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Abstract

Background Preconception exposure to phthalates such as the anti-androgenic dibutyl-phthalate (DBP) impacts
both male and female reproduction, yet how this occurs largely remains unknown. Previously we defined a series of
RNAs expressly provided by sperm at fertilization and separately, and in parallel, those that responded to high DBP
exposure. Utilizing both populations of RNAs, we now begin to unravel the impact of high-DBP exposure on those
RNAs specifically delivered by the father.

Results Enrichment of RNAs altered by DBP exposure within the Molecular Signature Database highlighted cellular
stress, cell cycle, apoptosis, DNA damage response, and gene regulation pathways. Overlap within each of these five
pathways identified those RNAs that were specifically (> fivefold enriched) or primarily (> twofold enriched) pro-
vided as part of the paternal contribution compared to the oocyte at fertilization. Key RNAs consistently altered by
DBP, including CAMTA2 and PSME4, were delivered by sperm reflective of these pathways. The majority (64/103) of
overlapping enriched gene sets were related to gene regulation. Many of these RNAs (45 RNAs) corresponded to key
interconnected CRREWs (Chromatin remodeler cofactors, RNA interactors, Readers, Erasers, and Writers). Modeling
suggests that CUL2, PHF10, and SMARCCT may coordinate and mechanistically modulate the phthalate response.

Conclusions Mediated through a CRREW regulatory network, the cell responded to exposure presenting stressed-
induced changes in the cell cycle—DNA damage—apoptosis. Interestingly, the majority of these DBP-responsive
epigenetic mediators' direct acetylation or deacetylation, impacting the sperm’s cargo delivered at fertilization and
that of the embryo.
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8-11], highlighting the importance of understanding
their role in development.

Phthalates are endocrine disruptors widely used in
consumer products [5, 12-14], such as vinyl plastics,
personal care products, and some medication coatings
[15-18]. To date, it is known that phthalate exposure
in males has an adverse impact on semen and embryo
quality, as well as time to pregnancy [19-22], but the
mechanism(s) remains obscure. To begin to address this
gap, we defined a series of sperm REs that respond to
phthalates [5] using the dibutyl-phthalate (DBP) Inflam-
matory Bowel Disease (IBD) mesalamine crossover
cross-back model (reviewed in [17]). To evaluate the
impact of high-DBP exposure, we recruited men tak-
ing one of two formulations of mesalamine; one was
encapsulated in a DBP-containing coating, and one was
without DBP in the coating. Sperm RE-RNAs [5] were
isolated and compared to those observed in the oocyte
and zygote. Two paternal provided classes were defined
from REs present in the zygote. Those paternal provided
REs enriched > fivefold compared to the oocyte [3], and
excluding those defined here as fivefold enriched [3],
those paternal REs, > twofold enriched compared to the
oocyte. Through RE expression, we show the mechanistic
impact of high-DBP exposure acting through epigenetic
modifiers and how they affect those RE-RNAs paternally
provided to the oocyte at fertilization.

Results

Sperm RNAs are known to respond to environmental
exposures [4—6]-like dibutyl-phthalate (DBP), an endo-
crine disruptor found in some medications, including the
coating of Asacol, whose active ingredient is mesalamine
used to treat Inflammatory Bowel Disease (IBD) [5, 15,
22]. At the recommended maximal Asacol dosage, DBP
exposure from the coating exceeds the Environmental
Protection Agency (EPA) reference dose for a 150-pound
individual by 300-700% (reviewed in [5, 23]) based on the
DBP primary urinary metabolite, monobutyl phthalate
(MBP). Men on Asacol had MBP urinary concentrations
1,000 times higher than the median male concentration
reported in the National Health and Nutrition Examina-
tion Survey (NHANES [24] within the general United
States population [23]. However, studies also indicate
that lower level environmental background exposures
to DBP from personal care and consumer products may
impact semen and embryo quality, and time to preg-
nancy [19-22]. Analysis of those sperm RNA Elements
(REs, exon-sized RNA fragments) altered in response to
high-DBP exposure from using DBP-coated mesalamine,
Asacol, compared to the non-DBP coated mesalamine,
Pentasa, has begun to define DBP exposome pathways
that impact sperm RE-containing RNAs (RE-RNAs) [5].
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As summarized in Fig. 1A, REs responsive to high-DBP
exposure [5] modifying the male contribution at fertiliza-
tion was considered. Men who were on non-DBP coated
mesalamine (e.g., Pentasa) transitioned to high-DBP
coated mesalamine (Asacol) (referred to as baseline to
crossover; B;H) in the baseline non-DBP (B;HB,) study
arm as well as men transitioning from non-DBP coated
mesalamine (e.g., Pentasa) back to high-DBP coated
mesalamine (Asacol) (referred to as crossover to cross-
back; BH,) in the high-DBP (H,BH,) study arm, were
considered. Comparison of REs responding to DBP with-
drawal was from the men starting on high-DBP coated
mesalamine transitioning to non-DBP coated mesala-
mine (baseline to crossover; H;B) and men transitioning
from high-DBP-coated mesalamine back to non-DBP-
coated mesalamine (crossover to crossback; HB,).

Biological pathways altered by DBP exposure

The REs defined from this series of high-DBP exposures
or withdrawals were associated with biological pathways
within the Molecular Signature Database (MSigDB) using
the DBP responsive RE-RNAs summarized in Fig. 1B
(Additional file 2: Table S1) as input. These included all
positively or negatively correlated RE-RNAs, or the entire
set of correlated RE-RNAs described as altered between
each study visit, e.g., B;H (high-DBP exposure). For each
set of genes, enrichment (Fig. 1B) identified five major
biological processes; cellular stress, cell cycle, DNA dam-
age response, apoptosis, and gene regulation (Fig. 2A,
Additional file 3: Table S2). Each enriched biological
process included specific MSigDB gene sets within both
study arms (B;HB, and H,;BH,).

