. However, in contrast to INK4a and
ARF, the role of PcG proteins in INK4b expression control
has not been extensively studied.

PcG proteins function as part of larger multi-protein
assemblages, referred to as polycomb repressive com-
plexes (PRCs) [23-25]. One major class is formed by
PRC1-like complexes, which include assemblages har-
bouring BMI1. PRC1 class complexes have been impli-
cated in chromatin compaction and histone H2A
ubiquitylation. The second major class is formed by
PRC2-like complexes, harbouring histone H3K27 methy-
lases such as EZH2. However, it is important to stress that
there is likely to be a great variety of PRCs and additional
enzymatic activities. For example, PRC1 subunits are also
part of alternate assemblages such as Drosophila dRAF [26]
and its mammalian relatives [27,28]. The dRAF complex,
harbouring the BMI1 homolog PSC, dRING and the
demethylase dKDM2, ubiquitylates histone H2A and
demethylates histone H3K36 during gene silencing [26].
Very recently, an essential role for N-acetylglucosamina-
tion in PcG repression was established [29]. Importantly,
PRCs have also been implicated in the higher-order chro-
matin organization through looping [30,31].

Although the developmental roles of many PcG proteins
await further analysis, recent research has emphasized
their importance in dynamic gene control during the dif-
ferentiation of precursor cells, in cancer and cellular
senescence [9-22,32-36]. In particular, several of these
studies have shown the importance of EZH2 for the
dynamic regulation of gene silencing, orchestrating the
differentiation of progenitor cells.

Here, we have addressed the role of PcG silencers in the
regulation of the human INK4b-ARF-INK4a locus during
the differentiation of progenitor cells, cellular ageing and
cellular senescence of cancer cells. During these diverse
physiological processes INK4b and INK4a were coordi-
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nately induced, whereas ARF remained unaltered. In order
to investigate the underlying mechanisms, we analysed
the spatial organization of the INK4b-ARF-INK4a locus.
Our results revealed long-range control through chroma-
tin looping rather than 'blanket' spreading of PcG pro-
teins across the whole INK4b-ARF-INK4a locus. We
conclude that PcG proteins control the higher-order chro-
matin conformation of the INK4b-ARF-INK4a locus, pro-
viding a molecular mechanism for coupling cell
differentiation to proliferation control.

Results

Selective induction of INK4b and INK4a during cellular
ageing, differentiation and senescence

We compared the expression of the human INK4b-ARF-
INK4a locus in neonatal and adult human diploid fibrob-
lasts (HDFs). The proliferation rate of adult HDFs is ~2-3
times slower than that of neonatal HDFs. In order to mon-
itor INK4b-ARF-INK4a expression, we extracted RNA,
which was followed by reverse transcription and real-time
quantitative polymerase chain reaction (RT-qPCR) with
gene-selective primers (Figure 1B). Compared to neonatal
cells (yellow), the expression of INK4a and INK4b, but not
of ARF, in adult HDFs (blue) is significantly higher. We
also compared human embryonic fibroblasts (HEFs) with
a low passage number (PDL 26) with old cells (PDL 64).
We observed a gradual, up to two- to threefold, increase in
doubling time as the passage number became higher.
INK4a and INK4b are clearly upregulated in HEFs with a
high passage number, whereas ARF expression remained
unchanged (Figure 1C). We conclude that, in these
untransformed human diploid cells, INK4a and INK4b,
but not ARF, are coordinately upregulated during ageing.

Next, we examined the expression of the INK4b-ARF-
INK4a locus in human cells with a broad versus restricted
potential for differentiation. We sorted CD34+and CD34-
cells isolated from human umbilical cord blood (UCB;
Figure 1D). CD34+ UCB cells comprise quiescent stem
cells, but they mainly represent the transiently amplifying
compartment of multipotent and early myeloid progeni-
tors [37]. In contrast, the CD34- fraction contains commit-
ted cells in late stages of differentiation. A fluorescence
activated cell sorting analysis of the isolated CD34+ cells
revealed a purity of about 65% (Figure 1D, middle panel).
We cultured the purified CD34+ cells for 6 weeks, after
which the majority of cells (~85%) matured to CD34-
cells, representing mainly postreplicative erythroblasts
and granulocytes. An expression analysis of CD34+ (yel-
low) and CD34- cells (red) immediately following isola-
tion, and CD34+ derived cells cultured for 6 weeks (blue),
demonstrated up-regulation of INK4b and very strong
INK4a induction during differentiation (Figure 1E). In
contrast, ARF expression remained unaltered.
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As an alternative way to study the effects of cell differenti-
ation, we cultured erythroblasts (EB) from human fetal
liver. After 7 days, EBs were either kept under proliferating
conditions or induced to differentiation towards erythro-
cytes for 2 days (Figure 1F). Again, the differentiation was
accompanied by selective activation of INK4a and INK4b
(Figure 1G).

