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Abstract
Polycomb Group proteins are important epigenetic regulators of gene expression. Epigenetic
control by polycomb Group proteins involves intrinsic as well as associated enzymatic activities.
Polycomb target genes change with cellular context, lineage commitment and differentiation status,
revealing dynamic regulation of polycomb function. It is currently unclear how this dynamic
modulation is controlled and how signaling affects polycomb-mediated epigenetic processes at the
molecular level. Experimental evidence on regulation of polycomb function by post-translational
mechanisms is steadily emerging: Polycomb Group proteins are targeted for ubiquitylation,
sumoylation and phosphorylation. In addition, specific Polycomb Group proteins modify other
(chromatin) associated proteins via similar post-translational modifications. Such modifications
affect protein function by affecting protein stability, protein-protein interactions and enzymatic
activities. Here, we review current insights in covalent modification of Polycomb Group proteins
in the context of protein function and present a tentative view of integrated signaling to chromatin
in the context of phosphorylation. Clearly, the available literature reveals just the tip of the iceberg,
and exact molecular mechanisms in, and the biological relevance of post-translational regulation of
polycomb function await further elucidation. Our understanding of causes and consequences of
post-translational modification of polycomb proteins will gain significantly from in vivo validation
experiments. Impaired polycomb function has important repercussions for stem cell function,
development and disease. Ultimately, increased understanding of signaling to chromatin and the
mechanisms involved in epigenetic remodeling will contribute to the development of therapeutic
interventions in cell fate decisions in development and disease.

Introduction
Polycomb group (PcG) proteins preserve transcriptionally
silenced states through epigenetic marking of target genes
in higher eukaryotes. Currently, at least two biochemically
and functionally distinct polycomb repressive complexes
(PRC) are recognized, PRC2 and PRC1, which contribute
to establishment and maintenance of gene repression pro-

files (Figure 1a) [1-3]. As such, PcG function equips the
cell with a transcriptional memory throughout develop-
ment and differentiation. It is becoming increasingly clear
that PcG-chromatin association is subject to dynamic reg-
ulation; PcG complex composition and chromatin associ-
ation change throughout eukaryotic development [4,5].
In a constantly changing environment (for example, dur-
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ing differentiation), cells respond to a plethora of extracel-
lular and intrinsic cues. Mechanistic insight in epigenetic
regulation in response to signaling is essential to under-
stand how cell fate, function and physiology are control-
led. It is, however, still largely unknown how cells 'talk' to
chromatin to facilitate appropriate cellular responses.
Physiological adaptation of cells is initially mediated by
mostly transient and reversible covalent post-translational
modifications (PTMs) at specific amino acid residues
including ubiquitylation, sumoylation, and phosphoryla-
tion (see Appendix). Through altered protein-protein
interaction, subcellular localization, enzyme activity and
protein stability, PTMs ultimately also affect gene expres-

sion. We review current established PTMs on PcG proteins
and the effect they have on interaction and enzymatic
activity. In addition, we extracted PcG-specific PTMs from
published analyses and used these to predict upstream
kinase pathways signaling to Polycomb. The final section
presents a tentative integrated view on signaling to chro-
matin in the context of PcG PTM.

Ubiquitylation: Polycomb-mediated 
ubiquitylation
Ubiquitylation plays a central role in PRC-mediated
silencing. Histone 2A (H2A) is one of the most abundant
ubiquitylated nuclear proteins, and H2AK119Ub1 is

Examples of post-translational modulation of Polycomb group and associated proteinsFigure 1
Examples of post-translational modulation of Polycomb group and associated proteins. (a) Simplified model of 
Polycomb Group (PcG)-mediated repression. The histone methyltransferase EZH2 trimethylates histone H3 at lysine 27, this 
mark is recognized by chromobox homolog (CBX) proteins via the chromodomain. RNF2/RING1 homologs are E3 ubiquitin 
ligases for H2A; RYBP binds H2AK119Ub1. Combined, these activities induce/maintain transcriptional repression. Gray boxes 
depict Polycomb Repressive Complex (PRC)-associated, epigenetically relevant enzymatic activities. (b) RNF2 E3 ligase activity 
is significantly enhanced in the presence of BMI1 or phosphorylated PCGF2. (c) DNA damage-induced phosphorylation of 
HIPK2 leads to phosphorylation of CBX4. Phosphorylation of CBX4 at T495 in turn enhances the HIPK2 sumoylation. (d) 
AKT-induced phosphorylation of EZH2 on S21 impairs its binding to histone H3, thereby inhibiting H3K27 trimethylation. me 
= methylation, ph = phosphorylation, su = sumoylation; ub = ubiquitylation.
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required for PcG-mediated gene repression [6]. Published
data shows that the PRC1 protein ring finger protein 2
(RNF2, also known as RING1B and RING2) ubiquitylates
H2A, as loss of RNF2 dramatically decreases global
H2Aub levels and derepresses PcG-controlled genes. The
RING domain of the really interesting new gene protein 1
(RING1, also known as RING1A) substitutes for that of
RNF2 in vitro [7]. Consistently, H2AK119Ub1 is main-
tained in RING1 or RNF2 single null cells, but not in dou-
ble knockout cells, supporting functionally redundant
roles for these proteins in certain biological contexts [8].
RNF2-mediated H2A ubiquitylation is important in X
chromosome inactivation [8,9]. The exact role of RNF2
and H2AK119Ub1 in X-inactivation is currently under
debate, however, as recent studies suggest that
H2AK119Ub1 may not be sufficient for X-inactivation
and conversely, Xist-initiated silencing occurs in the
absence of RNF2 and H2AK119Ub1 [10,11]. Addition-
ally, histone variant H2A.Z may be a target for RNF2-
mediated ubiquitylation, as knockdown of RNF2 reduces
H2Aub and H2A.Zub levels in vitro [12].