The majority of enriched gene sets were associated with
gene regulation (191/392 gene sets), indicating a large
proportion of DBP-responsive RE-RNAs function as
either transcription factors (TFs) or CRREWSs (Chroma-
tin remodeler cofactors, RNA interactors, Readers, Eras-
ers, and Writers [4]). DBP-responsive TF binding sites
were identified, and the number of unique TFs assigned
to these binding sites is summarized in Additional file 4:
Table S3A. However, there was no statistical signifi-
cance in the number DBP responsive TF encoded RE-
RNAs (Additional file 4: Table S3A), which suggested
other modulators of gene expression may dominate, and
CRREWs were considered (Fig. 1B and D, Additional
file 5: Table S4). The proportion of CRREWSs was higher
than expected (Additional file 4: Table S3B). Accordingly,
their potential as modulators among the various enriched
biological processes was examined (Fig. 2A). In total, 119
CRREWSs were specific to the analysis within the B;HB,
comparisons, while 60 CRREWSs were specific to those
within the H,BH, comparisons. Fifty CRREWs were rep-
resented in the analysis of both study arms (Additional
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Fig. 1 Study analysis design. A Briefly, dibutyl-phthalate (DBP) responsive RNA Element (RE)-containing RNAs (RE-RNAs) from each crossover—
crossback segment and paternally provided set were identified. B Ontology was assessed by the Molecular Signature Database (MSigDB), and
shared DBP responsive and paternally provided RE-RNAs determined. C Shared RE-RNAs were evaluated for presence in overlapping DBP responsive
and paternally provided MSigDB enriched gene sets. CRREWSs (chromatin remodeler cofactors, RNA interactors, Readers, Erasers, and Writers)
RE-RNAs were identified, and their presence within overlapping DBP responsive and paternally provided MSigDB gene sets was assessed. D Gene
network to visualize CRREW biological process interactions was generated. H;B; high-DBP (baseline visit) to background DBP (crossover visit), BH.;
background DBP (crossover visit) to high-DBP (crossback visit), B;H; background DBP (baseline visit) to high-DBP (crossover visit), HB,; high-DBP

(crossover visit) to background DBP (crossback visit)

file 5: Table S4). Together this suggests that a start arm’s
initial drug coating (i.e., high-DBP coated mesalamine
or non-DBP coated mesalamine) impacts these biologi-
cal processes through a unique set of CRREW modula-
tors. In total, 50 DBP-responsive CRREWSs were shared
between both study arms modulating these biological
processes.

DBP-responsive and paternally provided RE-RNAs

Consideration was given to whether the DBP-responsive
RE-RNAs and enriched pathways were present, enriched,
and/or unique in those provided by the father at fertili-
zation. Enriched vs unique paternal REs were defined

by the presence, or lack of the RE in the oocyte, with an
RPKM <2 considered absent, as this is the lower thresh-
old in which RE presence exceeds experimental error.
Two types of paternally provided REs, and their associ-
ated gene names (RE-RNAs), were examined. The first
comprised the 289 REs (from 206 RE-RNAs) previ-
ously defined as paternally enriched (fivefold paternally
enriched, Fig. 1A) [3] from a non-IBD population exposed
only to background levels of DBP. The second included
an additional set of 250 REs (from 93 RE-RNAs), not
including those previously defined, that appear to have
at least a twofold enrichment in sperm compared to the
oocyte (twofold paternally enriched, Fig. 1A, Additional
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Fig. 2 Biological pathways enriched in response to dibutyl-phthalate (DBP). A DBP responsive enriched biological pathways were identified using
the Molecular Signature Database (MSigDB). The total number of unique RE-RNAs and enriched gene sets is provided. Enriched gene sets were
either unique to DBP study arm (B,HB, or H,BH,) or within each study arm. B,;HB, provided the background DBP study arm baseline to crossover to
crossback, H,BH, provided the high-DBP study arm baseline to crossover to crossback. B DBP-responsive RNA Elements (REs) within the enriched
biological pathways that share paternally provided RE-containing RNAs (RE-RNA) were identified. Paternally provided: REs determined as fivefold
paternally enriched or twofold paternally enriched. Node color indicates the following; Orange: enriched biological processes, Yellow: RE abundance
increases following DBP exposure, Pink: RE abundance decreases upon DBP exposure, Green: RE abundance increases upon DBP withdrawal, Blue: RE
abundance decreases upon DBP withdrawal. Edge color indicates the total number of DBP responsive REs (1-40 REs) with an overlapping paternally
provided RE-associated gene name moving between nodes. Scaling for edge color is continuous with 1 RE attributed to a Dark Blue color and 40
REs attributed to a Red color. Edge line type indicates the following; solid: background DBP (baseline visit) to high-DBP (crossover visit) (B,H), parallel
lines: high-DBP (crossover visit) to background DBP (crossback visit) (HB,), dash: high-DBP (baseline visit) to background DBP (crossover visit) (H;B),
dots: background DBP (crossover visit) to high-DBP (crossback visit) (BH,)
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file 6: Table S5). Both paternally provided sets were iden-
tified from those observed at a level of at least 10 RPKM
in the zygote. A total of 83 REs (5 x paternally enriched:
75 REs [3], 2 x paternally enriched: 8 REs (Additional
file 6: Table S5)) were specific to the sperm. In addition,
as previously stated, an RPKM > 10 in the zygote was a
requirement for the paternally provided REs. This leads
to the possibility of the RPKM abundance in the zygote
exceeding the combined RPKM in the sperm and oocyte.
Only 2% of the paternally provided RE-RNAs (11/539
RE-RNAs) >5 RPKM were more abundant in the zygote
than in sperm. Comparing these paternally provided RE-
RNAs to those defined as DBP responsive defined a series
of RE-RNAs that were both DBP responsive and pater-
nally provided (Figs. 1B, 2B).