As a model for senescence in cancer cells, we used MON
human malignant rhabdoid tumour (MRT) cells. MRTs
are caused by the loss of the hSNF5 subunit of the SWI/
SNF chromatin remodelling complex [38]. Re-expression
of hSNF5 in MRT cells restores SWI/SNF recruitment to
INK4b and INK4a, causing the eviction of PRCs and a loss
of silencing [20]. Consequently, these cells first undergo a
G1/S cell cycle arrest and later become senescent [20,39].
hSNF5-induced cellular senescence of MRT cells is
p16INK4a_dependent [20,39]. We suspect that the hSNF5-
mediated senescence of MRT cells might be due to the ina-
bility of oncogenic stress signalling to activate INK4a
expression in the absence of hSNF5. In summary, we iden-
tified a number of diverse physiological processes in
which human INK4a and INK4b are coordinately
induced, while ARF expression remained unaltered.

EZH2 is down-regulated during progenitor cell
differentiation

Because the PcG silencers EZH2 and BMI1 play important
roles in the repression of the INK4b-ARF-INK4a locus, we
investigated their expression in young versus adult HDFs
and during cellular differentiation. RT-qPCR and Western
immunoblotting revealed lower EZH2 levels in adult
HDFs compared to the neonatal cells. In contrast, the
BMI1 levels were comparable (Figure 2A). When we com-
pared proliferating EBs with differentiating cells we again
observed a reduction of EZH2 levels, but not of BMI1 (Fig-
ure 2B). Likewise, UCB CD34+ progenitor cells expressed
much higher levels of EZH2 than mature CD34- cells (Fig-
ure 2C). Upon culture, CD34+ cells matured and, concom-
itantly, EZH2 expression was strongly attenuated, whereas
BMI1 levels remained stable (Figure 2C). However, re-
expression of hSNF5 in MRT cells mediates INK4a and
INK4b induction without affecting EZH2 or BMI1 levels
[20]. We conclude that, in differentiating haematopoietic
progenitor cells, the expression of the PRC2 subunit EZH2
wanes. In contrast, levels of the PRC1 subunit BMI1
remained constant.

In order to determine the effects of EZH2 down-regula-
tion on chromatin occupancy at the INK4b-ARF-INK4a
locus, we used chromatin immunoprecipitations (ChlIPs)
monitored by gPCR. Comparing neonatal and adult
HDFs revealed an increased recruitment of RNA polymer-
ase I (RNA POLII) to INK4a and INK4b in adult cells,
consistent with their enhanced transcription (Figure 2E).

http://www.epigeneticsandchromatin.com/content/2/1/16

Next, we established the pattern of EZH2 and BMI1 bind-
ing, and the relative level of histone H3K27 me3 (Figure
2F-H). PRC binding at the INK4a promoter is already well
established. We performed a detailed analysis of EZH2
and BMI1 binding to the INK4b upstream region and used
a selection of primers targeting INK4a and ARF we pub-
lished earlier [20] to serve as a reference. In addition to the
INK4a promoter region (primer sets K and L), we identi-
fied a second peak of PRC binding to an area ~3 kb
upstream of the INK4b promoter (primer sets C and D).
Outside these two domains, binding of EZH2 and BMI1
across the INK4b-ARF-INK4a locus was low. H3K27 me3
levels follow EZH2 binding but are spread over a larger
area (Figure 2H). Although only EZH2 was down-regu-
lated in adult HDFs, both EZH2 and BMI1 occupancy at
INK4a and INK4b was strongly reduced in these cells (Fig-
ure 2F and 2G). This observation agrees well with earlier
studies showing that EZH2 can facilitate binding of other
PcG proteins [23-25,40]. Like EZH2 binding, H3K27 me3
levels were strongly reduced in adult HDFs compared to
neonatal cells (Figure 2H). In senescing MRT cells a dis-
tinct mechanism operates. hSNF5 re-expression does not
affect EZH2 expression (Figure 2D), but enables SWI/SNF
recruitment to INK4a and INK4b, leading to PRC eviction
[20].

EZH2 is required for coordinate silencing of INK4a and
INK4b

Our results showed that attenuation of EZH2 is accompa-
nied by a loss of PRC1 and PRC2-binding, recruitment of
RNA POL II and induction of INK4a and INK4b. ARF
expression remained unaffected and is not co-regulated
with INK4a and INK4b in the human cells studied here.
These observations suggest a critical role for EZH2 in the
selective regulation of INK4a and INK4b expression, dur-
ing ageing and differentiation. To test whether EZH2 is
indeed required for the silencing of INK4a and INK4b, we
used a shRNA strategy to attenuate its levels in neonatal
HDFs. Cells were transduced with lentiviruses expressing
either shRNAs targeting EZH2 mRNA (EZH2 KD) or a
scrambled control. Three days following the transduction,
EZH2 levels were effectively reduced in cells treated with
the appropriate shRNA (Figure 3A). In contrast, BMI1 lev-
els were unaffected. Loss of EZH2 caused a strong induc-
tion of INK4a and INK4b but not of ARF (Figure 3B). RNA
POL II was selectively recruited to the INK4a and INK4b
loci, as revealed by ChIP-qPCR (Figure 3C). Depletion of
EZH?2 leads to its expected disappearance from INK4a and
INK4b, but also causes loss of BMI1 binding (Figure 3D
and 3E). Similar results were obtained in MRT cells (Addi-
tional file 1, Figure S2). Taken together, these results sug-
gest that EZH2 attenuation is sufficient for the
dissociation of PcG silencers and induction of INK4a and
INK4b.
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Figure 2

