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Abstract 

Background IDH1/2 hotspot mutations are well known to drive oncogenic mutations in gliomas and are well-
defined in the WHO 2021 classification of central nervous system tumors. Specifically, IDH mutations lead to aberrant 
hypermethylation of under-methylated regions (UMRs) in normal tissues through the disruption of TET enzymes. 
However, the chromatin reprogramming and transcriptional changes induced by IDH-related hypermethylation in 
gliomas remain unclear.

Results Here, we have developed a precise computational framework based on Hidden Markov Model to identify 
altered methylation states of UMRs at single-base resolution. By applying this framework to whole-genome bisulfite 
sequencing data from 75 normal brain tissues and 15 IDH mutant glioma tissues, we identified two distinct types 
of hypermethylated UMRs in IDH mutant gliomas. We named them partially hypermethylated UMRs (phUMRs) and 
fully hypermethylated UMRs (fhUMRs), respectively. We found that the phUMRs and fhUMRs exhibit distinct genomic 
features and chromatin states. Genes related to fhUMRs were more likely to be repressed in IDH mutant gliomas. In 
contrast, genes related to phUMRs were prone to be up-regulated in IDH mutant gliomas. Such activation of phUMR 
genes is associated with the accumulation of active H3K4me3 and the loss of H3K27me3, as well as H3K36me3 accu-
mulation in gene bodies to maintain gene expression stability. In summary, partial erosion on UMRs was accompa-
nied by locus-specific changes in key chromatin marks, which may contribute to oncogene activation.

Conclusions Our study provides a computational strategy for precise decoding of methylation encroachment pat-
terns in IDH mutant gliomas, revealing potential mechanistic insights into chromatin reprogramming that contribute 
to oncogenesis.

Keywords DNA methylation, Chromatin, Oncogene, IDH mutation, Glioma

†Xinyu Wang and Lijun Dai have contributed equally to this work

*Correspondence:
Jianzhong Su
sujz@wmu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13072-023-00490-x&domain=pdf


Page 2 of 15Wang et al. Epigenetics & Chromatin           (2023) 16:13 

Background
Hotspot mutations in the IDH1 and IDH2 genes are 
commonly found in malignant gliomas, acute myeloid 
leukemia, and various other cancers [1–3]. Several 
studies have suggested that these IDH hotspot muta-
tions serve as early driver events in gliomagenesis, 
particularly in the development of diffuse low-grade 
gliomas and grade 4 astrocytomas [4–7]. Mutated IDH 
genes not only produce α-ketoglutarate (αKG), but also 
produce D-2-hydroxyglutarate (D2HG), which compet-
itively inhibits iron-dependent hydroxylases, including 
TET family enzymes that mediate active DNA dem-
ethylation [8, 9]. Consequently, abnormal hypermeth-
ylation patterns of under-methylated regions have been 
discovered in IDH mutant gliomas, such as the glioma-
CpG island methylator phenotype (G-CIMP) [10, 11].

Complex mechanisms underlying the interplay 
between DNA methylation and histone modifica-
tion have been widely studied. Previous studies have 
revealed that H3K4 methylation could prevent de novo 
DNA methylation by disrupting the ADD domains 
of DNMT3A/B [12, 13]. DNMT3B could be recruited 
to gene bodies by H3K36me3 in actively transcribed 
genes [14], while DNMT3A could be recruited to 
shape the intergenic DNA methylation landscape by 
H3K36me2 [15]. Hence, the patients with DNMT3A 
PWWP domain mutations or NSD1 (H3K36me2 meth-
yltransferase) mutations shares similar clinical features 
[16, 17]. In addition, the relationship between CpG 
methylation and H3K27me3 established by polycomb 
repressive complex 2 (PRC2) is complex and frequently 
altered in multiple cancer types [18, 19]. As the key 
drivers of oncogenesis, genetic variation of chromatin 
regulators lead to aberrant histone–DNA methylation 
crosstalk and promote cancer initiation and progres-
sion [20].

Although previous studies have demonstrated that IDH 
mutation is sufficient to establish aberrant hypermethyla-
tion in glioma [11, 21], the role of these altered methyla-
tion states and their relationship with chromatin features 
in gliomagenesis are not fully understood yet. Limited by 
the probe design bias of methylation microarray, previ-
ous studies of aberrant hypermethylation in IDH mutant 
gliomas mainly focused on CpG islands or promoters [6, 
10, 22, 23]. These analyses were based on mean meth-
ylation level of all CpG sites for each genomic region, 
therefore, could not provide accurate quantification 
when methylation alteration only occurs at CpG islands 
or promoters partially [24, 25]. To comprehensively deci-
pher the chromatin reprogramming and functional effect 
of these altered methylation states, it is required to pre-
cisely quantify the methylation changes at single CpG site 
resolution.

