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related research and identify gaps in this field.

The ribosomal DNA (rDNA) constitutes a remarkably conserved DNA sequence within species, located in the

area of the nucleolus, and responsible for coding three major types of rRNAs (18S, 5.85 and 28S). While historical
investigations into rDNA focused on its structure and coding capabilities, recent research has turned to explore

its functional roles in various biological processes. In this review, we summarize the main findings of rDNA
methylation with embryonic development, aging and diseases in multiple species, including epigenetic alterations,
related biological processes and potential applications of rDNA methylation. We present an overview of current
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Introduction

Ribosomal DNA sequences are essential components of
all eukaryotic genome sequences. In humans, the main
rDNA unit spans approximately 43 kb, comprising a
13 kb transcribed region containing sequences encod-
ing the 18S, 5.8S and 28S rRNAs, along with a 30 kb
intergenic spacer (IGS) [1] (Fig. 1). Additionally, rDNA
comprises a separate cluster of approximately 2.2 kb
repeated genes that form the 5S rRNA [2, 3]. The critical

fFei Yang and Xutong Guo are joint first authors.

Rujiao Li and Yiming Bao are co-corresponding authors.

*Correspondence:

Yiming Bao

baoym@big.ac.cn

Rujiao Li

lij@big.ac.cn

'Present address: National Genomics Data Center, China National Center
for Bioinformation, Beijing 100101, China

“Beijing Institute of Genomics, Chinese Academy of Sciences,

Beijing 100101, China

3University of Chinese Academy of Sciences, Beijing 100049, China

M BMC

components of IGS encompass upstream control ele-
ments (UCE) and core promoter elements (CPE), as
well as other regulatory regions. rDNA is the only DNA
present within the nucleolar volume [4], arranged in tan-
dem repeat clusters in the nucleolar organizer regions
(NORs), on the short arms of acrocentric chromosomes.
rDNA gene sequences are highly conserved within spe-
cies, characterized by high repeatability, high transcrip-
tion and large amounts of methylation, which lead to the
loss of gene expression under most of circumstances [5,
6]. In humans, rDNA sequence is predominantly located
on chromosomes 13, 14, 15, 21 and 22 [7]. The region
encoding 5S rRNA is primarily situated on chromo-
some 1 [8]. In mice, these sequences are found on chro-
mosomes 12, 15, 17, 18 and 19 [9, 10], with the region
encoding 5S rRNA mainly located on chromosome 8
[11]. Human and mouse sequences encoding rRNAs are
highly conserved (percent identity: 55=100%, 5.85=99%,
185=99%, 285=85%) [12]. The primary function of
rDNA is to form ribosome subunits. rDNA is first tran-
scribed into rRNA in the nucleus by RNA polymerase I
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Fig. 1 The structure of rDNA in human cells

(pol I), a rate-limiting factor in ribosomal biogenesis.
Additionally, some cell signaling pathways such as MAPK
mTOR, MYC, PKC, p53 and RAS/ERK pathways also
influence the transcription process. Subsequently, rRNA
is processed and modified to assemble with the ribosome
protein into the final ribosome subunit. Following ribo-
somal subunit synthesis, it began to play more prominent
roles, such as regulating protein synthesis and transcrip-
tion factor activity, participating in some post-transla-
tional modifications and regulating cell cycle [13, 14]. To
meet the different demands of protein synthesis in vari-
ous tissues under different conditions, multiple modali-
ties such as epigenetic regulation are served to trigger the
activation or silencing of rDNA transcription [15-17].

DNA methylation usually refers to a modification
formed by the addition of methyl groups to the 5’C posi-
tion of cytosine by DNA methyltransferase (DNMT) [18,
19]. Serving as an essential epigenetic regulator, it plays
roles in various biological processes. Relevant research
and data have been integrated into epigenetic databases
to facilitate researchers’ understanding of advancements
[20-22]. rDNA, as one of the key regions of methylation
in the human genome, has at least 1500 CpGs on its tran-
scription unit [23]. The methylation levels of rDNA vary
across different tissues. A study reported the methylation
levels of rDNA promoters in various tissues of adult mice
as the following: liver 34%, spleen 53%, brain 48%, testis
25%, and ovary 30% [24]. As far back to 2001, study in
mice had clearly identified that methylated rDNA copies
are transcriptionally silent [17]. Methylation-mediated
silencing of rDNA transcription can contribute to various
biological processes such as organismal development,
aging, and disease occurrence.