Using Cytoscape [25] to aid visualization, the 132
paternally provided DBP-responsive RE-RNAs identi-
fied in Fig. 2B represented a significantly larger overlap
between data sets than expected (p<4.358e-35, repre-
sentation factor=3.0). Of these RE-RNAs, a significant
proportion was CRREWSs (45 CRREWS; Fig. 1C, Table 1,
Additional file 7: Table S6). From this list, 86 RE-RNAs,
including 38 CRREWs (Table 1), were within the DBP-
enriched biological processes, including GOMF chroma-
tin binding and GOBP cellular response to stress (Figs. 1B,
2B). Most of the DBP responsive CRREWSs were specific
to the B;HB, or the H;BH, comparisons. The chroma-
tin remodeler cofactors PHFI10, CUL2, ATXN7, PHC3,
SMARCCI, and EYA3, were identified (Table 1), indicat-
ing these CRREWs likely modulate the DBP response
between these processes. Of these, CUL2, PHFI0, and
SMARCCI were visually full-length in all DBP responsive
and paternally provided samples that passed the Tran-
script Integrity Index (TII) for identification of samples of
similar RNA quality [26] (Table 1, Additional file 1: Fig-
ure S1). Their representation in the shared enriched gene
sets within each biological process supports the essential
role of these three CRREWSs in the DBP response.

As summarized in Table 2, the paternally enriched
DBP-responsive RE-RNAs, including ACSM3, PSME4,
CCDC7, NUP98 and CAMTA2, responded similarly
throughout the study, increasing or decreasing in abun-
dance when exposed to or withdrawn from high-DBP.
CAMTA2 and PSME4 were full-length (Additional file 8:
Table S7), suggesting post-fertilization activity. The cor-
responding MSigDB gene sets for the aforementioned
DBP responsive and paternally provided CRREWSs, along
with the non-CRREW RE-RNAs CAMTAZ2 and PSME4,
are highlighted in Fig. 3 and Table 3.

A total of 46 of the 132 DBP responsive and paternally
provided RE-RNAs were not within any of the enriched
MSigDB gene sets related to the biological processes
highlighted in Fig. 2. These 46 RE-RNAs were evaluated

Page 5 of 21

separately using EnrichR to identify gene function
(Additional file 9: Table S8) and determine whether they
reported functions within these biological processes.
This highlighted multiple full-length CRREWs. First is
the histone deacetylase complex (HDAC) [27, 28] regu-
lated EFCAB6, a chromatin remodeler cofactor associ-
ated with androgen receptor (AR) signaling, proteolysis,
and transcriptional regulation. It further highlighted the
chromatin remodeler cofactor RARA, which functions in
histone methylation [29, 30], is involved in apoptotic cell
clearance, the positive regulation of the cell cycle, cellu-
lar response to estrogen and hormone stimulus, and the
negative regulation of transcription by RNA polymerase
II (Additional file 9: Table S8). Interestingly, the chroma-
tin remodeler cofactor FBRS had no reported ontologies
within EnrichR. However, it is part of the RING2-FBRS
replication-independent complex involved in histone
modification [29, 31, 32].

Discussion

Utilizing the DBP-responsive sperm RE-RNAs [5], five-
fold paternally enriched RE-RNAs [3], and twofold pater-
nally enriched RE-RNAs, we have begun to frame the
effect of exposures on what is paternally provided at ferti-
lization. Significantly more than expected RE-RNAs cor-
responding to CRREWSs (38 DBP responsive, paternally
provided CRREWs within shared enriched MSigDB gene
sets) were identified. This included three full-length RE-
RNAs, consistent with the view that they act as mediators
between pathways in response to exposure. This increase
in the proportion of CRREWSs but not TFs mimics what
we previously reported within a series of body mass
index (BMI) responsive RE-RNAs [4]. Consistent with
the above, if they play a role during protamine replace-
ment and syngamy as the blastocyst begins to form, one
would expect a more significant proportion of CRREW
RE-RNAs than TFs remaining in the mature sperm.

DBP impacts 86 paternally provided RE-RNAs
(Figs. 2B, 3) ontologically linked to cellular stress, cell
cycle, apoptosis, DNA damage response, and gene regu-
lation. While most of these RE-RNAs appear responsive
to DBP in either the H,BH, or B;HB, exposure compari-
sons, a subset is responsive irrespective of exposure dura-
tion or time removed from high-DBP. Three full-length
CRREWs (CUL2, PHF10, and SMARRCI) and two full-
length fivefold paternally enriched non-CRREW RE-
RNAs (CAMTA2 and PSME4) were identified. These five
RE-RNAs respond to the addition or removal of high-
DBP irrespective of the study arm and are within a series
of biological processes, as represented in Fig. 3.

This analysis identified a highly complex, intercon-
nected gene network (Fig. 1D) reflecting DBP respon-
sive and paternally provided RE-RNAs. To more readily
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Table 2 Dibutyl-phthalate (DBP) responsive and paternally provided RNA Element (RE)-containing RNAs (RE-RNAs)

Five fold Paternally enriched

Two fold Paternally enriched

H,B vs B,H H,Bvs HB, BH, vs B,H BH, vs HB, H,B vs B,H H,Bvs HB, BH, vs B,H BH, vs HB,
ACSM3 STK39 ANKRD36B VTIB ATXN7 ATXN7 EYA3 PKM
ANKRD36C ERCI ANKRD36C AKT3 SMARCC1 PHC3
CAMTA2 PSME4 CTNS ANKRD36B SMARCC1
ccocy STRN3 cuL2 ERCI
CTNS KIAA0586 KIFAP3
cuL2 MORC2 NUP98
LMBRIL NPIPAS PARP6
MORC2 NUP214 PER
NUP214 PERT PHF10
PSME4 PHF10 PSME4
SEC31A POLDIP2 RGPD6
STK39 PSME4 SLC22A23
STRN3 RGPD6 STK39
RGPDS
STK39
ULK4