In this study, we developed a computational framework 
based on Hidden Markov Model to identify hypermeth-
ylated UMRs at single-base resolution in IDH mutant 
gliomas. The hypermethylated UMRs present a bimodal 
methylation status, named partially hypermethylated 
UMRs (phUMRs) and fully hypermethylated UMRs 
(fhUMRs). The phUMRs exhibit distinct genomic char-
acteristics and histone signatures compared to fhUMRs. 
In contrast to the classical model that promoter methyla-
tion represses transcriptional activity, the genes within 
phUMRs on promoter were prone to be up-regulated. 
Up-regulated phUMR-related genes showed a marked 
increase in H3K4me3 and decrease in H3K27me3 sig-
nals, which may be associated with the inhibition of tran-
scriptional repressors. Partial erosion on the promoter of 
oncogenes was linked to increased transcription accom-
panied by local changes of H3K4me3 and downstream 
changes of H3K36me3.

Results
Identification of hypermethylated UMRs in IDH mutant 
gliomas
To identify hypermethylated regions at base resolution 
between normal tissue and cancer tissue samples from 
WGBS data, we designed a computing framework based 
on Hidden Markov Model (Fig.  1A and “Methods” sec-
tion). It consists of two core steps: (i) to identify con-
sistently under-methylated regions (reference UMRs, 
refUMRs) in normal tissues. (ii) To identify internally 
hypermethylated region on reference UMRs in cancer 
tissues. The hypermethylation border were integrated 
from the hypermethylated CpG status determined by 
Hidden Markov Model and statistical test.

We applied this framework to publicly available WGBS 
datasets, including 72 normal brain tissues and 15 IDH-
mutant gliomas [5, 26]. The internal consistency of 
WGBS data from different sources suggested that they 
could be incorporated to improve sample scale (Addi-
tional file 1: Fig. S1A, Additional file 2: Table S1). A total 
of 21,716 reference UMRs were identified in normal 
brain tissues, of which 2831 reference UMRs were abnor-
mal hypermethylated in IDH mutant gliomas. To explore 
aberrant methylation changes within these hypermeth-
ylated UMRs, we examined the proportion of hyper-
methylated CpGs sites on under-methylated regions. 
Interestingly, not all these hypermethylated UMRs were 
fully hypermethylated, instead, a bimodal pattern was 
observed (Fig. 1B,C). This motivated us to divide abnor-
mal hypermethylated regions into two categories: (i) par-
tially hypermethylated UMRs (phUMRs), where CpG 
hypermethylation only occurs on a part of under-meth-
ylated regions, such as the methylation status of synap-
totagmin SYT6 promoter. (ii) Fully hypermethylated 
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Fig. 1 Identification of partially hypermethylated UMRs. A The computational framework for identification of hypermethylated regions from normal 
and cancer methylomes. B Bimodal distribution of the proportion of hypermethylated CpGs sites on under-methylated regions in IDH-mutant 
glioma. C Genome browser visualization of representative phUMR (SYT6) and fhUMR (TPPP3) in IDH-mutant gliomas. refUMR represents consistently 
under-methylated region in multiple brain tissues. Bottom panel represents methylation level track in a larger genome scale and the corresponding 
expression signals. D Comparison of methylation changes calculated using the hypermethylated regions (y axis) versus the entire reference 
under-methylated regions (x axis). Methylation change of each region was the absolute difference of mean methylation level for all CpG sites 
between IDH-mutant gliomas and normal brain samples. The frequently used methylation difference threshold 0.2 is denoted as the red line. E 
Comparison of methylation levels of SYT6 and TPPP3 using different benchmarks (n = 75 for normal brain tissues and n = 15 for IDH mutant glioma 
tissues). Hyper, hypermethylated regions in phUMRs or fhUMRs
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UMRs (fhUMRs), where hypermethylation occurs on the 
whole under-methylated regions, such as the methyla-
tion status of TPPP3 promoter, a cerebrospinal fluid leak-
related gene (Fig. 1C).

The traditional quantification method for methylation 
changes in IDH mutant gliomas involves calculating the 
average methylation level of all CG sites in CpG islands 
[6, 10]. However, compared to CpG islands, using refer-
ence UMRs as a benchmark could more accurately reflect 
the under-methylated regions in normal brain tissues. 
We identified 6495 novel UMRs that could not be iden-
tified as CpG islands. For UMRs that overlap with CpG 
islands, HMM approach provides a distinct advantage in 
detecting hypermethylated CpGs on UMRs (Additional 
file  1: Fig. S1B). Furthermore, quantifying methylation 
differences within hypermethylated regions using the 
average methylation level yields more accurate results 
than calculating the average across all CG sites within the 
UMRs. We found that phUMRs were more susceptible 
to the traditional mean methylation level method, with 
approximately 69.3% missing (Fig.  1D, Additional file  1: 
Fig. S1C). And the phUMRs and fhUMRs could provide a 
more comprehensive overview of aberrant methylation in 
IDH mutant gliomas compared to G-CIMP (Additional 
file  1: Fig. S1E–G). For instance, when using the SYT6 
promoter CpG island as the reference region to quantify 
methylation changes, the quantitative methylation dif-
ference did not meet the usual threshold 0.2 for absolute 
methylation difference (Fig. 1E). These results suggested 
that our computational framework could provide a more 
accurate definition of aberrant hypermethylated regions 
in IDH mutant gliomas.