Whereas in Drosophila melanogaster multiple E3 ligase
complexes contribute to H2A ubiquitylation, the PRC1
protein RNF2 is currently considered the major E3 ligase
for H2AK119 (Figure 1b) [13,14]. Although within the
PcG core complex, containing RING1, RNF2, BMI1 and
polyhomeotic homolog 2 (PHC2), most in vitro H2A-E3
ligase activity is attributed to RNF2 [8], other PcG RING-
type E3 ligases control H2A-directed ubiquitylation and
affect HOX gene silencing: BMI1 (Polycomb Group ring
finger 4 (PCGF4)) and homologues PCGF2 (MEL18) and
PCGF1 (NSPc1) enhance H2A ubiquitin (Ub) E3 ligase
activity when complexed to RNF2 (Figure 1b) [15-18]. In
addition, PcG ubiquitin E3 ligase activity is enhanced
within the molecular context of an intact PRC1 complex:
fully reconstituted complexes containing RNF2, RING1,
BMI1 and chromobox homolog 8 (CBX8) show highest
activity compared to RNF2 alone or subcomplete PRC1
complexes [15]. Crystal structure analyses of interacting
RING domains of mammalian BMI1 and RNF2 reveals
extensive contacts between the RNF2 and BMI1 RING
domains: the N-terminal 'arm' of RNF2 embraces the
BMI1 RING domain [7,19]. RING protein partnerships
occur frequently in cell biology [20]; RING domain pro-
teins function as adapters, bringing together E2 conju-
gases and their substrates (see Appendix) [21]. Based on
structural analogy to a breast cancer type 1 susceptibility
protein (BRCA1)-BRCA1-associated RING domain 1
(BARD1) complex, it was suggested that RNF2 contains an
E2 binding site, whereas BMI1 is involved in substrate
binding [19]. E2 ubiquitin conjugating enzymes (Ubc)
UbcH5 subtypes a, b, c and UbcH6 promote H2A Ub con-
jugation, although these Ubcs do not bind the RING
RNF2/BMI1 complex [7]. Which E2 conjugases contribute

to H2A ubiquitylation in vivo is currently not known. A
summary of PcG-related PTMs and their functional rele-
vance is provided in Table 1.

Ubiquitylation of PcG proteins
The above relatively simple picture is complicated by
additional levels of PTM. Both RNF2 and BMI1 are ubiq-
uitin-conjugated proteins and differential autoubiquityla-
tion of RNF2 is required for H2AK119Ub1 [7,22].
Polyubiquitylation of RNF2 requires Lys6, Lys27 and
Lys48 linkage on the same ubiquitin molecule and RNF2
autoubiquitylation is promoted by Ubc5 in vitro [22].
Some of these K residues are involved in epigenetic silenc-
ing, as the ability of RNF2 to promote H2AK119Ub1
relates to the availability of UbK6 and UbK27, not UbK48
[22]. Although inhibition of Ub-dependent degradation
with proteasome inhibitors increases RNF2 levels, autou-
biquitylation mutant RNF2(I53S) proteins are still effi-
ciently degraded, suggesting the involvement of other E3
ligase(s) and/or Ub site(s). BMI1 inhibits ubiquitylation
of RNF2 and coexpression of RNF2 and BMI1 blocks its
degradation in a RING domain-dependent manner [22].
Unlike RNF2, BMI1 lacks autoubiquitylation activity.
However, like RNF2, it is stabilized by proteasome inhibi-
tion. As for RNF2, the identity of the ubiquitin E3 ligase
responsible for proteasomal degradation of BMI1 is not
known. Whereas RNF2K112ub appears dispensable for
H2A E3 ligase activity [7], mutant RNF2 with an intact
RING domain, however missing most ubiquitylation sites
(K92-198R) still binds BMI1, but lacks E3 ligase activity
[22]. Thus, seemingly at odds with each other: although
RNF2 autoubiquitylation is required for H2A ubiquityla-
tion, it is inhibited by BMI1, yet overall, BMI1 promotes
RNF2 H2A-E3 ligase activity and blocks its proteolytic
degradation [22]. A possible explanation for this discrep-
ancy may involve number, length and linkage type of
ubiquitin chains, aside from molecular context.

A candidate E3 ubiquitin ligase for BMI1 is the CULLIN3/
Speckle-type POZ protein (SPOP) complex: in vitro and in
vivo analyses confirmed that CULLIN3 and SPOP are
required for BMI1 ubiquitylation in cells. As RNAi-medi-
ated knockdown of CULLIN3 or SPOP does not affect
BMI1 protein levels, CULLIN3/SPOP-mediated ubiquit-
ylation of BMI1 most likely has no bearing on protein sta-
bility [23]. Interestingly, a human BMI1 polymorphism
resulting in a C18Y substitution increases ubiquitylation
and proteasomal degradation [24]. Whether or not this
has any effect on human health is currently not clear.

The PcG protein RING1 and YY1 binding protein (RYBP)
is monoubiquitylated by RING proteins, and binds
H2AUb1, among other proteins, in vitro, through a zinc
finger ubiquitin binding domain (UBD) of the Npl14 zinc
finger (NZF) type. Although a UBD-NZF mutant still
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interacts with RING1 and RNF2, it prevents formation of
Polycomb bodies in osteosarcoma cells, suggesting a
dominant negative role in PcG recruitment [25]. Thus,
RYBP may play a role in engagement of specific transcrip-
tion factors, and hence direction of PcG complexes to spe-
cific target genes [17,26].

Combined, the above data shows that PRC proteins are
engaged in numerous ubiquitin-dependent regulatory
mechanisms, and that ubiquitylation is important for
PcG-mediated silencing at multiple levels.

Sumoylation: Polycomb-mediated sumoylation 
and Polycomb sumoylation
Although mechanistically not completely understood,
one of the potential functional outcomes of PcG protein
sumoylation is induction of transcriptional repression
[27]. In support of a biologically relevant role in the con-
text of transcriptional repression, sumoylation appears
conserved throughout evolution. A genome-wide RNA
interference screen in Drosophila cells identified proteins
that, when absent, relieve small ubiquitin-like modifier
(sumo)-dependent inactivation of the transcription factor

Sp3 [28]. Among interactors identified were the PcG pro-
tein Sfmbt, the zinc finger protein MEP-1 and dMi-2, an
ATP-dependent chromatin remodeler which shows
genetic interaction with PcG [29]; all three proteins bind
Sp3-sumo in vitro and all are recruited to promoters in a
Sp3-sumoylation-dependent manner [28]. Additionally,
in Caenorhabditis elegans a link was established between
sumoylation and PcG proteins: the PcG-like protein SOP-
2 interacts with UBC9 via its conserved sterile α motif/self
association motif (SAM) domain [30]. SOP-2 sumoyla-
tion is required for in vivo localization to nuclear bodies
and repression of HOX genes [30].