However, due to the high repeatability, near-mito-
chondrial characteristics and substantial size of rDNA,
a lot of relevant information was lost during analysis of
next-generation sequencing data, leading to the exclu-
sion of rDNA sequence from the reference genome for
a long time. Given this circumstance, research focus-
ing on rDNA methylation is relatively constrained, with
even fewer comprehensive reviews on the subject [5, 25].
In this review, we comprehensively summarize the cur-
rent status and potential applications of research on the
relationship between rDNA methylation and embryonic
development, aging, and diseases across different spe-
cies and tissues (Table 1). Additionally, we will provide
insights into future directions for rDNA research.

D*___

Enhancer

rDNA methylation and embryonic development
It is widely recognized that during mammalian embry-
onic development, DNA methylation undergoes dynamic
changes, including significant genome-wide “erasure-
reconstruction” processes, with the exception of paren-
tal imprinting [47-49]. However, research examining
the correlation between rDNA methylation and embry-
onic development stage is notably deficient in system-
atic approach. It predominantly concentrates on isolated
developmental processes in mice, supplemented by stud-
ies concerning reproductive cells across various species.
The formation and maturation of germ cells are pre-
requisites for embryonic development. A study has
reported that the variation in rDNA methylation among
oocytes derived from the same individual in the major-
ity of humans is less than 5% [28]. In a study conducted
on mice, the promoter regions of rDNA in sperm (5.9%),
germinal vesicle oocytes (5.4%), metaphase II oocytes
(3.2%), zygotes (2.6%) and blastocysts (1.9%) exhibited
significantly lower methylated levels compared to those
of adult tissues, such as testis (25%), ovary (30%), liver
(34%), brain (48%), spleen (53%) [24]. Several studies
have identified an increase in rDNA methylation in germ
cells with advancing age across various species. It has
been discovered that in human sperm, the methylation
levels of rDNA transcription units (including UCE, core
promoter, 18S rDNA, and 28S rDNA) increase with age,
similar to a-satellite DNA and LINEI. Similarly, methyla-
tion levels of rDNA in mouse sperm (including intergenic
spacer, gene promoter, 18S, and 28S) also increase with
age. Additionally, in bovine and marmoset sperm, meth-
ylation levels of rDNA (18S and 28S rDNA) rise with
individual age, with marmosets showing a slight increase
in magnitude [26]. Subsequent research suggested that
human ovarian aging is associated with increasing oocyte
methylation of the rDNA promoter and UCE, while a
weak correlation of oocyte methylation with rDNA pro-
moter, UCE, and 28S rDNA was found in mice [28].
After the mouse zygote undergoes cleavage to form a
blastocyst, between embryonic day 4.5 (E4.5) and embry-
onic day 5 (E5), the blastocyst begins to implant into the
uterine wall. After implantation, de novo methylation of
rDNA promoters occurs, with the overall methylation
level in the embryo (13.9%) being lower than that in the
extra-embryo (31%) at embryonic day 7.5 (E7.5). Based
on this, the rDNA methylation levels of gonads and fetal
liver cells were examined at embryonic day 13.5 (E13.5)
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and embryonic day 18.5 (E18.5), revealing that the lev-
els were higher than those of primordial germ cells at
the respective time points. Additionally, liver rDNA
promoter methylation increased from 16.3% at E13.5 to
22.2% at E18.5. These results suggest that de novo meth-
ylation of the rDNA promoter is inhibited during germ
cell development and global methylation occurs only
after implantation. It was also speculated that nucleo-
some remodeling and histone deacetylase (NuRD) might
play a role in the maintenance of hypomethylation of
rDNA. Furthermore, during the period from concep-
tion to weaning, research has shown a linear correla-
tion between growth limitations resulting from protein
restriction and alterations in DNA methylation of rDNA
in mouse offspring, which persists into adulthood [50].
These findings offer new insights and perspectives for
the study of the methylation characteristics of rDNA
during development [24]. Some researches have shown
that ribosome biogenesis plays a crucial role in main-
taining the fate determination of embryonic stem cells
and developmental homeostasis of mammalian [51, 52].
We speculate that some pivotal modifications in rDNA
methylation during embryonic development may regu-
late rDNA transcription and silencing, thereby tightly
controlling ribosome biogenesis and promoting the
progression of embryonic development at appropriate
stages. The Lower levels of rDNA methylation observed
at the zygote and blastocyst stages may allow for exten-
sive rDNA transcription, facilitating abundant synthesis
of ribosomal RNA essential for the continued differentia-
tion and development of embryonic cells. Therefore, we
contend that studying rDNA methylation in embryonic
development will contribute to a deeper understanding
of the molecular mechanisms of embryonic development
and have potential implications for the understanding of
the pathogenesis of developmental diseases and applica-
tions in embryonic stem cell research.