Partially hypermethylated UMRs exhibit specific 
characteristics of genomic context and chromatin 
modifications
To characterize these two hypermethylated regions, we 
explored the genomic and chromatin features of phUMRs 
and fhUMRs. Compared with fhUMRs, phUMRs were 
longer and showed higher overlap with promoter and 
CpG islands. The fhUMRs were more represented as 
intergenic regions and CG-poor regions (Fig.  2A-C). 
Next, we combined the histone modification datasets of 
normal brain tissue to explore the histone characteris-
tics of these two types of UMRs. It can be observed that 
phUMRs have stronger active histone modifications sig-
nals (H3K4me3, H3K27ac) than fhUMRs (Fig.  2D). The 
repressive histone modification H3K27me3 and the het-
erochromatin modification H3K9me3 were deficient 
in normal brain tissues. These results suggested that 
although both of phUMRs and fhUMRs possess low 
methylation level in normal brain tissues, they show dif-
ferent genomic context and chromatin characteristics.

In order to further investigate the internal context 
characteristics of the partial erosion on UMRs, we seg-
mented phUMRs into partial Hyper and flanking UMRs 
according to the border of hypermethylated CpGs in IDH 
mutant gliomas (Fig.  2E). The evolutionary conserva-
tion of partial Hyper was lower than the flanking UMRs, 
implying that they occurred later during evolution and 
may have distinct regulatory functions in transcriptional 
switches (Fig.  2F). Compared to normal brain, partially 
hypermethylated regions in the matched IDH mutant gli-
omas samples were enriched by lower signals of the two 
active histone modifications, H3K4me3 and H3K27ac, 
while no significant difference could be observed in 
flanking under-methylated regions (Fig.  2G, Additional 
file 1: Fig. S3A).

The quantification of methylation levels in phUMR 
reflects the average methylation level of bulk tissues. To 
investigate the methylation status of phUMRs at the sin-
gle-cell level, we analyzed an additional scRRBS dataset 
from IDH mutant gliomas [27]. We compared the meth-
ylation levels of partial Hyper and their flanking UMR 
in individual cells. Our analysis revealed that the partial 
Hyper in individual cells exhibited higher methylation 
levels compared to the flanking UMR (Additional file 1: 
Fig. S3C).

In addition, the phUMR-related genes were strongly 
enriched in neural development and cell differentia-
tion in contrast to the fhUMR-related genes (Additional 
file 1: Fig. S4), suggesting the key regulatory roles of par-
tially hypermethylated regions in cell fate determination. 
These results implied that although partially hypermeth-
ylated regions are linearly located close to their flanking 
under-methylated regions, their CpG methylation status 
may be shaped or maintained by different mechanisms, 
resulting in discrete methylation state transition among 
cell fate transitions.

Promoter phUMR genes were prone to be overexpressed 
and involved in cancer pathway
Previous studies have demonstrated that DNA meth-
ylation within the promoter or gene body shows vary-
ing effects on gene transcription [28, 29]. To explore the 
impact of DNA hypermethylation at specific genomic 
locations on the transcriptional regulation of adja-
cent genes, we mapped phUMRs and fhUMRs to genes 
based on their chromosomal positions. We then ana-
lyzed the transcriptional patterns of genes associated 
with phUMRs and fhUMRs across 1146 normal brain 
tissue samples from GTEx and 427 IDH mutant glioma 
samples from TCGA. Our analysis revealed that genes 
within fhUMR on promoter tended to be transcription-
ally down-regulated in IDH mutant gliomas when com-
pared to normal brain tissues (Fig.  3A). This finding is 
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Fig. 2 Features of partially and fully hypermethylated UMRs. A Length distribution of phUMRs and fhUMRs. B Genomic distribution of phUMRs 
and fhUMRs. C Percentage of phUMRs and fhUMRs overlap with CpG islands, CGI shores, CGI shelves and Open seas. D Average signal of histone 
modification for phUMRs and fhUMRs within ± 3 kb in normal brain tissue. E Diagram to show the definition of partial Hyper and flanking UMR 
in phUMRs. The border was determined by the hypermethylated CpGs among normal brain and IDH mutant glioma tissues. F Evolutionary 
conservation score of partial Hyper and flanking UMR. The p-value was tested using a two-tailed t-test. G Average signals of histone modification for 
phUMRs within ± 3 kb in normal brain and IDH mutant glioma tissues. Average ChIP-seq signals were scaled into 2 kb for partial Hyper and flanking 
UMRs, respectively
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consistent with the classical DNA methylation regulatory 
model, which suggests that promoter hypermethylation 
inhibits gene transcription. And genes within phUMR 
or fhUMR on gene body tended to be up-regulated, 
which is consistent with previous research findings [30, 
31]. In contrast, genes within phUMR on promoter were 
prone to be up-regulated (Fig.  3A). A similar trend was 
observed in a smaller cohort from DKFZ (Additional 

file 1: Fig. S5A, B). These results suggested that the tran-
scriptional regulation pattern of phUMRs on promoter is 
distinct from the classical regulation mode of fhUMRs.