The identification of CBX4 as a sumo E3 ligase forged the
first link between PcG function and sumoylation. C-ter-
minus binding protein (CtBP; an interaction partner of
RING1 and other PcG proteins [31]) is sumoylated
[32,33]. CBX4 interacts with E2 Ubc9 and CtBP and
sequesters both proteins to PcG bodies. Multiple biologi-
cal CBX4 targets have been identified which begin to link
PcG-mediated sumoylation to relevant biological proc-
esses [32,34-38]. Among these targets is Dnmt3a (de novo
DNA methyltransferase). Despite its highly conserved

Table 1: Post-translational modifications (PTMs) in polycomb group (PcG) biology

PcG protein PTM Interacting protein Biological effect

RNF2 (and RING1) Ub H2A (K119), H2A.Z Transcriptional repression, X inactivation
+ BMI1 Histone H2A ubiquitylation
+ phosphorylated MEL18
+ PCGF1
RNF2 Ub (mono, poly) - Protein stability,
BMI1 Ub - Protein stability

CULLIN/SPOP3 X inactivation
RYBP Ub - Histone H2A binding
PRC1 Ub Geminin Protein stability
CBX4 Sumo CtBP

Dnmt3a Abolishes repression
HIPK2 DNA damage response
SIP1 Relieves E-cadherin repression
CBS Inhibition CBS activity

PCGF2 Prevention of sumo HSF2 Decreased interaction during mitoses
RanGAP1 Increased interaction during mitosis

CBX4 Sumo - -
CtBP1 Sumo
SUZ12 Sumo PAISXβ -
EZH2 Sumo - -
BMI1 Ph Chromatin dissociation
CBX2 Ph - Nuclear localization
PCGF2/MEL18 Ph PKC Blocks dimerization
Esc (Drosophila) Ph Homodimerization, complex formation/stabilization
EED Ph Homodimerization
EZH2 Ph - Histone H3 binding
EZH1 Ph ZAP70 Interaction
RNF2 Proteolytic cleavage Caspases 3 and 9 Apoptosis
Ph (Drosophila)-PHC3 O-GlcNAc Sxc/Ogt Repression: unknown
RNF2 Ac - Unknown

Listed are published biochemical connections between PcG and associated proteins; see text for details on functional relationships.
Ph = phosphorylation; Su = sumoylation; Ub = ubiquitylation.
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nature among the PcG proteins CBX2, CBX6, CBX7 and
CBX8, only the C-terminal COOH box of CBX4 interacts
with Dnmt3a in a yeast two-hybrid setting. Dnmt3a is
polysumoylated; sumoylation terminates the interaction
of Dnmt3a with histone deacetylase (HDAC)1/2 and
completely abolishes its repressive ability in vitro, suggest-
ing a role for PTMs in dynamic epigenetic regulation of
gene expression [35,36]. DNA damage-induced homeo-
domain interacting protein kinase 2 (HIPK2) phosphor-
ylates and activates CBX4 E3 sumo activity, whereas
CBX4-mediated sumoylation of HIPK2 in turn enhances
its ability to repress genes in response to DNA damage
(Figure 1c) [38]. This autoregulatory feedback loop is
likely relevant in the context of cellular DNA damage
responses. Sumoylation of SMAD interacting protein 1
(SIP1) interferes with CtBP interaction and relieves repres-
sion of E-cadherin, an important regulator of epithelial
mesenchymal transition (EMT) during development and
tumorigenesis [37]. Furthermore CBX4 targets cystathio-
nine β-synthase (CBS), an enzyme involved in homo-
cysteine to cysteine conversion [34]. Sumoylation of CBS
inhibited its enzymatic activity [34]. As homocysteine to
cysteine conversion is an important step in the synthesis
of S-adenosylmethionine (SAM), a major methyl donor
reagent for essential methylation reactions [39], this may
have obvious implications for local and global epigenetic
regulation.

In the context of PRC1 function, the PcG protein PCGF2,
appears to oppose sumoylation. PCGF2 binds, both in
vitro and in vivo, heat shock factor 2 (HSF2), which is pre-
dominantly sumoylated during mitosis [40]. PCGF2 dis-
sociates from HSF2 during mitosis and, conversely,
recombinant PCGF2 inhibits in vitro sumoylation of
HSF2. Thus PCGF2 may act as an anti-sumo regulator
[40]. PCGF2 also inhibits sumoylation of Ran GTPase
activating protein (RanGAP)1, which is independent of its
RING domain [41]. Intriguingly, in contrast to HSF2, the
interaction between PCGF2 and RanGAP1 increases dur-
ing mitosis, suggesting a sumo-dependent switch of inter-
action partners of PCGF2 [41].

PRC2 complex function is associated with sumoylation as
well: suppressor of zeste 12 (SUZ12) and enhancer of
zeste homolog 2 (EZH2) (Figure 1a) are both sumoylated;
the E3 ligase for SUZ12 appears to be PAISXβ, not CBX4.
The exact biological role of SUZ12 sumoylation is not
clear, as wild type or non-sumoylatable SUZ12 3KR
mutants both show similar H3K27me3 in a SUZ12-/-

background, and 3KR colocalization with EZH2 and
embryonic ectoderm development (EED) is not affected
[42]. An overview of experimentally confirmed site-spe-
cific sumoylation and ubiquitylation sites on PcG pro-
teins is presented in Table 2. Although a total of 33
sumoylation sites are predicted on human PcG proteins,
both their occurrence and biological relevance await vali-
dation in vitro and in vivo (Additional file 1).

In summary, sumoylation, like ubiquitylation, emerges as
a PTM relevant for regulation of gene expression. In con-
trast to ubiquitylation, PcG-mediated sumoylation has
not directly been linked to histone modifications yet.
Instead, currently available data suggest a relevant role for
sumoylation in dynamic interaction with non-PcG pro-
teins in the context of cell physiology.