EZH2 attenuation during progenitor cell differentiation. (A-D) PRC2 subunit EZH2, but not the PRCI subunit BMI|I, is
down-regulated during cellular ageing and differentiation. The expression of EZH2 was analysed by RT-qPCR and Western
immunoblotting in: (A) neonatal and adult human diploid fibroblasts (HDFs); (B) proliferating and differentiating erythroblasts,
(C) immature CD34* progenitors and mature CD34- cells isolated directly from umbilical cord blood and CD34* cells that dif-
ferentiated and lost CD34 expression following 6 weeks of culture; (D) malignant rhabdoid tumour cells that either lack or
express hSNF5. For characterization of these cells see Figure |. In parallel, BMI| and histone H3 levels were determined. (E)
Selective RNA POL Il recruitment to INK4a and INK4b, but not ARF, in ageing HDFs. Chromatin immunoprecipitation (ChIP)-
quantitative polymerase chain reaction (QPCR) analysis of RNA POL Il binding to the INK4b-ARF-INK4a locus in neonatal (light
blue) and adult (dark blue) HDFs. The following primer sets were used: H (INK4b), | (ARF) and L (INK4a). All ChIP data pre-
sented in this study are the result of at least three biological replicates. Background levels were determined using antibodies
directed against GST. The abundance of specific DNA sequences in the immunoprecipitates was analysed by qPCR and cor-
rected for the independently determined amplification curves for each primer set. ChIP signal levels for each region are pre-
sented as percentage of input chromatin. Bar graphs represent the mean of three independent experiments, each analysed in
triplicate by qPCR. Error bars represent standard error of the mean.(F) PRCs bind INK4a and INK4b in neonatal but not in
adult HDFs. ChIP-gqPCR analysis revealed highly localized binding of EZH2 to the INK4a promoter region (primer sets K and L)
and an area ~3 kb upstream of the INK4b promoter (primer sets C and D) in neonatal HDFs. In adult HDFs, EZH2 protein
binding is strongly reduced. Analysis was as described above. (G) Following waning of EZH2, BMI| binding to INK4a and INK4b
is reduced significantly. ChIP-qPCR analysis of BMII binding to the INK4b-ARF-INK4a locus in neonatal and adult HDFs. The
positions of the amplified regions (A-M) of the INK4b-ARF-INK4a locus are indicated at the bottom. (H) ChlPs using antibodies
directed against histone H3K37 me3 revealed increased H3K27 methylation at- and around the PRC binding sequences
upstream of INK4b and at the INK4a promoter. H3K27 me3 ChIPs were normalized against histone H3.
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A chromatin loop, linking the repressed INK4a and INK4b,
is released during induced expression

We wondered whether, because of their coordinate regu-
lation by PcG silencers, INK4a and INK4b might be in
close physical proximity, in spite of their being over 35 kb
apart. In order to investigate the three-dimensional con-
formation of the INK4b-ARF-INK4a locus, we used chro-
matin conformation capture (3C) technology in
combination with qPCR [41,42]. We first compared the
INK4b-ARF-INK4a locus higher-order chromatin structure
in neonatal and adult HDFs (Figure 4A). Cells were cross-
linked with formaldehyde, followed by chromatin isola-
tion and restriction digestion with EcoRI. Our preliminary
analysis yielded 10 suitable EcoRI fragments across almost
70 kb of DNA encompassing the INK4b-ARF-INK4a locus
(see Methods). Samples were ligated under conditions
that favour the union of DNA fragments that are physi-
cally connected and qPCR across junctions was used to
determine the relative cross-linking frequency between
restriction fragments. All 3C data presented here are the
result of three independent biological replicate experi-
ments. The 'constant’ primer and the TagMan probe (grey
bar) were designed in the EcoRI fragment ~4 kb to 2 kb
upstream of INK4b, harbouring the PRC-binding
sequences. Plotting of the ligation frequencies to this 'bait'
fragment revealed a clear peak at fragment 9 overlapping
the INK4a promoter proximal region. These experiments
were complimented by 3C analysis using a bait fragment
near the INK4a promoter. Now, we observed a peak at
fragment 2, encompassing the PRC-binding domain
upstream of the INK4b promoter (Figure 4B). We con-
clude that, in neonatal HDFs, the repressed INK4b-ARF-
INK4a locus has a looped structure. The PRC-bound
regions upstream of INK4b and proximal to the INK4a
promoter are close in nuclear space, whereas the ~35 kb of
intervening DNA, including the ARF promoter, loops out.

