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Abstract 

Background:  The epigenetic age can now be extrapolated from one of several epigenetic clocks, which are based 
on age-related changes in DNA methylation levels at specific multiple CpG sites. Accelerated aging, calculated from 
the discrepancy between the chronological age and the epigenetic age, has shown to predict morbidity and mortal‑
ity rate. We assumed that deconvolution of epigenetic age to its components could shed light on the diversity of 
epigenetic, and by inference, on inter-individual variability in the causes of biological aging.

Results:  Using the Horvath original epigenetic clock, we identified several CpG sites linked to distinct genes that 
quantitatively explain much of the inter-personal variability in epigenetic aging, with CpG sites related to secreta‑
gogin and malin being the most variable. We show that equal epigenetic age in different subjects can result from 
variable contribution size of the same CpG sites to the total epigenetic age. In a healthy cohort, the most variable CpG 
sites are responsible for accelerated and decelerated epigenetic aging, relative to chronological age.

Conclusions:  Of the 353 CpG sites that form the basis for the Horvath epigenetic age, we have found the CpG sites 
that are responsible for accelerated and decelerated epigenetic aging in healthy subjects. However, the relative 
contribution of each site to aging varies between individuals, leading to variable personal aging patterns. Our findings 
pave the way to form personalized aging cards allowing the identification of specific genes related to CpG sites, as 
aging markers, and perhaps treatment of these targets in order to hinder undesirable age drifting.
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Background
In the past decade, the concept of epigenetic age has 
attracted growing interest and the number of publica-
tions on epigenetic clocks has risen exponentially [1], 

mostly since it appears to reflect at least some aspects 
of the biological age. The epigenetic age can be now 
extrapolated using one of several independently gener-
ated epigenetic clocks, each mathematically constructed 
from time/age-related changes in DNA methylation lev-
els at specific multiple CpG sites that collectively, with 
proper weighting, are highly correlated with chronologi-
cal age [1–5]. Discrepancies between chronological age 
and the calculated epigenetic are presumed to represent 
a measure of biological aging, such that epigenetic age 
acceleration /deceleration signifies accelerated or a rela-
tively diminished rate of biological aging, respectively. 
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Hence, epigenetic clocks can be compared to individu-
als’ chronological ages to assess inter-individual and/or 
inter-tissue variability in the rate of aging [6]. How useful 
and informative this approach could be is exemplified by 
reports that epigenetic age is a predictor of time of death, 
mortality rate [2, 4, 7–9], and susceptibility to diseases, 
such as lung cancer [10], breast cancer [11], and cardio-
vascular events [12].

Time/age-related methylation appears to be a rather 
extensive process as is readily demonstrated by the fact 
that there are several different epigenetic clocks, each 
calculated based on several tens or hundreds different 
methylation sites which mostly do not overlap [13]. Since 
these clocks vary with respect to their linkage to health 
outcomes, it is possible that each detects different pro-
cesses which distinctly contribute to some facets of the 
biological age.

It is presently unknown whether the changes in meth-
ylation profiles which link epigenetic age acceleration 
to mortality and morbidity are simply aging markers or, 
perhaps, active players in the aging process. The implica-
tion of the latter is that reversal of epigenetic age could 
comprise a therapeutic target or at least a measure of 
therapeutic success achieved by various pharmaceutical 
means [14] or perhaps lifestyle modification. For exam-
ple, in murine studies, a reversal of the epigenetic age 
was achieved by reduced caloric intake [15]. Assuming 
that the methylation level of the CpG sites, comprising 
the epigenetic clock, affects specific aging routs through 
modulation of gene expression, inter-personal differences 
in the methylation degree of such sites could offer clues 
not only to differential aging rates but also to variability 
in aging mechanisms in human subjects.