Phosphorylation of PcG proteins
Although thus far no PcG proteins have been identified as
kinases, phosphorylation is a common PTM on PcG pro-
teins. Recent observations have shown that signaling,
which triggers downstream phosphorylation events,
affects subcellular localization, protein interactions
within complexes, enzymatic activity and chromatin asso-
ciation of several PcG proteins and other factors. The first
report of PcG protein phosphorylation suggested a mean-
ingful regulatory role for PcG phosphorylation, as phos-
phorylated BMI1 dissociates from chromatin at late S-
phase, when chromatin is assembled de novo [43]. Addi-
tionally, MEL18 and BMI1-like RING finger protein
(MBLR; PCGF6) is predominantly phosphorylated in G2/
M [44]. In vitro kinase assays suggested PCGF6 as a sub-
strate for CDK7 [44]. Interestingly, Trithorax orthologs are
also phosphorylated in a cell cycle-dependent manner
[45], suggesting phosphorylation as a common mecha-

Table 2: Site-specific polycomb sumoylation and ubiquitylation sites

Complex Drosophila Name Alternative symbol Accession no. Total no. of amino 
acids

Modification site Conservation in 
mouse

Refs

PRC2 Su(z)12 SUZ12 Q15022 739 K72 sumo K74 [42]
K73 sumo K75 [42]
K75 sumo K77 [42]

PRC1 Pc CBX4 HPC2 O00257 558 K492 sumo K490 [38,99,100]
Sce/dRING Rnf2 RING1b Q9CQJ4 336 K112 Ub K112* [7]

PhoRC Pho YY1 P25490 414 K288 sumo K288 [101]

The table lists PTMs confirmed by mass spectrometric and/or mutational analysis.
Sumo = sumoylation site; Ub = ubiquitylation site.
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nism to temporarily relocate chromatin-associated pro-
teins. Phosphorylation may affect individual PcG proteins
in other biologically relevant ways. CBX2/M33 phospho-
rylation affects nuclear localization: high mobility
(unmodified) CBX2 resides in the cytoplasm in mouse liv-
ers, whereas low mobility isoforms localize to the nucleus
[46]. Dimerization of PCGF2, is blocked in the presence
of protein kinase C (PKC) [47]. Additionally, NSPc1/
PCGF1 is functionally targeted by phosphorylation: a syn-
thetic phosphomutant GAL4-DBD-NSPc1 no longer tran-
scriptionally represses a GAL4-LUC reporter [48].

Phosphorylated Drosophila PRC2 protein Extra sex combs
(Esc) is preferentially found in a 600 kDa complex with
PcG protein enhancer of zeste (E(z)) and Esc phosphoryla-
tion is required for formation and stability of a larger Esc/
E(z) complex containing PCL and RPD3 [49,50]. Both Esc
and EED (its mammalian ortholog) are phosphorylated
in a domain responsible for Esc/EED homodimerization
[50]. Casein kinase (CK)1 and CK2 may be the responsi-
ble kinases, as they phosphorylate Esc and EED in vitro
and promote Esc/EED homodimerization. In addition,
phosphorylation appears to regulate EZH2, a PRC2 his-
tone methyl transferase (HMT) which trimethylates lysine
27 on histone 3 (H3K27me3) [51]: AKT (protein kinase
B)-induced EZH2 Ser21ph suppresses its methyltrans-
ferase activity by impeding EZH2 binding to histone 3
(Figure 1d) [52]. In addition, phosphorylation affects self-
recruitment of EZH2 to its own mark, which may have
bearing on maintenance of repression throughout cell
divisions [53,54]. Additionally, the PcG EZH2 homo-
logue EZH1 is phosphorylated: the tyrosine kinase p56lck

is required for the phospho-dependent association
between EZH1 and zeta-associated protein 70 (ZAP-70)
in activated T cells [55]; whether phosphorylated residues
within EZH1 and ZAP-70 are directly involved in binding
awaits experimental validation.

Classification of PcG phosphorylation sites
Most current published information on PcG phosphoryla-
tion neither unequivocally identifies responsible kinases
nor targeted amino acid residues, and the majority of
existing in vitro data will have to be confirmed and func-
tionally tested in vivo. Over recent years several large-scale
phosphoproteomic analyses have been published. We
have extracted PcG-related data from these and our own
studies; this reveals numerous PcG phosphorylation sites:
to date 118 human (Table 3) and 31 mouse (Additional
file 2) PcG phosphorylation sites have been published; so
far 14 of these phosphorylation events are shared by both
species (Table 4). Amino acids surrounding phosphoryla-
tion sites direct kinase binding and hence define kinase-
substrate specificity. Classification of currently known
PcG phosphorylation sites into predicted phosphosite cat-
egories shows that most sites group in the proline-directed

or acidic class (Table 5; Figure 2a-c). Kinases that recog-
nize/bind the proline-directed residues belong to the
mitogen-activated protein (MAP) kinase (MAPK) family;
acidic motifs are phosphorylated by CK2; kinases target-
ing basic motifs belong to the AKT/PKB and PKA types
[56]. Consistent with our analysis, published PCGF2/6
(CK1/2) and EZH2 phosphorylation sites (AKT/PKB) clas-
sify in the acidic and basic target group, respectively.

Although it is not known at present whether PcG phos-
phorylation directly affects chromatin association, their
correlation (that is, signaling induced phosphorylation
and chromatin dissociation) suggests cells use phosphor-
ylation cascades to relay environment cues to chromatin,
where reprogramming of gene activity includes epigenetic
remodeling events [57]. Consistent with a functional link
between MAPK signaling and PcG function, we recently
showed that PRC1/chromatin association is disrupted
downstream of MAPK activation [57]. Mitogen-activated
protein kinase-activated protein kinase (MK3;
MAPKAPK3, 3pK) associates with chromatin and occupies
PcG target genes. Indeed, phosphopeptide analysis sug-
gests that MK3 directly targets PcG proteins (HN and JWV,
unpublished results). Although the involved PTMs have
not been fully mapped, phosphorylation of PcG proteins
affects specific protein interactions and, hence, PRC1
complex composition. Several observations underscore
this hypothesis: immunofluorescence studies showed dif-
ferential subnuclear localization of PHC1 compared to
other PRC1 proteins downstream of signaling-induced
phosphorylation [57]. Secondly, PHC1/2 proteins are not
stably associated to the PRC1 core complex, but instead
show increased heterotypical interaction (HN and JWV,
unpublished results) [15,58]. Thirdly, PHC and CBX pro-
teins show distinct chromatin enrichment/occupation
profiles in response to physiological stimuli in chromatin
immunoprecipitation studies; whereas CBX8 is mostly
found on genes where H3K27me3 is also present, PHC1
enrichment profiles seem to be more global as are those
for the PHC1 interacting kinase MK3 (HN and JWV,
unpublished results).