Apart from mammals, the rDNA of the model organ-
ism zebrafish has also been studied during development.
Research has shown that zebrafish maintain global meth-
ylation levels during sex differentiation without any stage
similar to genome-wide methylation erasure in mam-
mals. A specific type of rDNA located in the major sex-
linked locus in oocytes (referred to as fem-rDNA) has
been identified. Fem-rDNA amplification and demethyl-
ation during early development of zebrafish suggest that
fem-rDNA amplification is implicated in sex determina-
tion, helping to explain the non-Mendelian sex ratio in
zebrafish [29].

rDNA methylation and aging

rDNA methylation can be considered a more effective
biomarker of biological aging compared to other genomic
components due to its comparable accuracy, more
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concentrated sites, and evolutionarily conserved charac-
teristics [23, 53]. The theory proposed in 2008 suggested
that the instability of the rDNA triggers aging and short-
ens individuals’ life span, which is called “rDNA theory
of aging” [53, 54]. Many studies have explored the rela-
tionship between rDNA methylation and aging across
different species and tissues, with the majority of findings
indicating site-specific or overall hypermethylation of
rDNA triggered by aging. In blood, elevated rDNA meth-
ylation and decreased rRNA levels were reported later in
life in rats, although a comparable increase was not con-
clusively observed in humans [14]. The author further
conducted a 9-year longitudinal study on the quality of
life in individuals aged 60 to 89 years, revealing a negative
correlation between rDNA methylation levels and cog-
nitive abilities, as well as survival chances in the elderly
population [14]. In bone marrow, it was observed that
with increasing age, there is an elevation in the methyla-
tion level and copy number of rDNA, accompanied by
a decrease in the levels of pre-rRNA transcripts using
2-year-old and 4-week-old mice [30]. For human fibro-
blasts, a 2018 report demonstrated an increase in rDNA
methylation during in vitro aging [31]. For skeleton mus-
cle, 345 CpG sites in rDNA were found hypermethylated
in aged muscle compared to young muscle of mouse,
while the number of hypomethylated CpG sites was only
15 [32]. In the heart and kidney of rats, with aging, the
methylation of some CpG units in the promoter region
increases [14]. For the liver, several studies have reported
an age-related increase in DNA methylation at multiple
regions of rDNA [14, 27, 33]. Methylation levels of three
regions of the rDNA gene locus (promoter, 5° of 18S,
and 5 of 28S sequences) were measured in young (two
months), adult (10 months), and old (18 months) rats,
revealing an age-associated increase in DNA methyla-
tion [33]. Additionally, a similar increase in methylation
occurring in human liver cells was documented for the
first time [33].

Based on the age-related changes in rDNA methylation
described above, several age prediction models have been
developed, utilizing the conservative characteristics of
rDNA methylation to assist in the study of aging process.
One model has been developed to predict individual’s age
based on 15 CpGs within the rDNA transcription unit
of human sperm. This model utilizes a relatively small
amount of sample size of approximatelyl0 sperm cells,
with a prediction error of less than 3 years [26]. Further-
more, the effectiveness of rDNA methylation sites as a
clock marker to predict the age of an individual has been
tested across multiple distant species, including humans,
mice, and dogs. The performance of rDNA is significantly
better than that of clocks constructed with other genomic
CpG sites as markers, and it is considered to be a reliable
predictor of age due to its conserved performance across
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different species [23]. Among approximately 13,000 base
pairs of rDNA sequence in mice, researchers identified
620 CpG sites (66.8%) that provide information about
age. Interestingly, many of these CpG sites are conserved
across distantly related species; for instance, over 70%
of human CpG sites in the 18S and 5.8S genes of rDNA
can be found in species as diverse as zebrafish. The elas-
tic network regression model, constructed using meth-
ylation levels of 46 rDNA loci, has achieved accurate and
precise estimation of the age of individual European lob-
sters, which will hopefully have economic and ecological
value for fisheries management [55]. Furthermore, com-
bining the rDNA methylation clock with genome-wide
methylation clocks identified across the entire genome
could potentially enhance the accuracy of age prediction
[56-59].