In the present study we focused on the possibility that 
the epigenetic age might be individually determined by 
inter-person differences in the methylation levels of such 
sites. For example, if the epigenetic age is kept fixed at 
Z years, which reflects the sum of three CpG sites, A, B 
and C, how variable is the specific contribution of each 
of them to the epigenetic age among different subjects? 
If A adds most years in one subject, but very little in 
another, might this reflect important differences in their 
aging driving mechanisms? What, if any, are the key epi-
genetic differences between "epigenetically young" and 
"epigenetically old" subjects of the same chronological 
age? This study focuses on the inter-personal variability 
of the components (methylation levels at specific sites) 
comprising the epigenetic age, as a potential tool in pre-
dicting individual’s physiological malfunction, toward the 
development of personalized medicine. To address this 
issue we analyzed the epigenetic age of publicly avail-
able methylation data of 1441 healthy individuals, of the 
ages of 40–80 years, retrieved from Illumina methylation 

arrays. Because of the shorter lifespan of subjects with 
diabetes mellitus we have also analyzed data sets of 89 
diabetic subjects. The epigenetic age was calculated by 
Horvath’s clock, which is based on coefficients, calcu-
lated by a regression model, relating the methylation sta-
tus of 353 CpG sites (β-values) to chronological age.

Results
The epigenetic age distribution.
In the aim of assessing inter-personal variability in the 
aging mechanisms, we first calculated the epigenetic age 
of the 1441 samples. Figure  1 depicts the overall rela-
tion between epigenetic age and chronological age in the 
entire analyzed data set. Individuals with an epigenetic 
age of Avg ± 1SD, (between red and orange lines) com-
prise 71.5% of the data whereas 27% of the data are from 
people with an epigenetic age between Avg ± 1SD and 
Avg ± 2.5 SD (between the orange and the purple lines). 
The 1.5% (n =  18) of the data residing beyond the pur-
ple lines were ignored to avoid large effects of potentially 
uncertain results ("outliers"). The near linear increase of 
the epigenetic age with chronological age demonstrates 
that Horvath’s clock is suitable as age predictor for this 
data set, and that the epigenetic age has a high variabil-
ity between individuals with the same chronological age, 
thus implying that individuals may age differently.

CpG sites with the highest inter‑personal variability
In order to find out the possible cause for inter-personal 
variations in the epigenetic aging, we have searched for 

Fig. 1  The overall relation between epigenetic age and 
chronological age. Each blue point represents a single healthy 
individual. Red dots are the average value of the epigenetic age at 
each chronological age connected by a regression curve (red line). 
All dots between the orange and the red lines represent individuals 
with an epigenetic age between Avg and Avg ± 1SD. Dots residing 
between the orange and the purple lines represent individuals with 
an epigenetic age between Avg ± 1SD and Avg ± 2.5 SD. Eighteen 
blue dots residing below or above the purple lines were considered 
as outliers
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CpG sites that were the most variable among subjects, in 
terms of years added/subtracted by that site to/from the 
total epigenetic age. Epigenetic age-related DNA meth-
ylation is sex specific [8, 16] as also shown in Additional 
file 1: Figure S1. The β value of the components of the epi-
genetic age (Horvath’s 353 CpG sites in Additional file 2) 
for the same chronological age group is also affected 
by sex, Sect.  2.3 in Additional files 1  and 3. Hence, we 
have examined whether the inter-personal variability of 
the components of the epigenetic age is affected by sex, 
as well. Additional file 1: Tables S2 and S3 lists the CpG 
sites that reached the top 20 most inter-personal vari-
able sites in 7 out of 8 chronological age groups, sepa-
rately for men and women, according to the size of their 
average SD (in years, from top to bottom). We show that 
most of these top inter-personal variable CpG sites were 
common for men and women, with very similar SD. We 
therefore decided to treat our data with no sex distinc-
tion and selected nine CpG sites that were most variable 
between individuals and were seen as prominently vari-
able in both women and men (with similar SD) across the 
chronological age span of 40–80  years. These sites and 
the genes close to/ within which they are located are 
listed in Table 1, ranked from the one showing the largest 
inter-personal variation (largest average SD of all chrono-
logical age groups) to the smallest. The two most domi-
nant variable sites are related to secretagogin (SCGN) 
and malin [NHL Repeat Containing E3 Ubiquitin Protein 
Ligase 1 (NHLRC1)]. Eight probes out of the 9 most vari-
able probes selected were found to be independent of the 
population size (≥ 80% confidence). Specifically, secre-
tagogin and malin were selected in 100% and 98% of the 
statistical simulations, respectively, indicating independ-
ence of the population size (Additional file 1: Table S4).