PcG/chromatin dissociation correlates with H3S28ph
suggesting a functional analogy with H3S10ph and hete-
rochromatin protein 1 (HP1) dissociation (see discussion
below) [59]. Indeed MAPK signaling cascades target and
phosphorylate H3 [60]. Regulatory analogy with HP1
may go further: DNA damage induces CK2-dependent
HP1β T51 phosphorylation, which mobilizes HP1β and
facilitates H2AX phosphorylation [61]. Dissociation
involves disruption of hydrogen bonds required for HP1β
chromodomain folding around H3K9me3. Although
purely speculative at the moment, T51 is conserved in
human and mouse CBX1 to CBX8 proteins (Ser in CBX2)
and in HP1 and fruit fly Pc, these CBX residues may all
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Table 3: Human polycomb phosphorylation sites

Complex Drosophila Name Alternative 
symbol

Accession no. Total no. of amino 
acids

Phosphosite Conservation in 
Mouse

Refs

PRC2 E(z) EZH1 Q92800 747 - - -
EZH2 Q15910 746 S21 S21 [52]

T339 T339 [102]
S362 S362 [103]
S363 S363 [103]
S366 S366 [102,103]
T367 T367 [102,103]
S380 S380 [104]
T487 T487a [102,103,105-110]

Esc EED O75530 441 S25 S25 [102]b

S34 S34 [102]
S43 S43 [102]b

S46 S46 [102]b

T50 T50 [102]b

T55 T55 [102]
T57 T57 [102]

Su(z)12 SUZ12 Q15022 739 S37 S37 [102]
T131 T133 [111]
S139 S141 [111]
S382 S384 [103]
T418 NC [112]
S541 S543 [102]
S546 S548a [102,103,105,107,1

10]
S583 S585a [103,107]

PRC1 Pc CBX2 HPC1 Q14781 532 - - -
CBX4 HPC2 O00257 558 Y205 Y207 [113]

S347 S350 [102]b

T349 T352 [102]b

S413 S427 [110]
T415 T412 [103]
S430 S427 [107]
T435 T432 [103]
T495 NC [38]

CBX6 O95503 412 S107 S107 [103]
S301 S302 [107]
S303 S304 [107]

CBX7 O95931 251 - - -
CBX8 HPC3 Q9HC52 389 S110 S110 [102,108]c

S130 NC [102]
T234 T207 [102]b

S256 S229a [102,103]
S265 S238a [102,103,108]c

S311 S284a c

S332 S305 [102,107]
S352 S325 [102]
S354 S327 [102]b

Ph PHC1 HPH1/EDR1 P78364 1,004 Y32 Y32 [113]
S195 S195 c

S645 S653 c

S653 S661 [114]
S657 S665 [114]
S664 S672 [114]c

S669 S677 [114]c

S786 S794 c

S895 S903 c

T918 T926 [103]
T922 T930 [103]c

PHC2 HPH2 Q8IXK0 858 S591 S583 [102]
T619 T611 [102]
S621 S613 [103]
S701 S693 [104]

S704 S696 [104]
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S733 S725 [115]c

S745 S737 [105]
PHC3 HPH3/EDR3 Q8NDX5 983 S229 S227 [115]

S263 S261 [105,110]
S315 S312 [102]c

T609 T607a [102,103,105,107,1
09,110]c

T614 T612a [102,107]b

S616 S614a [102,103,105,107,1
09,110]c

S724 S722 [102]b

S761 S759 [102]
S762 S760 [102]
S862 S860 c

Sce/dRING RING1 RING1A/RNF1 Q06587 406 S38 S38 [102,103,107]c

S187 S187 [102,103]
S188 S188 [102,103]
S190 S190 [102,103]
S229 S229 c

RNF2 RING1B/RING2 Q99496 336 S41 S41 [69]
S168 S168 [110]

Psc BMI1 PCGF4 P35226 326 S251 S249a [110]
S253 S251a [110]
S255 S253a [110]

PCGF2 RNF110/MEL18 P35227 344 Y197 Y197 [113]
Y205 Y205 [113]
Y206 Y206 [113]
T344 gap [102]

PhoRC Pho YY1 P25490 414 S118 S120a [109]
S184 S184 [104]
S247 S247a [102,103,105,108,1

09]
Y251 Y251 [102]
T348 T348 [102,116]
T378 T378 [102,103]

Other Psc PCGF1 NSPc1 Q9BSM1 259 - - -
PCGF6 MBLR/RNF134 Q9BYE7 350 S30d S34 [44]

Scm SCMH1 Q96GD3 660 S649 S653 [102,114]
SCML1 Q9UN30 208 S15 NA [102]b

S17 NA [102]
S117 NA [108]

SCML2 Q9UQR0 700 S255 NA [102]b

S256 NA [102]
S258 NA [102]
S267 NA [102]
S299 NA [102]
S300 NA [102]
T305 NA [102]
S495 NA [102]b

S499 NA [102,103,105,106]
T503 NA [102]
S511 NA [102,103,105,106]
S570 NA [115]
S576 NA [102]
T581 NA [102]b

S583 NA [102]
S590 NA [102,103]
S594 NA [102,103]
S606 NA [102]

RYBP Q8N488 228 S127 S127 [102]
S130 S130 [102]
S203 S203 [102]b

T215 T215 [102]b

a Sites that were detected as phosphorylation sites in mouse cells as well; b these putative phosphorylation sites do not reach a sufficiently high 
probability based on prediction algorithms used; c marks unpublished results (HN, JD, JWV); d site was referred to as S32 in original article.
NA = not available; NC = non-conserved

Table 3: Human polycomb phosphorylation sites (Continued)
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function in release of methyl-binding interfaces (Figure
3). Of note, CK2 was recently identified as an interactor of
RNF2 and CBX8 [62,63]. It is however currently unclear
whether and how CK2 regulates PcG function.

In summary, it is clear that phosphorylation is a relevant
part of PcG biology. Further characterization and func-
tional validation of these phosphorylation sites will be
pivotal for our understanding of the cellular conditions
under which PcG phosphorylation takes place, the regula-
tory pathways involved and how cells use these pathways
to modulate chromatin structure to allow biologically
appropriate responses.