To further investigate the cellular diversity of phUMR 
and fhUMR-related aberrant transcriptional genes, we 
performed cell type enrichment analysis using a scRNA-
seq dataset from IDH-mutant glioma [32]. Our analy-
sis revealed that up-regulated genes related to phUMR 

Fig. 3 Transcriptional patterns of phUMR and fhUMR related genes. A Volcano plot displays the statistical significance (y axis) and fold change 
(x axis) of phUMR and fhUMR related genes between IDH mutant glioma and normal brain tissues (blue, down-regulated phUMR/fhUMR related 
genes; red, up-regulated phUMRs/fhUMRs related genes). B The functional annotation of up-regulated and down-regulated genes within phUMR/
fhUMR on promoter. The p-values were adjusted using BH method. C The barplot shows the statistical significance (y axis) of KEGG terms for phUMR 
and fhUMR genes. The line indicates the adjusted p-value threshold 0.05
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exhibited relatively higher expression levels in microglia/
macrophage cells, whereas down-regulated genes related 
to phUMR were enriched in oligodendrocytes (Addi-
tional file  1: Fig. S6). These results imply that up-regu-
lated and down-regulated phUMR genes effect distinct 
cell types in bulk tissues of IDH mutant glioma.

We next explored the biological function of genes 
related to phUMRs and fhUMRs. For genes within 
phUMR on promoter, the up-regulated ones in IDH 
mutant gliomas were highly enriched in nervous system 
development and cell differentiation, while the down-
regulated ones were enriched in synaptic signaling and 
chemical synaptic transmission (Fig.  3B). Addition-
ally, genes within phUMR on gene body were related to 
negative regulation of biosynthetic process (Additional 
file  1: Fig. S5C). Pathway analysis indicated that the 
up-regulated genes within phUMR on promoter were 
significantly enriched in multiple cancer-related path-
ways, such as TGF-beta, Hippo, Notch and Wnt signal-
ing pathways (Fig.  3C). Moreover, the down-regulated 
genes within phUMR on promoter were enriched in the 
GABAergic synapse pathway. Additionally, the down-
regulated within fhUMR on promoter were enriched in 
the neuroactive ligand–receptor interaction pathway 
(Additional file 1: Fig. S5D). These results are consistent 
with previous studies indicating that D2HG produced by 
IDH mutation can block normal neural differentiation 
processes [3, 33, 34]. The distinct enrichment of genes 
associated with phUMRs and fhUMRs suggested that the 
up-regulated genes within phUMR on promoter may play 
key regulatory roles in gliomagenesis.

The transcriptional programs of phUMR genes were related 
to interplay with DNA methylation and key chromatin 
modifications
Previous studies have reported the critical effects of the 
crosstalk between DNA methylation and histone modi-
fications on transcriptional regulation [20]. To charac-
terize the transcriptional programs of phUMRs more 
accurately, we analyzed the matched WGBS, RNA-seq 
and ChIP-seq datasets derived from a normal brain tissue 
sample (149 from Roadmap) and an IDH mutant glioma 
tissue sample (AK076 from DKFZ). A total of 338 differ-
entially expressed genes within phUMR and 158 differen-
tially expressed genes within fhUMR on promoter were 
identified. Up-regulated and down-regulated related 
phUMRs exhibit low methylation level on TSS and par-
tial erosion in IDH mutant glioma. In contrast, hyper-
methylation of down-regulated related fhUMRs covered 
TSS (Additional file  1: Fig. S7). The up-regulated genes 
within phUMR on promoter possessed increased signals 
of active histone modifications (H3K4me3, H3K27ac, 
H3K4me1) and decreased signals of repressive histone 

modification H3K27me3 (Fig.  4A, Additional file  1: 
Fig. S8). In contrast, the down-regulated genes within 
phUMR or fhUMR showed decreased active histone 
modification signals and increased H3K27me3 signals. 
Notably, H3K36me3 was highly increased in the gene 
body of up-regulated genes within phUMR, which was 
consistent with the dependence of active transcription 
and H3K36me3 marks on gene body [14]. These results 
indicated that different transcriptional programs of 
hypermethylated gene may possess distinct interplay pat-
terns of DNA methylation and chromatin modifications.