In adult HDFs, the higher-order chromatin conformation
of the INK4b-ARF-INK4a locus is dramatically different.
3C-qPCR analyses revealed a loss of long-range interac-
tion between INK4a and INK4b, suggesting the locus
adopted a linear conformation (Figure 4A-B). In order to
study the effects of progenitor cell differentiation, we
undertook a similar 3C analysis of the chromatin struc-
ture in proliferating and differentiating ERs (Figure 4C
and 4D). Our results revealed the presence of a chromatin
loop between INK4a and INK4b in proliferating cells,
which is similar to that in neonatal HDFs. When ERs were
induced to differentiate towards erythrocytes, the silent
chromatin loop dissolved and INK4a and INK4b became
de-repressed. Finally, we compared proliferating MRT
cells with senescing cells after hSNF5 expression (Figure
4E and 4F). Following hSNF5 expression and PRC
removal, the repressive chromatin loop is released and the
INK4b-ARF-INK4a locus assumes a linear conformation.

http://www.epigeneticsandchromatin.com/content/2/1/16

Together, our results showed that, in neonatal HDFs, hae-
matopoietic progenitor cells and MRT cancer cells, the
repressed INK4b-ARF-INK4a locus assumes a looped con-
formation. The ~35 kb chromatin loop links the PRC-
binding regions of INK4a and INK4b, whilst excluding
ARF. Concomitant with the increased transcription of
INK4a and INK4b in adult HDFs, following differentia-
tion or senescence, the chromatin loop dissolves. The loss
of looping is concomitant with the loss of PRC-binding,
which, in HDFs and differentiating EBs, is caused by atten-
uation of EZH2. In MRT cells driven towards senescence,
EZH?2 levels remain stable, but the PRCs are removed by
SWI/SNF action. This duly leads to a release of the repres-
sive loop and gene activation, again suggesting that PRC-
binding is required for looping.

PRC-binding is required for looping between INK4a and
INK4b

To test whether EZH2 is crucial for loop formation, we
transduced neonatal HDFs with lentiviruses expressing
either a shRNA targeting EZH2 mRNA or a scrambled con-
trol. As shown above, depletion of EZH2 leads to a loss of
PRC binding to INK4a and INK4b upstream regions (Fig-
ure 3). 3C-qPCR analyses revealed that a loss of EZH2 also
results in the release of the repressive chromatin loop that
links INK4a and INK4b (Figure 5A and 5B). As shown
above, the restoration of SWI/SNF targeting in MRT cells
provides an alternate mechanism of PRC removal and
loop release (Figure 4E and 4F; Additional file 1, Figure
S1). However, EZH2 depletion in the absence of hSNF5
expression, also led to loss of EZH2 and BMI1 binding
(Additional file 1, Figure S2) and loss of looping (Figure
5C and 5D). Taken together, these results show that PRC
binding is critical for chromatin looping at the INK4b-
ARF-INK4a locus. When PRC binding is lost, due either to
diminished EZH2 levels or because of SWI/SNF action in
MRT cells, the repressive chromatin loop is released con-
comitant with INK4a and INK4b induction (Figure 5E).

Discussion

PcG proteins control the balance between differentiation

and proliferation

Our results and those of others [18,34,36,40,43], empha-
size a crucial role for EZH2 in orchestrating progenitor cell
differentiation and proliferation control. Ezhkova et al.
[18] observed derepression of INK4a and INK4b due to
EZH2 down-regulation, controlling the balance between
the proliferative basal layer of progenitor cells and non-
proliferating differentiated epidermal cells. These results
in the mouse epidermal lineage are highly reminiscent of
our findings in human haematopoietic progenitor cells.
The histone H3K36 demethylase JHDM1b/KDM2b, a
mammalian homolog of the dRAF signature subunit
dKDM2, binds and regulates INK4b [19]. Reminiscent of
the results described here, He et al. [19] observed that a
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INK4b ARF

Loss of EZH2 causes derepression of INK4a and INK4b. (A) Neonatal human diploid fibroblasts were transduced with
lentiviruses expressing either shRNAs targeting E(z)h2 mRNA (EZH2 KD) or a scrambled control. Three days following trans-
duction, EZH2 levels were analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and Western immunoblot-
ting, as described above. The band corresponding to EZH2 is indicated with an arrowhead. In parallel, BMII and histone H3
levels were determined. (B) Loss of EZH2 causes transcriptional activation of INK4b and INK4a. Seventy-two hours following
transduction, relative expression levels of INK4b, ARF and INK4a were determined by RT-qPCR of isolated mRNA. (C) EZH2
depletion leads to RNA POL Il recruitment to INK4a and INK4b, as determined by chromatin immunoprecipitation (ChlP)-
qPCR. (D-E) EZH2 depletion causes loss of PRCs from INK4a and INK4b, as revealed by ChIP-qPCR using antibodies directed
against EZH2 (D) or BMII (E). All analyses were as described in the legend to Figures | and 2.