Notably, genes whose CpG sites showed the largest var-
iation (SD) also contributed a sizable positive or negative 

age years to the calculated epigenetic age. However, 
inter-subject variability in methylation size effect was 
not simply a reflection of the magnitude of the contribu-
tion to age (in years). For example, the CpG site on type 
1 hair keratin, protein phosphatase 1 regulatory (inhibi-
tor) subunit 14/7, and the CpG site on testis expressed 
sequence 286 genes, which both have added/ subtracted 
more than ± 6.3 years to/ from the epigenetic age, did not 
add considerably, on average, to the inter-personal epige-
netic age variability.

We have examined the correlation between the meth-
ylation levels of CpG sites with the highest inter-personal 
variability (from Horvath’s clock) and other CpG sites 
residing on the same gene. The level of the correlation 
was found to be related to the proximity of the CpG sites 
to one another and their location on the gene or its regu-
latory elements (Additional file  1: Figure S2, and Addi-
tional file 4). This indicates that the methylation level of 
the site included in the calculation of the epigenetic age 
provides good representation of the methylation status of 
neighboring sites and is therefore likely to be related to 
gene expression, if it resides on the promoter or another 
regulatory region.

Inter‑personal variations in the epigenetic age 
composition in subjects with identical epigenetic age
Quantitative variability in the aging vectors was not only 
found in individuals with identical chronological age and 
different epigenetic age but also in subjects with identi-
cal chronologic and epigenetic age. For example, Fig.  2 
illustrates the heterogeneity of the contribution to the 
epigenetic age (in years) of the nine CpG sites that tend 
to vary the most among subjects. Figure  2A shows two 
men, both at the chronological age group of 40–41, with 
a similar epigenetic age of 40–41. Despite these similari-
ties, malin (NHLRC1) contributes more than 9.5 years to 

Table 1  CpG sites with the highest inter-personal methylation variability in healthy population

* No sign for the contribution, in years, for each probe means a positive age contribution; a minus sign indicates a negative age contribution

Related gene symbol Related gene definition/product Illumina’s CpG ID Contribution to 
epigenetic age (years)*

SD of the age 
contribution 
(years)

SCGN Secretagogin cg06493994 7.1 2.1

NHLRC1 Malin cg22736354 9.3 1.8

MIR7-3HG MIR7-3 Host Gene cg02479575 1.8 1.0

FZD9 Frizzled 9 cg20692569 6.8 0.9

SCAP SREBP cleavage-active protein cg26614073  − 4.7 0.7

REEP1 Receptor expression enhancing protein 1 cg01968178 2.5 0.7

CSNK1D Casein kinase 1 delta cg19761273  − 4.3 0.7

FXN Frataxin cg07158339  − 4.6 0.7

NDUFS5 NADH dehydrogenase Fe-S protein 5 cg07388493  − 4.8 0.7
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the epigenetic age in man P2 but only 7.5 years in man 
P1, a difference which is offset by larger contributions of 
at least two CpG sites linked to age lowering, which are 
mapped on SCAP and FXN genes. Next, Fig.  2B shows 

two men at a chronological age of 40–41  years. Larger 
"aging" contribution of all major positive contributors, 
generated a larger cumulative aging effect in subject P3 
compared to subject P4, amounting to a pro-aging effect 
of 9.5  years. Since both men have an epigenetic age of 
45–46 years, this is offset, to some extent, by methylation 
state of CpG sites that lower the epigenetic age, particu-
larly, in this case, sites mapped on the genes: CSNK1D 
FXN and SCAP. In the final example (Fig. 2C), two men 
of the same chronological age group of 40–41 have a 
markedly accelerated epigenetic aging of 50–51  years. 
However, age acceleration is driven by higher aging effect 
of CpG sites mapped to NHLRC1, SCGN, and REEP1 in 
man P5, with a higher age-reducing effect of CSNK1D 
and SCAP, which only slightly makes up for the stronger 
pro-aging CpG sites in this person. Presumably, the 
cumulative effect of other negative age contributors (that 
are less variable) is responsible for equalizing the epi-
genetic age in this latter pair. These data imply that age 
acceleration at the same chronological age to the same 
higher or to the same equal epigenetic age can be reached 
by a highly variable methylation profile of the genes 
whose variation in general is the largest. This could sig-
nify inter-subject differences in the mechanisms underly-
ing aging processes.