DNA methylation has been reported to affect the bind-
ing of transcription factors to DNA, thereby regulat-
ing downstream gene expression [35–37]. To further 
explore whether the different transcription regulatory 
patterns of phUMR on promoter are related to distinct 
transcription factors, we performed motif enrichment 
analysis on the up-regulated and down-regulated related 
phUMRs, respectively. We found that up-regulated 
related phUMRs tended to enrich methylation-sensitive 
repressor motifs, which binding to DNA could be dis-
rupted by DNA methylation. In contrast, the down-reg-
ulated related phUMRs and fhUMRs tended to enrich 
transcriptional activator motifs (Fig. 4B). Previous stud-
ies reported that the interaction between transcription 
factors and chromatin regulators could shape chromatin 
state and regulate downstream gene transcription [36, 
38]. Combined with high-confidence interaction pairs 
from BIOGRID, these repressors may interact with Poly-
comb (PRC) or histone deacetylase (HDAC) related chro-
matin regulators (Fig.  4C). These results suggested that 
the transcriptional up-regulation of phUMRs on pro-
moter may be caused in part by inhibiting methylation-
sensitive repressors, consistent with in some previous 
low-throughput experimental analyses [36, 39, 40].

To further explore the effect of the up- and down-
regulated related phUMRs, we examined local changes 
of histone modifications for partial Hyper and their 
flanking UMRs (Fig.  2E). Although down-regulated and 
up-regulated phUMRs showed consistent local meth-
ylation changes, but they exhibited different patterns 
of changes in chromatin signatures (Fig.  4D, Additional 
file  1: Fig.  S9A). For up-regulated related phUMRs on 
promoter, increased active modification signals were 
located at the flanking UMRs, but not at partial Hyper 
regions (Fig. 4D, Additional file 1: Fig. S9A). However, the 
down-regulated related phUMRs on promoter showed 
a decreased tendency of active modification signals at 
partial Hyper regions, which may be caused by the well-
documented antagonism of H3K4me3 and de novo meth-
ylation by DNMT3A/B [20]. Similar phenomena to these 
results were obtained on matched methylation, histone 
modification, and transcription data in an additional pair 
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Fig. 4 Differentially expressed phUMR and fhUMR related genes possess different chromatin features. A Average signals of histone modification 
mark around TSS and TES of differentially expressed genes between IDH mutant glioma and normal brain tissues. B Motif enrichment of these 
three hypermethylated regions with different transcriptional programs. P_up, hypermethylated regions in up-regulated phUMRs. P_down, 
hypermethylated regions in down-regulated phUMRs. F_down, hypermethylated regions of down-regulated fhUMRs. The color of transcription 
factors was apportioned by the effect to gene regulation. An asterisk indicates the transcription factor was previously reported to be 
methylation-sensitive. C The interaction of up-regulated phUMR-related transcription factors and PRC or HDAC related chromatin regulators. D 
Average signals of H3K4me3 and H3K27ac on partial Hyper and flanking UMR in up/down-regulated phUMRs. Average ChIP-seq signals were scaled 
into 2 kb for partial Hyper and flanking UMRs, respectively
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of samples (150 from Roadmap vs. AK213 from DKFZ, 
Additional file  1: Figs. S8, S9). These results indicated 
that differential transcriptional outcome of promoter 
partial methylation erosion may be related to distinct 
cooperative regulatory modes between DNA methylation 
and histone modifications.

Oncogene activation accompanied by partial methylation 
erosion and local‑specific changes of chromatin mark
Aberrant epigenetic changes could lead to abnormal 
transcription of cancer genes including oncogene acti-
vation and tumor suppressor silencing [41]. To explore 
the functional effect of phUMRs and fhUMRs in glioma 
initiation and progression, we investigated the roles of 
phUMRs and fhUMRs in oncogene activation and tumor 
suppressor inactivation. We found that the phUMR-
related up-regulated genes were significantly enriched 
in oncogenes (Fig. 5A). For example, an obvious phUMR 
was observed at the promoter of PDGFRA, a well-known 
prominent glioma oncogene (Additional file 1: Fig. S10). 
IDH mutation was reported as the initiating event in gli-
oma progression, which was thought to block neural dif-
ferentiation [3]. The stemness genes activated by aberrant 
hypermethylation in IDH mutation gliomas may provide 
selective growth advantages to tumor cells and promote 
gliomagenesis.

We further investigated local changes of distinct his-
tone modifications for these activated oncogenes within 
phUMR on promoter. These oncogenes were segmented 
into partial Hyper, flanking UMRs and downstream body 
(from the border of UMR to TES of oncogene) according 
to the border of methylation status. We found that meth-
ylation erosion of these up-regulated oncogenes within 
promoter phUMR were accompanied by local changes 
of H3K27me3, H3K4me3 and downstream changes of 
H3K36me3 (Fig.  5B, Additional file  1: Fig. S11). Addi-
tionally, loss of H3K27me3 were found in partial Hyper 
and flanking UMRs. For example, at the promoter of 
CCND1, a key gene for cell cycle progression, loss of 
broad H3K27me3 signal and increase of H3K4me3 sig-
nal in flanking UMRs were found. Furthermore, the gene 
body of CCND1 presented increased H3K36me3 and 
H3K4me1 signals (Fig.  5C). Interestingly, the motif of 
methylation-sensitive repressor USF1 was located in the 
partial Hyper but not in the flanking UMR of CCND1. 
Previous studies reported that USF1 could interact with 
PCGF3, which is a subunit of the PRC complex. Addi-
tionally, the methylation change of promoter CGI for 
CCND1 could not meet the methylation difference 
threshold of G-CIMP (Fig.  5D). These results suggested 
that oncogene activation may be caused by the disruption 
of the binding of methylation-sensitive repressors, lead-
ing to chromatin reprogramming of this region.