RE-RNAs in bold indicate pattern in the same direction upon addition and subtraction of DBP. Paternally provided; five fold paternally enriched or two fold paternally
enriched, H;B; high-DBP (baseline visit) to background DBP (crossover visit), BH, background DBP (crossover visit) to high-DBP (crossback visit), B;H; background DBP
(baseline visit) to high-DBP (crossover visit), HB, high-DBP (crossover visit) to background DBP (crossback visit). Bold text indicates the RE-RNA is shared within both

drug study arms.

interpret this gene network, the focus was given to the
full-length DBP responsive paternally provided RE-RNAs
highlighted in Fig. 3. Here, SMARCCI and PHF10 (top
of Fig. 3) function as part of the SWI/SNF complex
(middle left of Fig. 3) to enhance the transactivation of
AR [33-35] in direct opposition to the AR transcrip-
tional repression by the chromatin remodeling cofactor
EFCAB6 (Additional file 9: Table S8, bottom of Fig. 3)
[27, 28]. Interestingly, DBP has anti-androgenic activ-
ity (reviewed in [13]); however, AR was not found as
directly responsive to high-DBP exposure or withdrawal
[5], which is consistent with the lack of an in vitro inter-
action between DBP and AR [36]. In response to DNA
damage, the SMARCCI and PHFI0 containing SWI/
SNF complex (middle left of Fig. 3) are known to accu-
mulate, likely enabling transient chromatin accessibility
to DNA-binding and DNA damage response proteins
[37]. As expected, PHF10 and SMARCCI were within a
number of the same enriched gene sets (Table 3, Fig. 3),
including GOMF histone binding alongside PSME4, and
GOMEF transcription regulator activity and GOBP posi-
tive regulation of transcription by RNA polymerase II
with CAMTA?2, indicating shared functions. CAMTA2,
while not a CRREW, is a transcriptional activator that
associates with class II HDACs to negatively modulate
topological associated domains (TADs) [38, 39]. How-
ever, the proteasome component PSME4 acts to recog-
nize acetylated histones, promoting histone degradation

during spermatogenesis and the DNA damage response
[40, 41]. The chromatin remodeler cofactor RARA regu-
lating transcription in a ligand dependent manner (Addi-
tional file 9: Table S8). RARA functions in response
to estrogen stimulus (Additional file 9: Table S8), is
involved in H3K4 methylation [30] as part of a heter-
odimer and induces histone deacetylation when the
heterodimer associates with specific multiprotein com-
plexes [42]. These relationships begin to highlight how
the DNA damage response may feedforward regulating
gene expression (center of Fig. 3). Together with PSME4,
CUL?2 was within the enriched DNA damage response
gene set Dacosta UV response via ERCC3 dn (Table 3,
Fig. 3). As part of the E3 ubiquitin ligase complex (mid-
dle left of Fig. 3), CUL2 alongside BAF250, elongin C
and ROC1 ubiquitinate histone H2BK120 aiding in SWI/
SNF complex H3K4 trimethylation [43, 44]. CUL2 fur-
ther enables the interaction of VHL with elongin B and
elongin C to form the E3 ubiquitin ligase complex to
recruit VHL to HP1 chromatin [45, 46]. In addition, the
CUL2 containing E3 ubiquitin ligase has been identified
as important in Adenovirus inactivation of a DNA dam-
age response [47]. It is integral to the progression of G1
to S and the S-phase-dependent DNA damage response
[48]. While not identified within the enriched MSigDB
gene sets from Additional file 3: Table S2, RARA partici-
pates in the regulation of the cell cycle and apoptotic cell
clearance (Additional file 9: Table S8, bottom of Fig. 3).
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Fig. 3 Interconnected gene network of paternally provided dibutyl-phthalate (DBP) responsive RNA Elements (RE)s. The gene network highlights
those relationships corresponding to the full-length RE-containing RNAs (RE-RNAs) CAMTAZ, EFCAB6, PSME4, SMARCCT, PHF10, RARA, FBRS and CUL2.
Paternally provided RE-RNA is either fivefold or twofold paternally enriched. Key genes are highlighted based on node color. Dark blue node borders
indicate fivefold paternal enrichment, while a green border indicates twofold paternal enrichment. Node color and shape are as follows; pink squares:

CRREW (Chromatin remodeler cofactor, RNA interactor, Reader, Eraser, and Writer) RNA, blue square: key RNA that is not a CRREW, orange circle:

major enriched biological pathways, bright yellow circle: indicate functions related to acetylation/deacetylation, methylation/demethylation and
ubiquination/deubiquination: light yellow circle; specific process related to acetylation/deacetylation, methylation/demethylation and ubiquination/
deubiquination, light pink circle: protein complexes that include at least one key gene, purple circle; enriched MSigDB geneset, grey circle; gene

function not assigned by an MSigDB geneset, blue circle; MGl phenotype

This indicates a potential interaction with CUL2 within
the apoptotic gene sets Graessman apoptosis by doxo-
rubicin dn and GOBP programmed cell death (Table 3,
Fig. 3). These relationships highlight the potential coop-
eration between these CRREW complexes and how a
DBP-induced DNA damage response may impact the cell
cycle, leading to its arrest and eventually, cell death.
CUL2 and PSME4 were also within REACTOME cel-
lular responses to stimuli (Table 3, Fig. 3). While little
is known about the function of FBRS, it is part of the
RING2-FBRS complex (bottom right of Fig. 3), a type of
Polycomb group (PcG) complex [29, 31, 32] that acts as
a transcriptional activator of mesoderm differentiation,
and a regulator of H2AK119ub1 levels [49]. PSME4 and
SMARCCI are within the gene sets REACTOME RNA
polymerase II transcription, Senese HDAC3 targets up,
and GOBP chromosome organization (Table 3, Fig. 3).
With DBP-responsive RE-RNAs represented within
each enriched biological process, an interconnected net-
work centered on cellular response to DNA damage as

modulated by CRREWSs was highlighted (Figs. 2A, 3).
This is consistent with a known effect of phthalate expo-
sure resulting in DNA damage [50, 51].