Key CpG sites as age accelerators or decelerators
Figure 1 shows that almost a third (27%) of the individu-
als in our data set, spanning all chronological ages, and 
gender reside between Avg ± 1SD and Avg ± 2.5SD (dots 
between orange and purple lines). To detect which CpG 
sites (and their associated genes) were the major contrib-
utors to age acceleration, we applied a "greedy algorithm" 
to the group of "epigenetically old" individuals (individu-
als whose epigenetic age resides between 1SD to 2.5SD, 
above the average epigenetic age line) and found that the 
site responsible for the largest "unfavorable aging" effect 
in 29% of the "epigenetically old" individuals is mapped 
to the secretagogin gene (Fig. 3A). The remaining 70% of 
the "epigenetically old" individuals were then tested for 
the second largest ager found to be malin. Once malin is 
consecutively normalized into the average zone, the epi-
genetic age of 12% of "epigenetically old" individuals is 
shifted to the average zone. This is followed by frataxin, 
responsible for 7%, and so on. Since frataxin is a negative 
age contributor, its effect is depicted by smaller age low-
ering vector. The entire group of genes related to the CpG 
sites, responsible for the accelerated aging of 80% of the 
healthy population, is presented in Fig. 3A. The CpG sites 
associated with secretagogin, malin, MIR-7, and SCAP 
were found to be age accelerating components, inde-
pendent of the population size (≥ 95% confidence, Addi-
tional file 1: Table S5).

Fig. 2  Inter-personal variability in the epigenetic age composition 
of individuals with the same chronological age of 40–41 years old 
and the same epigenetic age of A 40–41 years, B 45–46 years, and C 
50–51 years. Left and right panels are for CpG sites on genes which 
add or subtract from the epigenetic age, respectively. The genes 
presented according to the color codes at the bottom of each graph 
are related to the CpG sites which belong to the nine sites with the 
highest variability
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The same key players, with some change in the mag-
nitude and order of their effect and some new effectors’, 
stood out when we searched for the genes associated 
with the CpG sites responsible for lowering the epi-
genetic age (age decelerators) from the Avg—1SD age 
zone to an epigenetic age of less than -1SD down to – 
2.5 SD (Fig. 3B). Secretagogin and malin were the larg-
est contributors to age deceleration, accounting for 
25% and 14% of the "epigenetically young" individuals, 
respectively. The cumulative percentage of individuals 

moving from the epigenetic old/young group to the 
Avg ± 1SD (black line in Fig. 3A and B) shows that up 
to 80% of the epigenetically old/young individuals had 
a single key prominent gene, responsible for accelerated 
or decelerated aging.

Collectively, then, many of the CpG sites or their asso-
ciated genes that are responsible for inter-personal vari-
ation in the makeup of the epigenetic age are also major 
players that act as "age accelerators" or "decelerators," 
depending on their methylation status. The fact that the 
same two CpG sites, residing near the genes secretago-
gin and malin, are responsible for the accelerated aging 
of 41% of the population and for the decelerating aging 
of 39% of the population (i.e., the same two CpG sites are 
responsible for the fact that 27% of individuals in our data 
set reside between Avg ± 1SD and Avg ± 2.5SD), implies 
that the key CpG sites responsible for individuals residing 
between average ± 1SD and average ± 2SD of the epige-
netic age are not random or due to noise fluctuation. In 
addition, we show in our bootstrapping simulations that 
these two genes are age accelerators/ decelerators with 
above 98% confidence (appearing in above 98% of the 
simulations), implying no coincidence in the selection of 
these key components (Additional file 1: Table S5).