knockdown of JHDM1b/KDM2b or RING1b in primary
mouse embryo fibroblasts causes induction of INK4b and
INK4a but not of ARF or the p53-pathway. Consequently,
these cells undergo arrest and cellular senescence, for
which p15INK4b it turns out, are critical. In response to
oncogenic RAS-signalling in human fibroblasts, the
H3K27 me3 demethylase JMD]3/KDMG6B activates INK4a,
but not ARF [11,13]. In mouse embryo fibroblasts,
JMJD3/KDM6B activates both INK4a and ARF, possibly
reflecting a difference in INK4/ARF regulation between
mice and man [3,44]. However, as mentioned above,
other studies have also presented induction of INK4a and
INK4b, but not ARF in mouse cells (see, for example, [18]
and [19]). Here, we identified EZH2- and BMI1-binding
sequences upstream of the INK4b promoter, providing
additional evidence for the control of INK4b by PcG
repression. Finally, we emphasize that, under different
physiological conditions, different combinations of

INK4b-ARF-INK4a expression will be relevant. See, for
example, the many examples of co-induction of ARF and
INK4a [3,7,8]. Related to this point, it is easy to imagine
that, in those situations, the INK4b-ARF-INK4a locus
might assume a more distinct conformation than that
described here.

Regulation of INK4a and INK4b by EZH2 might be a con-
served mechanism required to balance progenitor cell
proliferation and differentiation. Unfortunately, this cou-
pling might have sinister consequences when control of
EZH2 expression is lost [40]. EZH2 is over-expressed in a
variety of tumours, potentially blocking the tumour sup-
pression function of INK4b-ARF-INK4a. In these cells,
EZH2 seems to promote de-differentiation and uncon-
trolled proliferation. Notably, the expression level of
EZH?2 in early murine haematopoietic cells correlates with
their expansion potential. EZH2 overexpression in early
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INK4b ARF INK4a

Regulated chromatin looping between INK4a and INK4b. (A-F) Chromatin conformation capture - quantitative

polymerase chain reaction (QPCR) analyses of long-range interactions at the INK4b-ARF-INK4a locus. Locus-wide relative cross-
linking frequencies of EcoRI fragments | to 10 are plotted. The constant primer and the TagMan probe (grey bar) were either
in the EcoRI fragment -4 to -2 kb upstream of INK4b (A, C and E) or overlapping the INK4a promoter (B, D and F). The loca-
tions within the INK4b-ARF-INK4a genomic region of the EcoRl sites (blue lines), bait fragment (harbouring the grey bar, indicat-
ing the TagMan probe) and suitable candidate EcoRI fragments (numbered red segments) are shown at the bottom. The

relative cross-linking frequency of each fragment is plotted, with the fragment numbers indicated on the X-axis. (A, B) Neona-
tal (blue) and adult (red) human diploid fibroblasts. (C, D) Proliferating- (blue) and differentiating (red) eryhtroblasts. (E, F) Pro-
liferating MRT cells lacking hSNF5 (blue) and senescing MON cells expressing hSNF5 (red). Each point represents the mean of

three independent biological replicates, each analysed in triplicate by qPCR. Standard deviations are depicted by error bars.

haematopoietic progenitors led to a loss of their repopu-
lating ability [43]. Together with early studies in Dro-
sophila, these observations emphasize the importance of
PcG protein regulation and dosage.

Following the hSNF5 expression in MRT cells, which trig-
gers the cellular senescence programme, EZH2 levels do
not change. In these cells, the SWI/SNF chromatin remod-
eller is crippled due to a loss of hSNF5 and, therefore, una-
ble to evict PRCs from INK4a and INK4b regulatory
elements [20]. Following hSNF5 expression, SWI/SNF is
able to remove PRCs from INK4a and INK4b, causing the
release of the repressive chromatin loop and gene expres-

sion. Thus, a loss of function of a remodeller that counter-
acts PcG silencing may have similar consequences as
EZH2 over-expression. Together with the earlier identifi-
cation of SWI/SNF as a suppressor of PcG mutations in
flies [23,45], these findings emphasize the evolutionary
conservation of this regulatory antagonism.