Various hypotheses have been proposed regarding
the potential cell biological mechanisms through which
rDNA methylation may be involved in aging, including
nucleolar stress, regulation of RNA polymerase affecting
transcription rate, among others. A replication fork bar-
rier (RFB) has been identified within human 47S rDNA,
with essential elements including the Sal box and tran-
scription termination factor-1 (TTE-1). Interestingly, it
is active only in the hypomethylated rDNA copy, and its
mechanism of action is to cooperate with TTF-1 to ter-
minate RNA pol I's transcriptional activity. The differ-
ent methylation status of rDNA copies, therefore, could
lead to genomic instability, potentially contributing to the
development of cancer [60]. Besides, impaired ribosomal
biosynthesis due to DNA methylation can also lead to
nucleolar stress, which is involved in the pathogenesis of
aging and many related diseases [26].

rDNA methylation and diseases

The consequences of impaired ribosomal biosynthesis
resulting from rDNA methylation reach far beyond the
scope of aging, extending into the intricate landscape
of diseases. The resulting nucleolar stress, linked to the
pathogenesis of aging, serves as a pivotal link connecting
rDNA methylation to a multitude of diseases. This con-
nection prompts an exploration into the specific nuances
of how alterations in ribosomal DNA methylation may
contribute to the onset and progression of various dis-
eases, thereby unraveling a deeper understanding of the
complex interplay between epigenetic modifications and
pathological processes.

rDNA methylation and neurological diseases

Decreased rRNA levels and reduced ribosomal activ-
ity have been linked to the pathological progression of
Alzheimer’s disease (AD) [61-63]. Separate studies have
indicated elevated rDNA methylation and increased
rDNA content in the cerebral cortex and cerebellum
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regions of AD patients compared to age-matched con-
trols [34, 64]. Similarly, increased rDNA methylation has
been observed in the cortical region of patients with mild
cognitive impairment (MCI), an early stage of AD. In the
early stages of AD, there is an increase in rDNA meth-
ylation, whereas in the late stages, there is an enrichment
of low-methylated rDNA units. In contrast, patients with
MCI exhibit a broader range of global methylation, with
higher methylation levels compared to late-stage AD
patients [34]. For another neurological disease, autism
spectrum disorder (ASD), a comparative analysis involv-
ing 16 ASD samples and 11 control samples did not
reveal any significant alterations in rDNA copy number
or DNA methylation in the brains of individuals with
ASD [35]. Similarly, using 53 neuronal and 42 oligoden-
drocyte samples, no changes in rDNA methylation or
copy number associated with schizophrenia (SCZ) were
observed [35].

rDNA methylation and hematologic diseases

With the increase of age, the activity and function of the
hematopoietic system decline, which is manifested by the
decrease of the number of lymphocytes and the weak-
ening of hematopoietic stem cells (HSC) differentiation
function. In CD34+cells from myelodysplastic syndrome
(MDS) patients, there is increased methylation of rDNA
promoters, leading to reduced expression of rRNA and
disruption of ribosomal biogenesis compared to healthy
controls. It is also explored the hypothesis that hypo-
methylating agents induced an increase in intracellular
rRNA transcription, thereby reducing apoptosis, and
obtained support from recent data [36].

rDNA methylation and genetic disorders

Werner’s syndrome (WS), also known as progeria short
stature disease or adult progeria syndrome, is character-
ized by premature aging of the skin, a senile appearance,
short stature, degeneration of the cardiovascular system,
and a higher risk of diabetes and malignant cancer. In
vitro studies examining rDNA in fibroblasts from both
young and old normal individuals, as well as WS patients,
revealed significant hypermethylation in samples from
normal elderly individuals and WS patients. This hyper-
methylation leads to decreased expression of RNA pol II-
transcribed genes. Moreover, the life span of fibroblasts
in WS patients is significantly shortened [37].