Personalized epigenetic aging card
Finally, a putative "personal epigenetic aging status card" 
can be produced for each individual tested by the Hor-
vath epigenetic clock. The aging card is based on the 
methylation status of the nine CpG sites that were found 
to consistently contribute more than others to the inter-
personal variability in both the men and women cohorts 
and over eight age groups spanning 40 to 80  years. As 
such, this card is adequate for the aging analysis of both 
sexes and to individuals at the age range of 40 to 80 years. 
As shown in Fig.  4 for 7 individuals, all at the same 
chronological age of 40–41, this card grades each subject 
for the accelerating (orange to red cells, Fig. 4) or decel-
erating effect (green cells, Fig. 4), in years of each of the 
nine most variable CpG sites. The grades are the relative 
deviation of the age contribution of each CpG site from 
its average contribution to the epigenetic age. If the dif-
ference between the calculated epigenetic age of a certain 
individual and the average epigenetic age cannot be sig-
nificantly explained by these sites, the clock can be fur-
ther interrogated to reveal other sites, with less common 
age effect, which might explain deviations from the aver-
age epigenetic age. This process may eventually evolve as 
an individualized panel of aging effects, much like a rou-
tine biochemistry panel as presently assessed at the clini-
cian’s office to detect indicators of disease, by their actual 
deviation from the normal range.

Fig. 3  key genes associated with CpG sites, considered as age 
accelerators/ decelerators. A Blue bars present the percentage of 
individuals from the "epigenetically old" group which moved to the 
Avg + 1 SD group after setting consecutive CpG sites (presented 
with the name of their related gene) to their mean epigenetic age 
contribution, starting from the CpG site which moved the highest 
number of individuals to the lowest. B Blue bars are the percentage 
of individuals from the "epigenetically young" group who moved 
to the Avg—1 SD after setting consecutive CpG sites to their 
mean epigenetic age contribution, starting from the site which 
moved the highest number of individuals to the lowest. The black 
line is the cumulative percentage of individuals moving from the 
"epigenetically old (A) /young (B)" group to the average group
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Epigenetic aging variability in diabetes mellitus
In order to find the CpG sites responsible for the vari-
ability in the epigenetic aging of diabetic subjects, we first 
calculated their epigenetic age, using Horvath’s epige-
netic clock. Our diabetic data set consisted of 89 subjects 
of whom 63 had type 1 diabetes (T1D) and 26 had type 
2 diabetes (T2D) at the age ranges of 40–70  years and 
65–80 years, respectively. Figure 5 depicts the calculated 

epigenetic age of the diabetic subjects as a function of 
their chronological age, superimposed on the epigenetic 
age graph, presented for the healthy population in Fig. 1. 
According to Fig.  5, the epigenetic age of the T1D sub-
jects (red and black triangle marks, Fig. 5) was lower than 
the average epigenetic age of the healthy population (bel-
low the red diagonal circles in Fig. 5) and the epigenetic 
age of the T2D subjects (green triangle marks, Fig.  5) 
was around the average epigenetic age of the healthy 
population (around the red diagonal circles in Fig. 5). In 
addition, no differences were observed in the average epi-
genetic age of T1D subjects receiving intensive treatment 
and showing no complications (red triangle) and those 
on conventional therapy who also developed albuminuria 
and/ or diabetic retinopathy (black triangle).

The CpG sites which contributed the largest number 
of years to the inter-personal variations in the epige-
netic age of the diabetic subjects (highest SD, in years) 
were first derived separately for the T1D and T2D data 
sets. The 20 CpG sites that showed the largest inter- per-
sonal variability that were consistently present in all 5 
and 3 chronological age groups, in the T1D and T2D data 
sets, respectively, are listed in Additional file 1: Tables S6 
and S7. Since the leading 5 most variable CpG sites were 
common for both T1D and T2D, we combined these 
data sets and treated them as a diabetic data set so as to 
cover the entire studied range of chronological ages with 
a better statistical power. The results of the analysis of 
the combined file, including the ranked list of the most 
variable sites, the magnitude of their variability (i.e., SDs), 
and their associated genes, are provided in Table 2. As in 
the healthy population, the two most variable sites in the 
diabetic data set were related to malin (NHLRC1) and 
secretagogin (SCGN). Frizzled 9 (FZD9) also reached the 
top 5 sites both in the healthy and in the diabetic cohorts. 
However, two new CpG sites that are related to PRKC 
Apoptosis WT1 Regulator (PAWR) and L-pipecolic acid 