Intriguingly, the fivefold paternally enriched CUL2,
PHF10, EFCAB6, and FBRS, and twofold paternally
enriched SMARCCI and RARA are chromatin remodeler
cofactors (Fig. 3, Additional file 5: Table S4) providing a
foray into mechanism. As shown in Fig. 3, the majority of
these eight DBP responsive and paternally provided RE-
RNAs are involved in acetylation or deacetylation [27, 28,
38, 39, 44, 46, 52], except CUL2 and FBRS (Fig. 3). This
highlights the importance of paternally derived acetyla-
tion factors during the final steps of spermatogenesis and,
potentially, early embryogenesis. During spermatogene-
sis, acetylation of histone H4 is a critical step in replacing
histones with protamine (reviewed in [53, 54]). Within
3 h of fertilization, the paternal chromatin will undergo
transient hyperacetylation of histone H4 (reviewed in
[53, 55]). To date, the molecular components integral
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Table 3 Enriched biological processes of key dibutyl-phthalate (DBP) responsive, paternally provided RNA Element (RE)-containing

RNAs (RE-RNAS)

RE-RNA  CRREW CRREW class Enriched biological process

Enriched MSigDB Gene Set

CAMTA2 No - Cellular stress

Gene regulation

CuUL2 Yes Chromatin remodeler cofactor ~ Cellular stress
Apoptosis

DNA damage response to UV exposure
Gene regulation

PHF10 Yes Chromatin remodeler cofactor ~ Cellular stress

Gene regulation

PSME4 No - Cellular stress

Cell cycle

DNA damage response to UV exposure
Gene regulation

GOBP positive regulation of cellular biosynthetic
process

GOBP positive regulation of nucleobase containing
compound metabolic process

GOBP positive regulation of RNA metabolic process

GOBP positive regulation of transcription by RNA
polymerase Il

GOCC chromosome

GOMF chromatin binding

GOMF transcription coactivator activity
GOMF transcription regulator activity
REACTOME cellular responses to stimuli
Graessman apoptosis by doxorubicin dn
GOBP programmed cell death

Dacosta UV response via ERCC3 dn
GOCC transferase complex

Shen SMARCA?2 targets up

GOBP negative regulation of biosynthetic process

GOBP positive regulation of cellular biosynthetic
process

Martens tretinoin response dn

GOBP negative regulation of nucleobase containing
compound metabolic process

GOBP positive regulation of nucleobase containing
compound metabolic process

GOBP positive regulation of RNA metabolic process

GOBP positive regulation of transcription by RNA
polymerase Il

GOCC chromosome

GOMF histone binding

GOMF transcription coregulator activity
GOMF transcription regulator activity
GOBP cellular response to DNA damage stimulus
GOBP cellular response to stress
REACTOME cellular responses to stimuli
GOBP nucleus organization

REACTOME cell cycle

REACTOME cell cycle mitotic

Dacosta UV response via ERCC3 dn

GOBP chromatin organization

GOBP chromosome organization

GOMF histone binding

REACTOME metabolism of RNA
REACTOME RNA polymerase Il transcription
Senese HDAC3 targets up
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RE-RNA  CRREW CRREW class

Enriched biological process

Enriched MSigDB Gene Set

SMARCC1  Yes Chromatin remodeler cofactor ~ Cellular stress

Cell cycle

DNA damage response to UV exposure

Gene regulation

GORBP cellular response to endogenous stimulus

GOBP positive regulation of cellular biosynthetic
process

GOBP regulation of catabolic process

GOBP response to endogenous stimulus

Martens tretinoin response dn

Fischer DREAM targets

Hallmark G2M checkpoint

Monnier postradiation tumor escape up

GOBP chromatin organization

GOBP chromatin binding

GOBP chromosome organization

GOBP positive regulation of RNA metabolic process

GOBP positive regulation of nucleobase containing
compound metabolic process

GOBP positive regulation of transcription by RNA
polymerase Il

GOCC chromosome

GOMF histone binding

GOMF transcription coactivator activity
GOMF transcription coregulator activity
GOMF transcription regulator activity
GSE17721 CPG vs gardiquimod 4 h BMDC dn
Hallmark MYC targets V1

Marson bound by FOXP3 stimulated
Marson bound by FOXP3 unstimulated
REACTOME chromatin modifying enzymes
REACTOME RNA polymerase Il transcription

Senese HDAC3 targets up

RE-RNAs are visually full-length using the UCSC genome browser. DNA damage response: DNA damage response to UV exposure. Paternally provided: fivefold
paternally enriched or twofold paternally enriched; CRREW: chromatin remodeler cofactor, RNA interactor, reader, eraser and writer.

to transient hyperacetylation remain elusive [53]. These
RNAs may function in this transient hyperacetylation
event.