Discussion
In this study, we developed a computational framework 
and defined two types of hypermethylated UMRs with 
distinct transcriptional programs. Due to the high cost of 
sequencing, most tumor methylation data were measured 
using 450K/850K microarrays, which possess large-scale 
samples and uniform CpG probes. The limitation is that 
the number of CG sites is incomplete, and information 
on CG density and surrounding context is lost. Therefore, 
traditionally identified aberrant hypermethylated regions 
in IDH mutant gliomas were based on the average 
changes of methylation, which ignores the surrounding 
sequence information. Compared to DNA methylation 
microarrays, WGBS data could provide a more compre-
hensive information overview, leading to the discovery 
of a series of distinct methylation alteration regions in 
cancer [42–44]. The distinct characteristics and functions 
of these DNA methylation alteration regions indicate 
that the regulatory function of DNA methylation could 
highly depend on the contextual information of genomic 
locations.

The phUMRs and fhUMRs were de novo identified 
based on under-methylated regions in control sam-
ples. Mathematically, "partial" may be caused by more 
than two discrete methylation alteration regions with 
inconsistent methylation changes at this chromosomal 
position under different physiological and pathological 
conditions. Although these adjacent methylation altera-
tion regions are linearly close in chromosomal locations, 
their methylation states may be regulated by different 
regulators and possess different transcriptional regula-
tory functions. This is an effective enhancement of the 
classical DNA methylation regulatory model. Meanwhile, 
like other methylation alteration regions based on meth-
ylation level, the accuracy of phUMR also depends on 
the methylation datasets. Therefore, a uniform reference 
methylation region set could benefit the functional analy-
sis of DNA methylation and identification of disease-
related methylation markers in the future.

Through data mining of public WGBS data in IDH 
mutant gliomas, we observed different transcriptional 
regulation patterns in phUMRs and fhUMRs. These find-
ings could provide important insights into the transcrip-
tional regulation of DNA methylation. However, there is 
sparse data available on repressor ChIP-seq and match-
ing WGBS data related to phUMRs affecting gene expres-
sion. To achieve a more precise interpretation of DNA 
methylation alterations in cancer, we need appropriate 
physiological and pathological models and generate more 
comprehensive matched multi-omics data. Moreover, 
CRISPR screening technology has been widely used in 
recent years to identify novel chromatin regulators [45–
47], and could be employed to identify novel repressors 
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Fig. 5 Partially hypermethylated UMRs were accompanied by local changes of key histone modifications contributed to oncogene activation. A 
The barplot displays the overlap between up-regulated phUMR-related genes and oncogenes. p-value was computed using Fisher’s exact test. 
The specific numbers of overlapping genes between phUMRs/fhUMRs related differentially expressed genes and cancer genes are displayed 
on the bars. B The Boxplot shows fold changes of average histone modification signals at partial Hyper, flanking UMR and downstream regions 
of up-regulated oncogenes. Partial Hyper and flanking UMR was determined by the border of hypermethylated CpGs in IDH mutant gliomas, 
and downstream represent the region from the border of phUMR to TES of oncogene. C Genome Browser tracks depict DNA methylation, gene 
transcription and histone modification changes across CCND1 in IDH mutant glioma (red) and normal brain tissue (blue). D Boxplot compared 
methylation level changes (left) or gene expression (right) of CCND1 among IDH mutant glioma and normal brain tissues. CGI, methylation level 
was quantified as mean methylation level of CpG sites in promoter CpG island of CCND1. phUMR: methylation level was quantified as mean 
methylation level of CpG sites in hypermethylated regions on phUMRs of CCND1. E Hypothesis model of oncogene activation accompanied by 
partial methylation erosion and chromatin reprogramming
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on the phUMR that are related to the up-regulation of 
methylation transcription.

The crosstalk between DNA methylation and histone 
modifications determines the expression level of adja-
cent gene transcription. Our study revealed that partial 
methylation erosion and chromatin reprogramming were 
involved in oncogene activation in IDH mutant glio-
mas. Based on our study, we propose a model of onco-
gene activated by partial methylation erosion (Fig.  5E), 
which complement the classic model of promoter hypo-
methylation leading to oncogene activation. In normal 
brain tissues, oncogenes are silenced by repressive his-
tone modifications such as H3K27me3, which may be 
recruited by methylation-sensitive transcriptional repres-
sors. In IDH mutant gliomas, neoplastic hypermethyla-
tion of transcriptional repressor binding sites leads to the 
destruction of this binding, resulting in the accumula-
tion of active histone modifications, and finally promote 
downstream oncogene activation. However, the sequence 
of aberrant epigenetic reprogramming events is not clear, 
so further studies may be able to use some representa-
tive oncogenes to validate molecular mechanism in the 
future.