EA 
(years) Person NHLRC1 SCGN FZD9 REEP1 MIR7-

3HG CSNK1D FXN SCAP NDUFS5

41.3 P1 -0.4 -0.2 0.0 0.1 -0.2 0.3 0.4 1.7 0.4
40.6 P2 1.5 -0.4 -0.2 0.2 -0.6 -1.0 -1.2 -0.9 0.2
46.5 P3 0.8 1.5 0.2 0.4 1.0 -0.2 0.4 0.1 0.1
45.4 P4 -2.0 -1.7 -0.9 -0.6 -0.3 1.3 0.7 0.6 -0.7
45.3 P6 1.0 1.7 -0.2 -0.4 0.9 -0.8 0.2 0.3 0.6
50.8 P5 2.4 1.9 0.5 1.0 0.5 -0.8 0.4 -0.2 0.7
50.6 P7 2.0 0.7 0.7 0.0 0.3 -0.8 0.7 -0.1 0.4

Fig. 4  Personalized epigenetic gene card: colored cells are the deviation of the epigenetic age contribution (in years) of the CpG sites or their 
associated genes from their average epigenetic age contribution, for seven individuals at chronological age of 40–41 years (sample number is # 
GSM). The average epigenetic age for 40–41 years old men is 45.7 years. We show two samples ~ 5 years below epigenetic average age (light gray), 
three samples at average epigenetic age (darker gray), and two samples ~ 5 years above epigenetic average age (dark gray). Cells with orange to red 
colors are for genes associated with CpG sites with age contribution above average. Cells in green, or light green, associate with CpG sites on genes 
with age contribution below average

Fig. 5  The overall relation between epigenetic age and 
chronological age, including the samples from diabetic subjects. Each 
blue point represents a single healthy individual. Red dots are the 
average value of the epigenetic age of the healthy cohort at each 
chronological age. The diabetic subjects are represented by triangles, 
superimposed on the general healthy cohort; red triangles are for T1D 
subjects receiving intensive treatment and are free of complications; 
black triangles are for T1D subjects receiving conventional therapy 
who developed microvascular complications (albuminuria and /or 
retinopathy); and green triangle marks are for T2D. All dots between 
the orange and the red lines represent individuals with an epigenetic 
age between the average and average ± 1SD. Dots residing between 
the orange and the purple lines represent individuals with an 
epigenetic age between the average ± 1SD and the average ± 2.5 SD
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oxidase (PIPOX) genes emerged at the top most vari-
able sites only in the diabetic cohort. Interestingly, in the 
healthy population the site related to PAWR gene appears 
among the 20 CpG most variable sites only in the age 
groups of 55  years or higher (data not shown), whereas 
in the diabetic population the PAWR site appears as the 
third most variable gene in all age groups.

Discussion
Following the pioneering reports by Horvath [1] and 
Hannum [5], it is now widely recognized that epigenetic 
age and chronological age correlate well with each other 
in many populations, regardless of the tissue studied [1]. 
In several publications a potential functional role has 
been ascribed to the CpG sites that participate in the 
algorithms developed to derive the epigenetic age [3]. For 
example, accelerated epigenetic age relative to chrono-
logical age is reportedly linked to preferential activation 
of pro-inflammatory and interferon pathways, along 
with reduced stimulation of transcriptional/translational 
machinery, blunted DNA damage response, and weak-
ened mitochondrial signatures [3, 17]. This supports the 
notion that the epigenetic age does not simply mirror 
randomly the passage of time but reflects specific anti-
homeostatic effects that may lead to or indicate specific 
unfavorable conditions which facilitate disease and affect 
life span.

The possibility that specific epigenetic aging drivers 
can be targeted to achieve personalized epigenetic/bio-
logical age deceleration can become a testable approach. 
In the present study we examined which of the CpG sites 
included in the original Horvath DNAm algorithm are 
the major contributors to inter-personal differences in 
the epigenetic age. We found that the CpG sites related 
to malin and secretagogin have relatively high contribu-
tion to the epigenetic age and the most variable meth-
ylation status in between individuals both in the healthy 
and the diabetes cohorts. Additionally, in the healthy 
cohort, differences in the methylation status of secretago-
gin and malin contributed more than any other methyla-
tion loci, to the difference between epigenetically old and 

epigenetically young subjects, across the entire age span 
screened by us (40–80 years) (Fig. 3).