Other PTMs in PcG biology
N-Acetylglucosamine (GlcNAc)ylation
Recently, the Drosophila PcG gene super sex combs (sxc) was
reported to encode the enzyme O-linked O-GlcNAc trans-
ferase (Ogt) [64]. PRC1 protein polyhomeotic (Ph) is Glc-
NAcylated by sxc/Ogt in vivo. PRC1-mediated repression is
dependent on functional sxc/Ogt, possibly via GlcNAcyla-
tion of Ph [64]. Interestingly, the process appears con-
served across species, as the mammalian ortholog PHC3
is O-GlcNAcylated as well [65]. Analogous to PcG, GlcNA-
cylation of the histone methyltransferase MLL5, a Tritho-
rax-like protein, generally assumed to counteract PcG
function, regulates methylation of H3K4 [66]. These find-
ings begin to show that GlcNAcylation of chromatin fac-
tors, such as PcG proteins, is relevant for epigenetic
regulation and provide important leads for future study.

Proteolytic cleavage
Other than ubiquitin-26S proteasome-dependent protein
degradation, as holds for PcG proteins RNF2 and BMI1
[22], proteolytic cleavage may also occur via activated cas-
pases [67]. Caspase substrates include, among others,
structural proteins, such as actin, vimentin and nuclear
lamins and proteins involved in transcription and transla-
tion, such as nuclear factor (NF)κB and translation initia-
tion factors [67]. Recently, RNF2 was identified as a direct
substrate of caspases 3 and 9 in apoptotic cells [68]. The
exact function of RNF2 cleavage during apoptosis remains
illusive, but it is possibly a prerequisite for nuclear con-
densation and DNA fragmentation to occur. Whether PcG
protein cleavage is relevant outside the context of apopto-
sis is currently unclear.

Acetylation
Currently acetylation of only one PcG protein has been
reported: RNF2 is acetylated at S2, which is accompanied
by a N-terminal methionine excision [69]. The signifi-
cance of this modification in relation to PcG function is
not known.

Signaling to chromatin: post-translational 
crosstalk to Polycomb
It is evident that PcG proteins are subject to numerous dif-
ferent PTMs (among others, ubiquitylation, sumoylation,
phosphorylation and GlcNAcylation) and, besides, har-
bor intrinsic enzymatic modifying activities themselves
(HMT, ubiquitin and sumo E3 ligase, O-GlcNAc trans-
ferase). How these PTMs relate to each other is currently
far from clear, however, several studies begin to unveil an
intricate interplay between different PTMs, their effect at
the molecular level and their biological relevance (Figure
1). Complex formation between PCGFs and RNF2 regu-
lates H2A ubiquitin E3 ligase activity [16]. PCGF2 phos-
phorylation (Additional file 2) is required for substrate
recognition in a relevant chromatin context, as dephos-
phorylated RNF2/PCGF2 complexes no longer efficiently
ubiquitylate nucleosomes [16]. Similar regulation likely
holds true for its close relatives BMI1 and PCGF1. Phos-
phorylated EZH2 has reduced methyltransferase activity
toward histone 3, as a result of reduced substrate binding
[52]. Phosphorylation and sumoylation-mediated

Table 4: Summary of polycomb group (PcG) phosphorylation sites

Residue Human Mouse Human + mouse non-overlapping Human + mouse overlapping

Serine 87 (74%) 26 (83%) 101 (75%) 12 (86%)
Threonine 25 (20%) 5 (16%) 28 (21%) 2 (14%)
Tyrosine 6 (6%) - 6 (4%) -
Total 118 (100%) 31 (100%) 135 (100%) 14 (100%)

Classification of PcG phosphorylation sites based on common phosphoamino acids.

Table 5: Classification of polycomb group (PcG) S/T 
phosphorylation sites

Class Human + mouse non-overlapping

Pro-directed 42 (37%)
Acidic 36 (32%)
Basic 15 (13%)
Other 20 (18%)
Total 113 (100%)

Classification of PcG phosphorylation sites in relation to amino acid 
context. Only putative Ser and Thr phosphorylation sites were taken 
into account when a full 15-mer sequence was available and a 
sufficiently high phosphorylation probability was predicted.
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autoregulatory feedback between CBX4 and HIPK2 has
obvious relevance for DNA damage responses [38].
Recently the PRC1 complex was identified as the E3 ubiq-
uitin ligase for geminin, an inhibitor of replication licens-
ing factor Cdt1. PHC1 (Rae28) deficiency in mice impairs
ubiquitin/S26-proteasome-mediated degradation of gem-
inin and has direct consequences for cell cycle progression
in the haematopoietic lineage [70].

In keeping with differential chromatin association of Ph
as compared to other PRC1 proteins, GlcNAcylated Ph
does not copurify with other PRC1 components in larval
extracts, whereas it does in embryonic nuclear extracts
[64]. Phosphorylation and GlcNAcylation mostly affect
the same amino acids (S/T), hence an intricate interplay
between these modifications may be predicted, either via
competitive occupancy at the same site or alternative
occupancy at adjacent sites [71]. Taken together these
observations support differential regulation within the
PRC1 complex upon activation of signaling cascades (Fig-
ure 4), implicitly suggesting differential roles for and/or
regulation of PHC proteins and other members of the
PRC1 complex in response to cellular signaling.

Integration of signaling at the chromatin level
Signaling-induced PTMs clearly affect non-histone and
histone proteins concurrently, suggesting that signaling-
induced phosphorylation evokes an integrated response
at the level of chromatin-associated proteins and nucleo-
somes. Histone H3Ser phosphorylation occurs down-
stream of signaling induced by arsenite (Akt1,
extracellular signal-related kinase (ERK2) and RSK2),
ultraviolet B (ERK, p38 MAPK, c-Jun N-terminal kinase
(JNK1) and MSK1), TPA (MSK2 and MSK1) and anisomy-
cin (MSK2 and Mitogen and stress-activated protein
kinase-1 (MSK1)) [72-76]. Even though MSK1 phosphor-
ylates histone H3S10 and S28 within the same peptide in
vitro, this apparently does not happen in vivo, where sub-
nuclear localization of histone H3S10ph and H3S28ph
are distinct [77,78]. The spatial distribution of these H3
PTMs is likely controlled by context-dependent kinase
recruitment (by, for example, HP1 or PcG complexes).