Combined with the single-cell methylation and tran-
scriptome data of IDH-mutant gliomas, we observed 
the internal differential methylation status of phUMR 
at the single-cell level, and up-regulated genes related 
to phUMR were enriched in microglia/macrophage cell 
types and malignant tumor cells. In the future, the appli-
cation of single-cell multi-omics detection technologies 
such as scM&T-seq [48] and scTrio-seq [49] may provide 
more accurate regulatory function of phUMR on gene 
transcription at single-cell level.

It should be noted that IDH mutant gliomas were a 
special tumor type with defined driver events. Due to the 
high degree of intra-heterogeneity within other tumors, 
it is difficult to completely decipher the pan-cancer 
abnormal methylation pattern with limited tumor WGBS 
samples nowadays. More WGBS data resources will be 
needed in the future. Meanwhile, the application of tar-
geted methylation editing [50, 51] will help to accurately 
understand the role of aberrant DNA methylation in 
transcriptional regulation and tumorigenesis.

Conclusions
In summary, we developed a computational framework 
to accurately identify aberrant hypermethylation in IDH 
mutant gliomas. We defined two distinct subsets of DNA 
hypermethylation pattern regions (phUMRs/fhUMRs) 
and depicted their regulatory programs, respectively. In 
contrast to the classical model that promoter methyla-
tion represses transcriptional activity for fhUMR related 
genes, the genes within phUMRs on promoter were 

prone to be up-regulated and involved in cancer path-
ways. We further found that the phUMR contributes to 
oncogene activation by the interplay with key chromatin 
marks, which implies a novel model of oncogene acti-
vated by partial methylation erosion.

Methods
WGBS data sources
WGBS data of 75 normal brain tissue samples were 
obtained from Roadmap and GSE96615 [52, 53]. WGBS 
data of 15 IDH mutant gliomas were obtained from two 
cancer centers, TCGA and DKFZ [5, 26]. List of these 
WGBS samples used in this study is shown in Addi-
tional file  2: Table  S1. For each CpG site, the reads on 
the positive and negative strands were merged together 
to improve read coverage. Only the CpG sites with more 
than five reads were considered for analysis, and the CpG 
sites on the scaffold were removed. Principal component 
analysis (PCA) analysis of CpG island methylation level 
was used to measure the consistency of WGBS samples 
from different sources.

Identification of phUMRs and fhUMRs
For WGBS data of normal brain tissues and IDH mutant 
glioma tissues, UMRs were first identified for each 
WGBS sample in normal brain tissues, and then the fre-
quency of UMR occurrence was integrated to identify 
consistent under-methylated regions in normal brain tis-
sues (reference UMR). The detail algorithm was shown in 
our previous study [29].

Based on the reference UMRs identified in normal 
brain tissues, average methylation level of individual CpG 
site in the two groups was calculated separately. A three-
state Hidden Markov Model was used to determine the 
differential methylation status: hypermethylated (Hyper), 
hypomethylated (Hypo), no difference (No diff). The 
emission probability matrix for these three states were 
modeled using Gaussian distribution, and the mean and 
variance were estimated using the methylation difference 
between WGBS data for IDH mutant gliomas and nor-
mal brain tissues. Transition probability was estimated by 
counting the methylation levels of adjacent CpG sites. For 
each refUMRs, the initial differential methylation state 
of the first CpG site was set by calculating the average 
methylation level for that region. RHmm (version 2.0.2) 
was used to assign differential status to each CpG site.

Methylation matrix of each CpG site for each refUMR 
was generated. The p-value for each CpG site within 
the reference UMRs was calculated using the two-tailed 
t-test. The difference status of CpG sites with an FDR-
corrected p-value of less than 0.05 and an absolute meth-
ylation difference ≥ 0.2 was determined as Hyper.
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The CpG sites identified as Hyper by Hidden Markov 
Model or statistics testing were merged into methylated 
regions. According to the bimodal distribution curve of 
the proportion of hypermethylated CpG sites in refer-
ence UMRs, the proportion of CpG sites located in the 
hypermethylated region is less than 0.8 and the number 
of CGs ≥ 5 was defined as phUMRs. And the proportion 
of CpG sites located in the hypermethylated regions is 
more than 0.8 was defined as fhUMRs.

This computational framework is publicly available at 
https:// github. com/ wangx inyush/ IDH_ phUMR.