Notably, both the secretagogin and malin-related 
CpG sites are among the 5 shared by three known DNA 
methylation-based epigenetic clocks, Hannum DNAm 
Age score (based on 71 methylation sites) [5], Horvath 
DNAm Age measure (353 sites) [1], and the DNAm Phe-
noAge score (513 sites) [2], and were also suggested to 
be the most dominant key age predictor sites [18]. Might 
these genes, then, be mechanistically involved in aging?

The malin gene encodes a RING type E3-ubiquitin 
ligase which forms a functional complex with laforin, 
a glucan phosphatase [19]. Mutations in either malin 
or laforin in humans lead to the development of Lafora 
progressive myoclonus epilepsy, a rare fatal neurode-
generative disease with early manifestations in the early 
childhood. Brain damage is incurred due to deposition 
underbranched and hyperphosphorylated insoluble gly-
cogen in the brain and peripheral tissues [20–22]. It is 
notable that glucan deposits have been described in the 
setting of aging animals and humans [23–25], unrelated 
to Lafora disease, which raises the possibility of lesser 
malin activity with age. Indeed, malin appears to partici-
pate in a delicate homeostatic network linking neuronal 
glycogen synthesis and energetic utilization, interacting 
with autophagy, mitochondrial function, and response 
to thermal stress, which could collectively affect lifes-
pan [19, 25–28]. The possibility that malin expression, 
which is critical for inhibition of polyglucan deposits in 
neurons, plays a role in healthful longevity in humans 
is intriguing and requires targeted research. In animal 
studies malin deficiency can lead to impaired autophagy 
and accumulation of dysfunctional mitochondria, which 
eventually promote neurodegeneration, immune disor-
ders, cancer, and accelerated aging [27].

Secretagogin is an intracellular calcium sensor and 
facilitator of insulin secretion by pancreatic islet beta 
cells [29]. Recently it was shown that secretagogin plays 
a critical role in the second phase of glucose-stimulated 
insulin secretion [30], protects against insulin aggre-
gation, and enhances peripheral response to insulin 
[31]. Concordant with this broad role in carbohydrate 

Table 2  CpG sites with the highest inter-personal methylation variability in the combined T1D + T2D cohort

Related gene 
symbol

Related gene definition/product Illumina’s CpG ID Contribution to epigenetic 
age (years)*

SD of the age 
contribution 
(years)

NHLRC1 Malin cg22736354 9.6 1.7

SCGN Secretagogin cg06493994 7.6 1.4

PAWR​ PRKC Apoptosis WT1 Regulator cg00864867 3.2 1.2

PIPOX L-pipecolic acid oxidase cg06144905 3.3 0.7

FZD9 Frizzled 9 cg20692569 6.6 0.6
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handling, secretagogin knockout leads to hyperglycemia 
[32]. Secretagogin is also expressed in neuroendocrine 
cells where it likely regulates exocytosis and hormone 
release [33, 34]. Concordantly, it is also involved in dan-
ger avoidance behavior through the control of post syn-
aptic cell surface availability of NMDA receptors in 
the central amygdala [35]. We are not aware, however, 
of published reports examining the relation between 
induced changes in secretagogin expression and lifespan 
or longevity.

Of major interest in the Horvath algorithm are CpG 
sites with a negative contribution to the epigenetic age, 
such as frataxin. Frataxin is a nuclear-encoded mito-
chondrial protein which is part of the Fe-S-cluster-con-
taining proteins acting as an iron chaperone, thereby 
allowing normal function of the mitochondrial respira-
tory chain [36]. In our analysis frataxin shows both high 
inter-personal variability and also partly explains some 
(~ 8%) of the calculated age difference between epige-
netically old and average subjects (Fig. 3A). The fact that 
higher methylation of frataxin can extend life, as indi-
rectly suggested by its epigenetic age lowering effect is 
somewhat counterintuitive: defects in the expression of 
this mitochondrial protein cause the neurodegenerative 
syndrome of Friedreich’s ataxia [37, 38], which is also 
accompanied by cardiomyopathy, diabetes mellitus, and 
reduced life expectancy [39]. However, inactivation of 
many mitochondrial genes in the nematode Caenorhab-
ditis elegans by RNAi was actually shown to extend lifes-
pan [40]. Ventura et al. reported that suppression of the 
frataxin homolog gene (frh-1) prolonged lifespan in the 
nematode, along with an altered phenotype of smaller 
size, diminished fertility, and variant responses to oxida-
tive stress. Thus, whereas sizable inactivation of frataxin 
causes a disabling disease, a more moderate frataxin sup-
pression, such as achieved by RNAi, could lead to higher 
lifespan as seen in C. elegans [41]. There is evidence that 
frataxin silencing induces mitochondrial autophagy as 
an evolutionarily conserved response to the ensuing iron 
starvation [36]. In a broader sense, lesser frataxin avail-
ability might comprise a surmountable challenge which 
elicits mitophagy that eventually preconditions the cell’s 
capacity to sustain future stress, thereby increasing the 
likelihood of extended lifespan.