Higher-order chromatin structure and gene expression
control

Several studies have implicated higher-order chromatin
structure in the regulation of complex multi-gene loci
[30,31,46-51]. Typically, models explaining gene control
at a distance invoke either spreading of factors along a

Page 8 of 13

(page number not for citation purposes)



Epigenetics & Chromatin 2009, 2:16

http://www.epigeneticsandchromatin.com/content/2/1/16

A B
S neonatal HDF neonatal HDF
@20 ——Scramble 20 ——Scramble
c
'% —=—EZH2 KD —=—EZH2 KD
210 10
o
b — -3 — P A‘ f
Y i ' ' r - — 0
= 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Q MRT D MRT
830 ——Scramble 16 ——Scramble
(<]
£20 —=—EZH2KD 12 —=—EZH2 KD
c
2 10 8 s
o
5 5 s 5 N N *
30 — : : : . ; . .0
= 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
primer set primer set
34 5 6 7 8 9 10 1 234 6 7 89 10
|||,H|||| [ ||,|,||,||,||,,||||H|||,,,
-8 -4 04 8 12 16 20 24 28 32 36 40 44 48 52 56 60 -8 4 81216202428323”404448525660
INK4b ARF INK4a INK4b ARF INK4a
E INK4a
aging
PRCs . e
EZH2 differentiation POLII — POLII
=) INKab  ART INK4a
senescence
ARF
Figure 5

EZH2 is required for looping between INK4a and INK4b. (A-D) Chromatin conformation capture-quantitative polymer-
ase chain reaction (PCR) analysis on neonatal human diploid fibroblasts (A, B) and malignant rhabdoid tumour (MRT) cells (C,
D) transduced with lentiviruses expressing either shRNAs targeting E(z)h2 mRNA (red) or a scrambled control (blue). Proce-
dures were as described in the legend to Figure 4. (E) Parsimonious model for the coordinate regulation of human INK4a and
INK4b by PcG repressive complexes (PRCs). In multipotent progenitor cells, young fibroblasts and highly proliferating MRT

cancer cells, PRCs simultaneously bind the INK4a promoter and the INK4b upstream promoter region. This creates a looped
chromatin structure that links the silenced INK4b and INK4a, but excludes ARF. EZH2 is critical for PRC binding and silencing.
During progenitor cell differentiation and ageing, EZH2 attenuates, causing reduced locus occupancy of PRCs and release of

the repressive loop. Concomitantly, RNA POL Il is recruited selectively to INK4b and INK4a, but not to ARF, leading to gene
transcription. MRT cells contain a crippled SWI/SNF complex, due to loss of the hSNF5 tumor suppressor subunit. RSNF5 re-
expression in these cells restores SWI/SNF targeting to INK4a and INK4b, causing PRC eviction and release of the repressive

loop. For details see discussion.

chromatin fibre or long-range protein-protein interac-
tions that cause looping-out of the intervening chromatin.
Two earlier studies proposed a continuous spreading
across the whole INK4b-ARF-INK4a locus of either hetero-
chromatinization [52] or PcG proteins [15]. However, the
ChIP data in the latter study actually showed a clear peak
of PRC binding at the INK4a promoter, which tapers off
and is near background at the ARF gene. This pattern of
binding at INK4a is reminiscent of what we observed [20].
For the cell types and physiological processes studied

here, we favour a discontinuous looping mechanism of
INK4b-ARF-INK4a locus control over models invoking
blanket spreading of silencers. First, there are two distinct
peaks of PRC binding: first, ~3 kb upstream of the INK4b
promoter and, second, at the INK4a promoter. Outside
these domains, PRC binding is near background levels
and we detected no significant PRC-binding at ARF. We
note that the PRC-binding peak upstream of INK4b, albeit
that it is nearby, does not coincide with the RD regulatory
region identified by Gonzalez et al. [52]. In addition,
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INK4a and INK4b are coordinately derepressed during cell
differentiation, ageing and senescence, whereas ARF
remained unaffected. Finally, the PRC-bound INK4a and
INK4b regulatory regions are linked in nuclear space. Loss
of PRC-binding causes the release of chromatin looping
and induction of INK4a and INK4b.

Our findings for the INK4b-ARF-INK4a locus dove-tail
well with other studies revealing PcG-mediated chromatin
looping [30,31]. Chromatin looping is a consequence of
the association of proteins bound to two or more distal
regulatory elements (see, for example, [50,51,53-55] and
references therein). When two genes are brought into the
same microenvironment, such as the PRC bound INK4a
and INK4b, it facilitates coordinated regulation. The loop-
ing-out of an intervening gene, such as ARF, provides a
physical separation which allows independent regulation.
Thus, in our view, the looped-out chromatin per se is nei-
ther active nor repressive. Rather, transcriptional conse-
quences are determined locally, by repressors or activators
that can alter the local chromatin status. Here, we pre-
sented an example where the higher-order chromatin con-
formation of a human multi-gene locus reflects its
differential pattern of gene expression during diverse
physiological processes.