Classification of S/T phosphorylation sites into general kinase recognition sequence categoriesFigure 2
Classification of S/T phosphorylation sites into gen-
eral kinase recognition sequence categories. At 
present, not all consensus phosphorylation motifs are known 
for all kinases. A number of general phosphosite classes have 
been annotated based on amino acid sequences surrounding 
S/T phosphorylation sites: proline-directed, acidic, basic and 
otherwise [97]. (a-c) Sequence logos for Polycomb Group 
(PcG) phosphorylation motifs of proline-directed ((a), n = 
42) acidic ((b), n = 36) and basic ((c), n = 15) categories 
where the phosphorylated residue (S/T) is centered were 
generated with Weblogo [98]. Only serine and threonine 
phosphorylation sites were taken into account when a full 
15-mer sequence was available. To avoid sequence bias only 
non-overlapping human and mouse PcG phosphorylation 
sites were used. Centered 15-mer sequences were assigned 
to a motif class sequentially by following a binary decision 
tree as follows: P at +1 (Pro-directed), 5 or more E/D at +1 
to +6 (acidic), R/K at -3 (basic), D/E at +1/+2 or +3 (acidic), 2 
or more R/K at -6 to -1 (basic), otherwise. Colors corre-
spond to the chemical properties of the amino acids: hydro-
phobic (black), basic (blue), acidic (red) and polar (green). (a) 
Although phosphosite numbers are low and thus no solid 
deductions are warranted, it is apparent for the proline-
directed class (classified by a P in the +1 position), that pro-
lines are not limited to +1, but are abundant in various - and 
+ positions. (b) In the acidic motif, characterized by the 
presence of the amino acids glutamic acid (E) and aspartic 
acid (D) in the + residues, E/Ds are present in the - positions. 
(c) In basic motifs, arginine (R) is predominantly found in -3 
positions, in addition to -5.

A

C

B

Hypothetical mechanism for phosphorylation-induced disso-ciation of Polycomb Repressive Complex (PRC)1 from chro-matinFigure 3
Hypothetical mechanism for phosphorylation-
induced dissociation of Polycomb Repressive Com-
plex (PRC)1 from chromatin. The chromodomain of 
chromobox homolog (CBX) proteins interacts with 
H3K27me3. Chromatin dissociation may be the result of 
ARKS motif methyl-phos switching, by phosphorylation of 
H3S28 (upper panel). Phosphorylation of conserved resi-
due(s) within the chromodomain of CBX may contribute to 
chromatin dissociation (lower panel).
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Although the correlation between PcG phosphorylation
and chromatin dissociation is clear, both cell cycle
dependent and cell cycle independent underlying molec-
ular mechanisms remain largely obscure [43,44,57].
Comparison of PcG modules to a related histone binding
protein family, HP1 (associated with constitutive hetero-
chromatin and regions of facultative heterochromatin)
may begin to reveal molecular mechanisms [79]. HP1 and
PcG CBX proteins share a chromodomain, which binds
specific histone 3 trimethyl marks. Both chromodomain
protein classes are released from chromatin during mito-
sis. HP1 dissociates from chromatin in M-phase, despite
unchanged H3K9me3 levels. Aurora kinase B-induced
phosphorylation of H3S10 peptides adjacent to the
K9me3 mark strongly reduces HP1 binding in vitro and

releases HP1 from chromatin in vivo [80]. H3S10 phos-
phorylation was put forward as part of a 'binary switch'
mechanism of the 'methyl/phos' type: phosphorylation
adjacent to a methyl mark leads to induced loss of methyl-
based binding of a factor or complex [59,81]. Dynamic
'methyl/phos' switching modules also provide a tentative
molecular basis for heritable transcriptional memories.
Such a switching mechanism may not be limited to the
K9/S10 region of H3, but may be more common: both K9
and K27 in histone 3 reside in nearly identical amino acid
contexts (ARKS); hence 'methyl/phos' switching may con-
trol CBX binding to H3 as well (Figure 3). Indeed, H3S28
is also phosphorylated in M-phase [82,83]. Relevantly, we
reported a close correlation between signaling-induced
PRC1 dissociation and H3S28ph, whereas this was not

Integrated hypothetical model for post-translational modification (PTM)-dependent regulation of Polycomb Repressive Com-plex (PRC)1-mediated repressionFigure 4
Integrated hypothetical model for post-translational modification (PTM)-dependent regulation of Polycomb 
Repressive Complex (PRC)1-mediated repression. Three independent chromatin states in the context of PRC1 func-
tion are recognized: (a) the repressed state, which requires ubiquitylation and sumoylation of PRC1 compounds. Detectable 
baseline phosphorylation may indicate a prerequisite for PRC function and/or differences in PRC activity at local targets 
throughout the genome. Signaling to chromatin alters PTM states and chromatin association, and eventually releases PRC 
silencing (b,c). Observations from our and other groups suggest differential regulation of polyhomeotic homolog (PHC) pro-
teins versus RNF2, BMI1 and chromobox homolog (CBX) proteins; this may involve N-acetylglucosamine (GlcNAc) modifica-
tion in mammals as well. (c) Whether or not full expression of a Polycomb Group (PcG) target gene requires complete 
removal or relocation of PHC is currently not known. Likewise, whether ubiquitin-mediated proteolysis of BMI1 and RNF2 is 
needed to release gene repression is purely speculative. ph = phosphorylation; su = sumoylation; ub = ubiquitylation. Black tri-
angles = H3K27me3; open circles = H3S28ph; unmarked circular/oval structures represent general transcription factors and/or 
unknown proteins.
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seen in relation to H3S10ph [57], suggesting similar
molecular strategies between related proteins. Hence, the
larger family of MSK, ERK and RSK kinases integrate regu-
lation of gene expression at several functional levels by
targeting transcription factors, chromatin binding com-
plexes and nucleosomal components.