Conclusions

Alterations in mouse sperm RNAs have been linked to
offspring’s metabolic health and stress response [2, 6,
8-11]. These studies have provided evidence in favor
of the paternal origins of health and disease (POHaD)
(reviewed in [12, 56, 57]). Recently, environmental expo-
sures, including DBP and bisphenol A (BPA), and lifestyle

factors such as BMI have been associated with altera-
tions of epigenetic marks in sperm [4, 5, 12, 58—61], that
is beginning to reconcile exposure and POHaD. Each of
the CRREWSs highlighted (CUL2, SMARCCI1, PHFI0,
EFCAB6, FBRS, and RARA) alongside the non-CRREW
CAMTA2 and PSME4 are paternally delivered as full-
length RNAs ready for translation and early utilization in
the fertilized oocyte. Perhaps these three CRREWs play
a role directly following fertilization as the father’s chro-
matin is restructured or during syngamy. Interestingly,
these genes are not represented within the human oocyte
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proteome [62], although CUL2, PSME4, and EFCAB6 are
within the human sperm proteome [63]. As described
above, they may encode early transient events like
hyperacetylation in response to DBP exposure. On one
hand, these RNAs are likely essential in functions prior
to Embryonic Genome Activation, consistent with the
MGI phenotype Ontology Annotations [64]. For exam-
ple, CAMTA2, CUL2, PHF10, and SMARCCI mouse
knockdowns result in embryonic and/or preweaning
lethality (Fig. 3, blue circles). On the other hand, PSME4
and RARA knockdowns impair male fertility due to sev-
eral abnormalities related to spermatogenesis [64] (Fig. 3,
blue circles). This emphasizes the importance of the
sperm providing full-length transcripts and proteins at
fertilization, as they may serve as the driving force behind
the DBP-induced decreases in semen and embryo quality
and subsequent increases in time to pregnancy.

Methods

DBP responsive REs

The differentially expressed REs summarized in Estill, MS
et al. [5] from the crossover—crossback designed study
were utilized (Additional file 2: Table S1). Men entered
the study were on either a high-DBP-coated mesalamine
at baseline (high-DBP study arm (+), 112 semen sam-
ples, Fig. 1A) or non-DBP-coated mesalamine at base-
line (background DBP study arm (—), 63 semen samples,
Fig. 1A) [5]. It is important to note that both medications
contain the same active pharmaceutical, mesalamine,
and were exchangeably prescribed to IBD patients. They
differed only in the presence of DBP in the coating. The
90-day intervals were designed to be reflective of a sper-
matogenic cycle and hence washout, when men would
switch to the opposing drug from baseline to crossover,
B,H (background DBP to high-DBP)/H;B (high-DBP to
background DBP), then switched back from crossover
to crossback, HB, (high-DBP to background DBP)/BH,
(background DBP to high-DBP). Here, REs were evalu-
ated as a function of this 90-day spermatogenic cycle
and the duration of high-DBP exposure/withdrawal. This
study was approved by the institutional review boards
Partners Hospitals (Massachusetts General Hospital)
protocol 2005P001631 and of Harvard T.H. Chan School
of Public Health, Beth Israel Deaconess Medical Center,
and Brigham and Women’s Hospital. The use of human
tissue was approved by the Wayne State University Inves-
tigation Committee and carried out under the Wayne
State University Human Investigation Committee IRB
protocol 095701 MP2E(5R).

Paternally provided REs
Paternally provided REs (generated from 7 non-
IBD semen samples not exposed to high-DBP) were
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characterized from a total of 75,988 REs [11,386 RE—
RE-containing RNAs (RE-RNAs)] identified within
the zygote having a reads per kilobase per million
(RPKM) > 10 [3]. As the zygote has yet to undergo embry-
onic genome activation, RE-RNAs present will be those
provided directly by the sperm and oocyte [3]. Paternally
enriched REs delivered at fertilization in which enrich-
ment was at least fivefold higher when compared to the
oocyte (fivefold paternally enriched) were described as
having a median abundance>25 RPKM in sperm,<5
RPKM in the oocyte, and>10 RPKM in the zygote [3].
This yielded a series of stringent REs that the father pro-
vides at fertilization.

To expand upon what may be paternally provided, an
additional set of twofold paternally enriched REs were
defined using a lower enrichment threshold for compari-
son (Fig. 1A, B). From the total 51,089 zygotic REs
(10,277 RE-RNAs) independent of the paternally or
maternally enriched REs previously defined [3], the
paternal RE/maternal RE ratio was calculated in the fol-
lowing manner. If the RPKM of the zygotic RE was larger
than the sum of the sperm and oocyte REs, the contribu-
tion of the sperm and oocyte equaled their respective
RPKM abundance. If the zygote RPKM was less than the
sum of the sperm plus oocyte REs, paternal contribution
(Pc) was calculated as Pc = Z — ( ﬁ), where Z repre-

sents the zygote REs RPKM, s represents the sperm RE
RPKM and o represents the oocyte RE RPKM. Paternally
contributed REs at a level twofold greater than the mater-
nal contribution were termed twofold paternally enriched
REs. While a series of these paternally provided REs are
enriched in the sperm compared to the oocyte, some are
specific to the sperm. For REs specific to the sperm, the
RPKM in the oocyte was <2, the abundance value in
which true RE presence cannot be confirmed. Each set of
paternally provided REs was evaluated as a separate and
combined RE list, as defined in Fig. 1.

Sample and transcript integrity

The transcript Integrity Index (TII) algorithm [26] was
used to identify samples of similar quality [3, 5] using
the 22 stable sperm-specific transcripts we previously
defined [26]. The TII threshold was set at 50% of the tran-
script covered by at least 5 reads per million (RPM). Sam-
ples within the fourth quartile (Q4) were considered to
have poor quality RNA [26]. Those samples passing TII
were used to visually assess the paternally delivered RE
corresponding RNAs of interest using the UCSC Genome
Browser using Gencode version 36 [65]. RNAs were con-
sidered full-length if a minimum of 5 RPKM covered the
transcript in all samples (7 paternally provided samples,
55 high-DBP study arm samples, 35 background DBP
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study arm samples). The 5 RPKM cutoff defines the mini-
mum abundance in which there can be confidence in RE
presence.