Down syndrome (DS), also known as trisomy 21, is
the most common viable chromosomal aneuploidy. The
characteristic features of this condition include cognitive
impairments, craniofacial anomalies, and early infan-
tile hypotonia [65]. In a study utilizing targeted deep
sequencing to assess DNA methylation in the rDNA of
69 adult individuals with DS and 95 controls using whole
blood samples, elevated methylation level were identified
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in the promoter region of rDNA in individuals with DS
compared to controls [38]. It has been reported that a sig-
nificant positive correlation between 45S rDNA methyla-
tion and relative rDNA copy number in multiple tissues
[35]. Trisomy of chromosome 21 results in most Down
syndrome patients having an additional 30-40 copies of
the rDNA unit. The increased rDNA methylation leads
to silencing of these additional rDNA copies. It may be
a dosage compensation mechanism, which ensures the
homoeostatic regulation of ribosome biogenesis.

rDNA methylation and cancers

rDNA methylation and sex hormone-regulated cancers
Breast cancer, ovarian cancer, cervical cancer and endo-
metrial cancer are among the major malignancies that
adversely affect women’s health worldwide. As early
as 2000, it was reported that the average percentage of
rDNA methylation in breast tumors was notably higher
compared to normal control samples. This increase
was associated with the inhibition of estrogen receptor
expression [39]. In 2014, further validation of this phe-
nomenon revealed increased methylation at the pro-
moter, 18S, and 28S regions of rDNA. Additionally, DNA
methylation levels of several CpG sites within the rDNA
locus were found to correlate with the nuclear grade and
nucleolar size of tumor tissues [40]. Research on ovar-
ian cancer tumor samples indicated significantly higher
methylation levels of 18S and 28S rDNA compared to
normal ovarian surface epithelial samples. Furthermore,
this hypermethylation could predict the progression-
free survival of ovarian cancer patients. Treatment with
the demethylating drug 5’-aza-2’-deoxycytidine showed
that the rDNA hypermethylation in ovarian cancer led to
gene silencing [41]. Investigation into the role of rDNA
methylation status and rRNA expression level in cervical
intraepithelial neoplasia (CIN) specimens revealed rRNA
overexpression in cervical cancer cells, accompanied by
demethylation of rDNA promoter and decondensation of
rDNA, presumably promoting protein synthesis to sup-
port cancer cell proliferation and expansion. Although
reports on the multistage development of the disease are
still lacking, this study suggested that demethylation of
rDNA promoter in cervical cancer cells leads to increased
rRNA expression [42]. Analysis of rDNA methylation in
215 endometrial tumors showed that the majority of the
tumors exhibited elevated levels of rDNA methylation.
Patients with lower levels of rDNA methylation demon-
strated significantly worse disease-free survival and over-
all survival [43].

Prostate cancer ranks as the second most prevalent
malignancy among men globally, trailing only lung can-
cer [66]. Research conducted on human prostate cancer
cell lines and clinical samples unveiled no significant cor-
relation between rDNA promoter methylation and rRNA
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overexpression. Furthermore, it indicated that MYC gov-
erns rRNA levels in human prostate cancer, implying a
molecular mechanism potentially contributing to nucleo-
lar alterations [44]. However, a recent study suggests that
prostate cancer demonstrates reduced methylation in the
IGS region of rDNA and heightened variability of rDNA
compared to normal tissues [45].

rDNA methylation and other types of cancers

In addition to sex hormone-regulated cancers, vari-
ability in rDNA methylation has also been noted in oral
squamous cell carcinoma, esophageal cancer, hepatocel-
lular carcinoma, lung cancer, and colorectal cancer. In
oral squamous cell carcinoma, rRNA expression is sup-
pressed compared to normal tissues, but no significant
DNA methylation changes were observed in the rDNA
promoter region [46]. Representative CpG sites of rDNA
exhibit a significant decrease in average methylation lev-
els and an increase in variability in esophageal cancer
and hepatocellular carcinoma. Partial tumor samples
from colorectal cancer, liver cancer, and lung cancer also
displayed hypomethylation. Furthermore, the methyla-
tion profile of rDNA in cell-free DNA from plasma can
serve as a biomarker for the detection of various cancers,
including colorectal cancer, lung cancer, and liver cancer
[45].