Conclusion

Two classic problems in the study of transcription are the
mechanism of long-range gene control and the regulation
of multi-gene loci. Here, we studied how PcG silencers
control expression of the human INK4b-ARF-INK4a
tumour suppressor locus. We concentrated on a variety of
physiological processes during which INK4a and INK4b
are coordinately upregulated, whereas ARF expression
remains unaltered. In agreement with differential regula-
tion, our ChIP analysis revealed non-homogeneous PRC
binding to the INK4b-ARF-INK4a locus. In addition to the
INK4a promoter, we identified a PRC-binding sequence
~3 kb upstream of the INK4b promoter. PRC binding to
these two regions mediates the formation of a ~35 kb
chromatin loop, linking INK4b and INK4a but excluding
ARF. EZH2 attenuation causes the release of the repressive
loop and upregulation of INK4a and INK4b. Thus, EZH2
levels determine the higher-order chromatin structure and
expression pattern of the INK4b-ARF-INK4a locus, cou-
pling human progenitor cell differentiation to prolifera-
tion control. Our findings revealed a looping mechanism
of INK4b and INK4a control, but are difficult to reconcile
with models invoking the continuous spreading of PcG
silencers.

Methods

Cell isolation, cell culture and lentiviral procedures

UCB was collected in 10 ml Hanks+Hepes (H+H) with
1% heparin by nursing staff of the Department of Obstet-

http://www.epigeneticsandchromatin.com/content/2/1/16

rics and Gynecology at the Sint Franciscus Hospital, Rot-
terdam, The Netherlands, following informed consent of
the mothers. Mononuclear cells were isolated by Ficoll
density centrifugation (Lymphoprep, Nycomed Pharma,
Oslo, Norway). The cell suspension was washed twice
with Hanks Balanced Salt Solution (HBSS, Gibco, Breda,
The Netherlands) and CD34+ cell were isolated using the
indirect CD34+Microbead kit (Miltenyi Biotec, Germany).
The purity of these CD34+ cells was 65-70% as determined
by flow cytometry. CD34+ cells were cultured at a density
of 1-3 x 104/ml in serum free enriched DMEM as previ-
ously described [56]. Medium was supplemented with
100 ng/ml stem cell factor (SCF), 100 ng/ml Flt3-L, and
20 ng/ml trombopoietin. Cells were cultured for 6 weeks
and the medium was refreshed every week. In order to
establish EB cultures, human fetal liver tissue was
obtained from elective abortions of patients who had pre-
viously signed informed consent forms giving permission
for them to be used for research studies (protocol
approved by Erasmus MC medical ethical committee).
Fetal livers of 12-18 week human embryos were dissected
and passed through a 70-um nylon mesh. EBs were culti-
vated at a density of 1-2 x 10°¢ cells/ml in serum-free
medium (StemSpan; Stem Cell Technologies, BC, Can-
ada) enriched with lipids lipids (40 ng/ml cholesterol-rich
lipid mix; Sigma) and supplemented with erythropoietin
(2 U/ml, a gift of Orthobiotech, Tilburg, The Nether-
lands), dexamethasone (1 uM; Sigma, MO, USA) SCF (50
ng/ml, supernatant of CHO producer cells) [57]. The EB
culture was expanded by daily partial medium changes
and the addition of fresh factors, keeping cell density
between 1.5-2 x 10°¢ cells/ml. Proliferation kinetics and
size distribution of the cell populations were monitored
daily using an electronic cell counter (CASY-1, Schirfe-
System, Reutlingen, Germany). In order to induce termi-
nal differentiation EBs were washed and reseeded at 1.5-2
x 106 cells/ml in lipid-enriched StemSpan supplemented
with Epo (5 U/ml) and iron-loaded transferrin (1 mg/ml;
SCIPAC Ltd, Kent, UK) [57]. Differentiating EBs were
maintained at 2-3 x 10° cells/ml and harvested 48 h after
induction. Cell morphology was analysed in cytospins
stained with histological dyes and neutral benzidine [58],
using an OlympusBx40 microscope (40x objective, NA
0.65), an OlympusDp50 CCD camera and Viewfinder Lite
1.0 acquisition software. Tissue culture of HDFs and
MON MRT cells was performed according to standard
protocols. Adult HDFs (Cascade Biologics, Oregon, USA,
CAT No. C-004-5C), were isolated from adult human fore
skin and have the potential for ~12 population doublings.
Neonatal HDFs (Cascade Biologics, CAT No. C-004-5C),
were isolated from neonatal foreskin and have the poten-
tial for ~16 population doublings. For our experiments,
we used adult and neonatal HDFs of comparable, early
passages. TIG3 cells were obtained from the Health Sci-
ence Research Resource Bank (Osaka, Japan, http://cell
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bank.nibio.go.jp/celldata/jcrtb0506.htm). HDF, MON
and TIG3 cells were grown in DMEM supplemented with
10% (v/v) FCS. The hSNF5 expressing lentiviral vector has
been described [39]. High titre vector stocks were pro-
duced in 293T cells by co-transfection of transfer vector
constructs with packaging constructs using standard trans-
fection procedures [59]. To deplete EZH2, cells were trans-
duced with lentiviruses expressing shRNA directed against
EZH?2 (Clone TRCN0000040073 and TRCN0000040075;
Expression Arrest™-The RNAi consortium (TRC) Human
shRNA library purchased from Open Biosystems, USA)
for 3 days. In a control experiment, the cells were trans-
duced with scramble, non-targeting lentiviruses.