Gene ontology and statistical analysis

Enriched biological processes and pathways were evalu-
ated using the Molecular Signature Database (MSigDB)
version 7.5.1, employing the following collections: Hall-
mark gene sets (Hm), curated gene sets (C2), Gene
Ontology (GO) gene sets (C5), and immunologic gene
sets (C7). The collection C3: regulatory target gene set
sub-category transcription factor (TF) targets were used
to identify biologically corresponding TFs within the
data. Each collection was considered separately. Thresh-
olds were set to return the top 100 gene sets with a False
Discovery Rate (FDR) g<0.05 and a minimum of a two-
gene overlap.

MSigDB analysis enables a maximum of 500 recog-
nized genes per analysis. To evaluate the DBP responsive
REs in Additional file 2: Table S1, each DBP compari-
son in Fig. 1A was separated into six groups based on
the empirical (bootstrapped) p value that was generated
using random resampling [5]. To group REs into the six
empirical p value range groups, the REs within the larg-
est DBP responsive comparison (all significantly associ-
ated REs within the(B;H comparison [5], Fig. 1B) were
used. This would ensure that no comparison visualized in
Fig. 1B would contain more than 500 unique RE-RNAs
for MSigDB investigation. The six empirical p value range
groups were as follows: group 1=p<0.013, group 2=p
between 0.013 and 0.023, group 3 =p between 0.023 and
0.032, group 4=p between 0.032 and 0.041, group 5=p
between 0.041 and 0.045, and group 6 =p between 0.045
and 0.05. In the B;H, all correlated REs within Fig. 1B
(3,651 [2,311 genes] REs), this segregated the REs as fol-
lows; group 1=711 REs (577 unique genes with 485
genes recognized), group 2=706 REs (566 unique genes
with 486 genes recognized), group 3=718 REs (565
unique genes with 477 genes recognized), group 4=693
REs (551 unique genes with 470 genes recognized), group
5=451 REs (374 unique genes with 323 genes recog-
nized), and group 6=372 REs (311 unique genes with
250 genes recognized).

EnrichR [66, 67], along with GeneCards (https://www.
genecards.org/) [68] and the NIH Genetics Home Refer-
ence (https://ghr.nlm.nih.gov/), were utilized to assess
gene function and disease associations. EnrichR cat-
egories of Pathways, Ontologies, and Diseases/Drugs
were considered. Mediators of gene expression above
TFs, considered Chromatin remodeler cofactors, RNA
interactors, Readers, Erasers, and Writers (CRREWs).
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Brieflyy, CRREWs were identified from the curated list
as described [4, 63], and key transcripts of interest were
evaluated as part of the human sperm proteome.

The significance of proportional overlaps for TFs and
CRREWs within the data was determined by the hyper-
geometric probability test with normal approximation
from http://nemates.org/MA/progs/overlap_stats.html.
This provides a p value corresponding to a representa-
tion factor value indicating whether the overlap is signifi-
cantly more or less than expected. A two-tailed ¢ test for
two samples of unequal variance was performed to calcu-
late p values associated with the paternal/maternal con-
tribution fold change using Microsoft 365 Excel (version
2202).

Abbreviations

AR Androgen receptor

B Men transitioning from the high-DBP mesalamine to background
DBP mesalamine (crossover visit)

B, Men entering on the non-DBP mesalamine (background DBP
baseline visit)

B,H Background DBP (baseline visit) to high-DBP (crossover visit)

B, Men returning to non-DBP mesalamine (background DBP cross-
back visit)

BH, Background DBP (crossover visit) to high-DBP (crossback visit)

B,HB, Background DBP study arm, baseline to crossover to crossback

BMI Body mass index

BPA Bisphenol A

2 Curated gene sets

a Regulatory target gene set sub-category transcription factor
targets

() GO gene sets

c7 Immunologic gene sets

CRREWs  Chromatin remodeler cofactors, RNA interactors, Readers, Erasers,
and Writers

DBP Dibutyl-phthalate

EPA Environmental protection agency

FDR False discovery rate

GO Gene ontology

H Men transitioning from the non-DBP mesalamine to high-DBP
mesalamine (crossover visit)

H, Men entering on the high-DBP mesalamine (high-DBP baseline
Visit)

H,B High-DBP (baseline visit) to background DBP (crossover visit)

H,BH, High-DBP study arm, baseline to crossover to crossback

H, Men returning to high-DBP mesalamine (high-DBP crossback visit)

HB, High-DBP (crossover visit) to background DBP (crossback visit)

HDACs Histone deacetylase complexes

Hm Hallmark gene sets

IBD Irritable bowel disease

MBP Monobutyl phthalate

MSigDB  Molecular signatures database

nBAF complex Neuron-specific chromatin remodeling complex

NHANES  National Health and Nutrition Examination Survey

npBAF complex Neural progenitors-specific chromatin remodeling

complex
RE RNA Element

Paternally provided REs 5-Fold paternally enriched/twofold paternally
enriched REs

PDT Photodynamic therapy

PcG Polycomb group

POHaD Paternal developmental origins of health and diseaseQ4: fourth
quartile

REDa RNA element discovery algorithm


https://www.genecards.org/
https://www.genecards.org/
https://ghr.nlm.nih.gov/
http://nemates.org/MA/progs/overlap_stats.html
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RE RNA element
RE-RNA RE-containing RNA/gene
RPKM Reads per kilobase per million

RPM Reads per million

TAD Topological associated domain
TF Transcription factor

Tl Transcript integrity index
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Additional file 1: Figure S1. Chromatin remodeler cofactor, RNA interac-
tor, reader, eraser and writer (CRREW) RNA Element (RE)-containing RNA
(RE-RNA) visual integrity. Representative samples chosen for A) CUL2,

B) SMARCCT and C) PHF10. Integrity of DBP responsive and paternally
provided CRREWSs was determined using the UCSC Genome Browser
Gencode version 41 track. Threshold for an RE-RNA to be considered
full-length was set at a minimum of 5 Reads per Kilobase per Million
(RPKM) across all transcript exons in all 7 paternally provided samples and
all DBP responsive samples (high-DBP study arm (H,BH,), 55 samples;
background-DBP study (B,HB,) arm: 35 samples).