To summarize, dysregulated rDNA methylation is a
common feature observed in a range of diseases, includ-
ing neurodegenerative diseases, hematologic diseases,
genetic disorders, and cancers. In ovarian and endo-
metrial cancers, rIDNA methylation levels can predict
progression-free survival, while rDNA methylation in
cell-free DNA from plasma can serve as a biomarker for
detecting multiple cancers. Given the extensive remodel-
ing of the epigenome in diseases, changes in rDNA meth-
ylation are perhaps unsurprising. However, the key lies in
identifying specific rDNA methylation changes that truly
indicate disease progression and significantly impact
disease development. This will provide valuable insights
into disease mechanisms, facilitate the search for early
diagnostic markers for diseases, and support therapeutic
interventions.

Conclusions

This review provides a comprehensive overview of
advancements in research on rDNA methylation con-
cerning embryonic development, age and diseases asso-
ciations across multiple species. During the preparatory
stages of embryonic development, germ cells exhibit
lower rDNA methylation compared to somatic cells. Fol-
lowing embryo implantation, there is a remethylation
of the rDNA promoter, leading to overall higher meth-
ylation levels within the embryo than outside. As organ-
isms age, rDNA methylation increases in the sperm and
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oocyte of humans, rats, and mice. Various tissues across
species, including liver, heart, bone marrow, and skeletal
muscle, display heightened rDNA promoter methylation.
Changes in rDNA methylation levels are also observed in
various types of diseases. rDNA methylation serves not
only as an epigenetic clock across multiple species but
also as a biomarker for the detection and prognosis of
various diseases.

The genetic identity of rDNA units plays a crucial role
in determining their epigenetic state. Genetic variations
within the rDNA sequence can lead to the emergence of
different epialleles, which in turn affect rDNA methyla-
tion patterns [67]. For example, specific genetic variants
may predispose rDNA units to increased methylation,
serving as a mechanism to silence additional rDNA cop-
ies. During development, aging, and disease, alterations
in rDNA methylation may be influenced by genetic varia-
tions associated with rDNA [67], and concurrently coor-
dinated with changes in rDNA copy number [35], thereby
potentially regulating rDNA transcription, resulting in
an overall modification in protein synthesis rates in the
organism. Dysregulation of cellular protein synthesis may
significantly contribute to the gradual deterioration of
cellular functions associated with aging and diseases.

Despite these advancements, there remains a notice-
able gap in research concerning the dynamic patterns
of rDNA methylation throughout the entire embryonic
development process across various species, as well as its
systemic evolution. Questions persist regarding whether
rDNA methylation influences processes such as cell dif-
ferentiation, orientation, and proliferation. Additionally,
the precise causal relationship between rDNA methyla-
tion and disease or aging process remains elusive. One of
the challenges hindering rDNA research is that complete
rDNA sequences are typically absent from most standard
genome assemblies. The highly repetitive nature of rDNA
makes it difficult to accurately analyze and locate rDNA
within genome sequences [16, 68]. Additionally, rDNA
copy number variation and the characteristic dense tan-
gles further complicate the accurate assignment of reads
from sequencing data, as well as the precise identification
and quantification of these regions [69].

To advance our comprehension of rDNA meth-
ylation, researchers have focused on assembling the
rDNA sequence and structure in the human genome.
They have employed a specific method to separate the
rDNA methylated region from whole-genome bisulfite
sequencing (WGBS) data [45]. Additionally, by utiliz-
ing the Arachne assembler method, researchers have
enhanced the suitability of the reference genome for
rDNA localization, enabling precise insertion of rDNA
tandem repeat sequences [70]. Recently, research-
ers have also customized five human and mouse refer-
ence genome assemblies, incorporating known rDNA
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sequences, creating annotation files, and proposing a
straightforward workflow for researchers to map and
visualize rDNA sequences more effectively [68]. Despite
these advancements, the method for assembling rDNA
sequences has not been widely embraced, resulting in a
dearth of database resources displaying rDNA methyla-
tion information. Hence, there are plans to incorporate
rDNA methylation profiles from various biological states,
such as development, aging, and diseases, into our inde-
pendently developed MethBank database, which contains
cross-species single-base resolution DNA methylation
data [21]. By identifying more stable and reliable rDNA
methylation markers associated with aging, diseases, and
development across multiple species, this endeavor aims
to provide new directions for disease detection and inter-
vention based on rDNA methylation, as well as clues for
understanding the mechanisms underlying rDNA meth-
ylation’s involvement in diverse biological processes.
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