Cell extracts and western blotting

Cell extracts were prepared in RIPA buffer (10 mM Tris-
HCIl, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 1%
NaDOC, 0.1% SDS) and protein concentration deter-
mined. ~50 pg of extract was resolved SDS-PAGE, and
transferred to 0.45 pm nitrocellulose membrane. Haemat-
opoetic progenitor cells were lysed directly in an equal
volume of 2x SDS loading buffer (1 x Tris.Cl pH6.8, 20%
glycerol, 4% SDS, 0.2 M DTT, 0.001% bromophenol
blue). After transfer, membranes were blocked for 1 h in
T-PBS with 5% milk and 0.1% Tween20 prior to incuba-
tion with primary (overnight) and secondary (1 h) anti-
bodies. Primary antibodies: SUZ12 (Abcam, ab12073),
BMI1 (Abcam; ab14389), EZH2 (Santa Cruz; Sc-25383)
and Histone H3 (Abcam; ab1791). Western blots were
developed with the ECL detection kit (PIERCE) or visual-
ized with the IRDye 680/800 CW (LI-COR) and ODYSSEY
Infrared Imageing System according to the supplier's
instructions.

RT-qPCR and ChIP-qPCR assays

Total RNA was extracted from cells using the SV Total RNA
Isolation System (Promega, WI, USA). cDNA was synthe-
sized from 1 pg of total RNA using random hexamers and
Superscript™ II RNase H-Reverse Transcriptase (Invitro-
gen). Quantitative real-time PCR (MylQ, Bio Rad) was
performed using SYBR Green I. PCR primers were
designed using Beacon designer (Premier Biosoft). The
qPCR Core Kit (Invitrogen) was used with 400 nM of each
primer under the following cycling conditions: 3 min. at
95°C followed by 40 cycles of 10 s at 95°C and 45 s at
60°C. Gapdh was used as an endogenous reference for
normalization. Enrichment of specific sequences was cal-
culated using the comparative C; method [60]. ChIPs
were performed essentially as described by the Upstate
protocol http://www.upstate.com. Cross-linked chroma-
tin was prepared from ~2 x 107 cells. Cells were treated
with 1% formaldehyde for 20 min at room temperature.
Chromatin isolation, sonication yielding fragments of
300-600 bp and immunoprecipitations were performed
according to protocol. The following antibodies were

http://www.epigeneticsandchromatin.com/content/2/1/16

used: BMI1 (Abcam; ab14389), EZH2 (Santa Cruz; Sc-
25383), POLII (Santa Cruz; Sc-899), Histone H3 (Abcam;
ab1791) and H3-K27 me3 (Upstate; 07-449). The abun-
dance of specific DNA sequences in the immunoprecipi-
tates was determined by gqPCR and corrected for the
independently determined amplification curves of each
primer set. ChIPs using species and isotype-matched
immunoglobins directed against an unrelated protein
(GST) were used to determine background levels analysed
by qPCR as described above. Enrichment of specific DNA
sequences was calculated using the comparative C;
method [60]. ChIP levels for each region are presented as
percentage of input chromatin. H3K27 me3 ChIPs were
normalized against histone H3. All data presented are the
result of at least three biological replicate experiments.
PCR primer sequences are provided in Additional file 1,
Table S1. Statistical analysis was performed using R soft-
ware http://www.r-project.org/.

Chromatin conformation capture assay

The 3C-qPCR assay was performed as described [61]. For-
maldehyde-fixed nuclei, prepared from ~107 cells, were
digested with EcoRI overnight, followed by ligation with
T4 DNA ligase at 16°C for 4 h. Cross-links were reversed
and DNA was purified. The PCR control template, primer
efficiency and ligation efficiency were determined by
digesting and ligating a BAC clone, which encompassed
the entire INK4b-ARF-INK4a locus, as previously
described [61]. To correct for differences in the quality
and quantity of templates, ligation frequencies between
the fragments were normalized to a fragment in the
human Ercc3 locus. Sample purity and digestion efficiency
has been carefully assessed as described [61]. Quantifica-
tion of ligated products was performed by real-time qPCR
with a Tagman probe corresponding to a sequence within
a DNA fragment overlapping the PRC-binding region of
either INK4b or INK4a. Our analysis yielded 10 suitable
EcoR1 fragments covering the INK4b-ARF-INK4a locus.
The primers and probe sequences are listed in Additional
file 1, Table S2. The amplification conditions used in 3C
assays are available on request. Cross-linking frequencies
were calculated as previously described [51,61].
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