Although clearly numerous PTMs affect PcG biology,
molecular mechanisms in signaling to chromatin, down-
stream modulation of epigenetic marking and the estab-
lishment and transfer of heritable epigenetic states remain
largely elusive. Specific consensus/motif based kinase-
substrate interactions most likely define and direct signal-
ing-induced remodeling and/or other epigenetically rele-
vant events at the chromatin level. In contrast, context-
dependent variation in sumoylation sites is less well
defined and the role of select consensus motifs in ubiquit-
ylation is largely unknown. Although speculative, this
may suggest that once signaling is triggered, a hierarchical
sequence of PTMs is initiated, the target specificity (that is,
networks, pathways, complexes) of which is defined by
phosphorylation events, whereas downstream effects
(among others, altered protein interactions, activity or sta-
bility) are 'merely' consequential, and controlled by
numerous other PTMs. Indeed ubiquitylation, sumoyla-
tion, GlyNAcylation and phosphorylation are probably
functionally linked in PcG biology, as important cross talk
between these PTMs exists in many ways in other systems
[84]. In this context important open issues are for instance
how exactly PcG PTMs functionally relate to each other,
that is, whether PTMs act separately, processively or com-
binatorially. Signaling-induced PTMs are generally revers-
ible, proteolytic cleavage excluded, hence many
chromatin-associated epigenetic regulators are presuma-
bly rapidly converted to their initial post-translational sta-
tus upon signal recession. However, at the receiving end,
stable, heritable covalent histone modifications appear
somehow exempt from such regulation. Notions such as
these should provide important basis for future hypothe-
sis-driven research.

Conclusion
It is evident that chromatin-associated protein complexes,
like PcG proteins, are targets for cell signaling. These sign-
aling events lead to PTMs that may affect chromatin bind-
ing, complex composition and catalytic activity. We and
others have found that multiple kinases target PcG pro-
teins. In addition, PcG proteins are subject to ubiquityla-
tion, sumoylation and additional PTMs. Studies reviewed
in this manuscript have only just begun to unravel the
complexity and multiple layers of regulation of PcG func-
tion. PcG-mediated transcriptional silencing already
appears a much more complex process than the anti-
quated view that PRCs physically obstruct transcription
factor binding to DNA, and ongoing studies refine posi-

tioning of PcG function in the proper cellular context.
Current conservative estimates predict the existence of
anywhere between 60 to 100 or more mammalian PcG(-
related) proteins, each likely with multiple phosphoryla-
tion and/or ubiquitylation, sumoylation and potentially
numerous other PTM sites, including acetylation and
methylation [85,86]. In stark contrast with this, at the
moment only two PcG phosphospecific antisera exist
[44,52]. Clearly there is a need for additional experimen-
tal tools and approaches.

Ultimately PTMs are aimed at concerted regulation of a
number of chromatin-based processes in which PcG pro-
teins play a role, including dynamic transcriptional regu-
lation, long-term silencing, DNA replication and DNA
damage responses, to ensure proper regulation of cell fate
and survival. Increased insight into mechanisms
employed by cells to target chromatin and chromatin-
associated factors, including PcG, and their physiological
consequences at the chromatin level will be important for
further development and application of epigenetic strate-
gies in for instance regenerative medicine. As many of the
processes targeting and involving PcG function are etio-
logically linked to disease (for example, overexpression in
cancer, bypass of replicative senescence [62,87-89]), a bet-
ter fundamental understanding of gene-environment
interactions at the molecular level will eventually contrib-
ute to the development of therapeutic and preventive
strategies relevant for Western world-type diseases,
including obesity, diabetes and cancer.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
HN wrote the initial draft and JD and JWV edited the man-
uscript. All authors have read and approved the final man-
uscript.

Appendix: Most common PTMs in polycomb
Ubiquitylation
Besides triggering protein degradation ubiquitylation ful-
fills many non-proteolytic roles, such as in regulating
DNA repair, transcription and signal transduction [90].
Ubiquitin is a small ubiquitous 76 amino acid polypep-
tide which is covalently bound as a monomer (monou-
biquitin) to proteins or as a Ub polymer (polyubiquitin).
In polyubiquitin, chains are linked by conjugation to one
of seven lysines of a pre-existing ubiquityl moiety, for
example, Lys48 or Lys63. Polyubiquitylation via Lys48
linkage is mostly implicated in 26S proteasome-mediated
protein degradation. Covalent linkage of ubiquitin to a
substrate requires sequential action of activating (E1),
conjugating (E2) and ligating (E3) enzymes [91]: E1 acti-
vates ubiquitin in an ATP-dependent manner, which is
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then conjugated to the E2, that, assisted by an E3 ligase,
transfers ubiquitin to a lysine residue onto the substrate
protein [90]. The diversity and combination of these
enzymes ultimately determines substrate specificity and
biological responses. Two classes of E3 ligases are recog-
nized: the HECT domain E3s and the RING domain E3s;
RING-type E3 ligases are thought to function as bridging
factors between the E2 and substrate [91]. Ub protein sub-
strates are deubiquitylated by deubiquitylases (DUBs).
The large number of different E2 and E3 enzymes and
DUBs identified to date and their involvement in a great
variety of processes underscores the complexity of regula-
tion by ubiquitylation [91].

Sumoylation
Sumo proteins are approximately 10 kDa in size [92]. Like
ubiquitylation, sumoylation involves three distinct enzy-
matic activities: an E1 activating enzyme (AOS1/UBA2
heterodimer) an E2 conjugating enzyme (UBC9) and an
E3 ligase. Currently three classes of sumo E3 ligases have
been distinguished: SP-RING motif E3 ligases, such as
protein inhibitor of activated STAT (PIAS) proteins, a sec-
ond class containing RanBP2, and a third class with no
apparent homology to either other class comprising CBX4
(HPC2). In contrast to ubiquitylation, sumoylation takes
place at sumo acceptor sites: ΨKXE (Ψ and X represent
hydrophobic and any amino acids).

Phosphorylation
Phosphorylation is probably the most widespread and
best studied PTM in cellular signaling. Protein kinases cat-
alyze the transfer of γ-phosphate from ATP to a substrate
protein, thereby generating ADP [93]. Phosphorylation is
reversible: phosphatases remove the attached phosphate
moiety. An estimated 30% of all proteins are phosphor-
ylated on at least one residue. Phosphate is most com-
monly linked to Ser (S), Thr (T) or Tyr (Y)), but in
addition occurs on His (H), Lys (K), Arg (R), Asp/Glu (D/
E), and Cys (C) [84].
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