Additional file 2: Table S1. Number of RNA elements (REs) responsive to
dibutyl-phthalate (DBP). REs were obtained from the publication Estill, MS
etal. (2019b) (5). H;B; high-DBP (baseline visit) to background DBP (crosso-
ver visit), BH,; background DBP (crossover visit) to high-DBP (crossback
visit), B;H; background DBP (baseline visit) to high-DBP (crossover visit),
HB,; high-DBP (crossover visit) to background DBP (crossback visit).

Additional file 3: Table S2. Enriched biological processes and pathways
related to cellular stress, cell cycle, apoptosis, DNA damage response and
gene regulation. RNA Element (RE) indicated in Fig. 1 panel B processes
were used to query the Molecular Signature Database. Bolded text indi-
cates the gene set is enriched in the paternally provided and DBP respon-
sive RE-containing RNAs (RE-RNAs) evaluated. Italicized text indicates a
gene set enriched upon DBP exposure addition and withdraw irrespective
of original study arm. H,B; high-DBP (baseline visit) to background DBP
(crossover visit), BH,; background DBP (crossover visit) to high-DBP (cross-
back visit), B;H; background DBP (baseline visit) to high-DBP (crossover
visit), HB,; high-DBP (crossover visit) to background DBP (crossback visit),
purple text; gene sets related to cellular stress, brown text; gene sets
related to the cell cycle, green text; gene sets related to apoptosis and cell
death, red text; gene sets related to DNA damage response (DNA damage
response to UV exposure), blue text; gene sets related to gene regulation.,
indicates no enrichment in the gene set.

Additional file 4: Table S3. Number of dibutyl-phthalate (DBP) respon-
sive transcription factor (TF) binding site gene sets and Chromatin remod-
eler cofactors, RNA interactors, Readers, Erasers and Writers (CRREWSs). A)
Enriched TF binding site gene sets. Enriched gene sets were separated
based on the identification of having a known TF reported to bind. B)
Number of DBP responsive CRREWSs. Gene lists were generated from
those RNA Element (RE)-containing RNAs (RE-RNAs) represented within
Fig. 1. Representation factor and p value were determined by hypergeo-
metric probability test.

Additional file 5: Table S4. All Di-butyl phthalate (DBP) responsive and
paternally provided CRREWs within sperm. H,B; high-DBP (baseline visit)
to background DBP (crossover visit), BH,; background DBP (crossover visit)
to high-DBP (crossback visit), B;H; background DBP (baseline visit) to high-
DBP (crossover visit), HB,; high-DBP (crossover visit) to background DBP
(crossback visit), paternally provided, RE-containing RNAs (RE-RNAs) that
are fivefold paternally enriched or twofold paternally enriched.

Additional file 6: Table S5. REs unique to the zygote that are twofold
paternally enriched. A) DBP responsive and 2x paternally enriched. B) 2x
paternally enriched but not DBP responsive. REs required the paternal
contribution to be > twofold the maternal, or the maternal RE abundance
to be < 2 RPKM and paternal RE abundance < 25 and > 2 RPKM. #DIV/0
indicates contribution is solely from the father. Green fill indicates the RE is
shared between two genes in the sperm contributed set.
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Additional file 7: Table S6. Number of paternally provided Chroma-

tin remodeler cofactors, RNA interactors, readers, erasers and writers
(CRREWs). A) Number of paternally provided CRREWSs. B) Number of dibu-
tyl-phthalate (DBP) responsive, paternally provided CRREWs. Representa-
tion factor and p value were determined by hypergeometric probability
test. Paternally provided CRREWs include those that are fivefold paternally
enriched and twofold paternally enriched.

Additional file 8: Table S7. Integrity of specifically paternally provided
and di-butyl phthalate (DBP) responsive transcripts. RNA Element
(RE)-containing RNAs (RE-RNAs) represented respond to DBP addition
and subtraction in the same direction. Visual inspection is based on the
UCSC Genome Browser. Bold text indicates the RE is shared between the
paternally provided and DBP responsive samples, blue text indicates the
DBP responsive RE was associated with the baseline to crossover (B;H or
H,B) comparison and red text indicates the DBP responsive RE was associ-
ated with the crossover to crossback comparison (HB, or BH,). Paternally
provided indicates samples in which the fivefold paternally enriched and
twofold paternally enriched REs were obtained. B;HB,; background DBP
study arm baseline to crossover to crossback, H;BH,; high-DBP study arm
baseline to crossover to crossback. Mean RE abundance is in Reads per
Kilobase per Million (RPKM).

Additional file 9: Table S8. Gene Ontology of dibutyl-phthalate (DBP)
responsive, paternally provided RNA Element (RE)-containing RNAs
(RE-RNAs) not within the enriched biological processes. Ontology was
assigned using EnrichR. Bold text; indicates function related to the
enriched biological processes highlighted in Fig. 2B, italics; indicate

an ontology that is shared by at least two RE-RNAs, na; no ontology
reported, not within EnrichR; the RE-RNA is not recognized by EnrichR,
...; no relevance to enriched biological processes highlighted in Fig. 2B,
B,HB,; background DBP study arm baseline to crossover to crossback,
H,BH,; high-DBP study arm baseline to crossover to crossback, Paternally
provided; fivefold paternally enriched and twofold paternally enriched
RE-RNAs.
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