Curation of G‑CIMP
The definition of G-CIMP was inspired by previous stud-
ies [10, 23], in which CpG islands with an FDR-corrected 
p-value less than 0.05 and an absolute methylation differ-
ence greater than 0.2 were defined as G-CIMP. Annota-
tion information for CpG island regions was obtained 
from UCSC [54]. First, we calculated the mean methyla-
tion level of all detected CpG sites for 27,718 CpG islands 
in each WGBS sample. The CpG islands located in the 
scaffold were removed. Secondly, differentially methyl-
ated CpG islands were identified using t-test between 
normal brain and IDH mutant glioma tissues. The CpG 
islands that passed the statistical test threshold and 
methylation absolute difference threshold were identi-
fied as G-CIMP. To compare the quantitative methyla-
tion value for different methylation region (CGI, Hyper, 
refUMR), we used the detected CpGs in each region to 
calculate the mean methylation level.

Annotation of methylated regions and conservation 
analysis
The 2  kb downstream of the CpG island was defined 
as CpG island shore, the extending 2  kb from the CpG 
island shore was defined as CpG island shelf, and the 
remaining genomic regions was defined as open sea. The 
genomic position annotation of methylated regions was 
used ChIPseeker v1.5.1 [55]. The comprehensive anno-
tation file of genes was downloaded from Gencode v23 
[56].

For conservation analysis, PhastCons scores for human 
genome at single-base resolution were downloaded from 
UCSC [54]. The evolutionary conservation score of a 
methylated region was calculated by the average value of 
the evolutionary conservation scores of all bases in the 
region.

Functional enrichment analysis
The phUMR and fhUMR related genes were defined as 
2  kb upstream of TSS to TES. GO functional annota-
tion of a specific gene sets was performed using Clus-
terProfiler 4.4.4 [57], and the results of KEGG functional 

annotation were obtained from the Metascape online 
tool [58]. The genes marked by both phUMR and fhUMR 
were removed. The list of oncogenes and tumor suppres-
sor genes was collected from COSMIC [59], the genes 
that were marked as both oncogenes and tumor suppres-
sors were removed.

ChIP‑seq data processing and analysis
Six type of histone modification signals (H3K4me3, 
H3K4me1, H3K27ac, H3K36me3, H3K27me3, 
H3K9me3) matched with normal brain WGBS samples 
were obtained from Roadmap [52], and the histone mod-
ification signals matched with IDH mutant glioma WGBS 
samples were obtained from DKFZ [26]. To compare 
normal brain and IDH mutant glioma samples, ChIP-seq 
data from Roadmap were processed as the same analysis 
pipeline in DKFZ [26]. Signal values of histone modifica-
tions were calculated using the SES method and visual-
ized using deepTools 3.3.0 [60].

RNA‑seq data processing and analysis
The gene expression data of GTEx and TCGA used in 
this study were obtained from UCSC Xena (https:// xenab 
rowser. net/ datap ages/). The gene expression data of nor-
mal brain and IDH mutant glioma tissues were obtained 
from Roadmap and DKFZ [26]. For multiple groups of 
samples, FDR-corrected t-test was used for TPM values, 
and the fold change was required to be greater than or 
equal to 2. For paired samples, only the fold change was 
used as the threshold.

Single‑cell RRBS and RNA‑seq data analysis
Single-cell RRBS data of 6 IDH mutant gliomas were 
obtained from the Johnson et  al. study [27]. Sample 
SM004 was excluded from further analysis due to a low 
cell count (n = 21). For each cell, the methylation status 
of partial Hyper and their flanking UMRs were calculated 
by the mean methylation level of detected CpG sites.

Single-cell RNA-seq data of IDH mutant gliomas were 
obtained from GSE89567 [32]. The cell type and cluster-
ing coordinate information were obtained from Single 
Cell Portal (https:// singl ecell. broad insti tute. org/ single_ 
cell). Gene set activity of phUMR/fhUMR related genes 
was calculated by AUCell (v1.14.0) [61]. AUCell_build-
Rankings algorithm was used for ranking model building, 
and then AUCell_calcAUC method was used to calculate 
the "Area Under the Curve" (AUC) scores.

Cross‑sample ChIP‑seq analysis of partial Hyper 
and flanking UMR
For each phUMR, the region was segmented into par-
tial Hyper and flanking UMR according to the bor-
der of hypermethylated CpGs in IDH mutant gliomas. 

https://github.com/wangxinyush/IDH_phUMR
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
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We computed ChIP-seq signals for these two types of 
regions, respectively, using deeptools 3.3.0 computeMa-
trix. Both partial Hyper and flanking UMR were scaled 
into 2  kb. For each matched partially Hyper and flank-
ing UMR, the output signal per window was merged 
base on the border of these two types of regions. And the 
merged signal matrix (upstream, partial Hyper, flanking 
UMR, downstream) was visualized using deeptools 3.3.0 
plotHeatmap.

Motif enrichment analysis
Motif enrichment analysis of methylated regions was 
used Homer findMotifsGenome.pl script [62]. The meth-
ylated regions with reverse transcriptional regulation 
were used as the background. The methylation prefer-
ences of TF motifs with methylation-sensitive SELEX 
were obtained from the previous study [63]. The interac-
tion pair of transcriptional factor and chromatin regula-
tor was downloaded from BioGRID [64].
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