Our findings of inter-personal variabilities in the epi-
genetic age components of the healthy population have 
raised our interest in discovering epigenetic age patterns 
of individuals with biological age accelerating diseases, 
such as diabetic patients. Our results did not reflect epi-
genetic age acceleration for T2D and showed rather the 
opposite, for T1D subjects which had lower epigenetic 
age than the average of the healthy population (under 
the red curve in Fig.  5). Nevertheless, these results are 

in agreement with earlier publications which have also 
used chronological age-based epigenetic age calculators, 
such as Horvath’s epigenetic clock [8, 42]. This may indi-
cate that the CpG probes chosen for the construction of 
such epigenetic age clocks do not reflect variations in 
DNA methylation leading to epigenetic age drifting in 
diabetes or its complications. What makes the T1D pop-
ulation “epigenetically younger” according to the aging 
clock used in this study would be an interesting question 
for future investigations. Notably, a different epigenetic 
clock type, the “DNAm GrimAge,” which incorporates 
DNA methylation sites related to surrogate biomarkers 
of smoking level and of selected plasma proteins, that are 
strongly associated with mortality and morbidity, may be 
a better choice for predicting age acceleration in diabetics 
[3, 4, 42].

Of the top five most variable age components that are 
found solely in the diabetic cohort, PAWR is a tumor sup-
pressor gene, inducing selective apoptosis of cancer cells 
[43–45], and may thus be related to association of aging 
with higher cancer rates. Another components is related 
to PIPOX which catalyze the oxidation of L-pipecolate, 
an intermediate step in the catabolic process of L-lysine 
to acetyl-CoA, produced in the pipecolate pathway [46, 
47]. Elevated levels of lysine were found to be associ-
ated with higher risk for the development of T2D and for 
T2D-concomitant cardiovascular disease (CVD) [48]. In 
addition, PIPOX promotes sarcosine oxidative N-dem-
ethylation, yielding glycine [49], as part of the sarcosine 
pathway, which is involved in the methionine cycle [50–
53]. The methionine cycle is responsible for the produc-
tion of S-adenosylmethionine (SAM), the methyl donor 
substrate in the process of cytosine DNA methylation by 
the family of DNA methyl transferase (DNMT) enzymes. 
Differential levels of PIPOX and sarcosine were observed 
in several types of cancers [49, 54]. In addition, methio-
nine cycle restriction and regulation of SAM production 
were shown to extend lifespan in various animal models 
[55].

Conclusions
Overall, our analysis reveals sizable inter-personal dif-
ferences in the contribution to age of methylation sites 
of several genes. It is also possible that there is a shift in 
the epigenetic age vectors in diabetes mellitus patients 
that are not necessarily detected by the computation of 
the mean epigenetic age per se. In the healthy cohort, 
genes, such as, but not limited to, secretagogin, malin, 
and frataxin, stand out in terms of either the size of their 
effect on inter-personal differences in the composition of 
the epigenetic age as well as their influence on the like-
lihood for an individual to acquire enhanced or delayed 
epigenetic aging. This analysis also unravels that even 
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healthy subjects with average epigenetic aging could 
show accelerated aging with respect to some genes. In the 
same venue, epigenetically healthy older subjects are also 
heterogeneous and could be pushed to unfavorable epi-
genetic drifting by different aging vectors. Interestingly, 
malin and secretagogin were also found to be the most 
variable age components in diabetic subjects. Two addi-
tional age components, PIPOX and PAWR, entered the 
top 5 most variable sites, only in diabetic patients. This 
paves the way for future attempts to personalize the per-
ception of epigenetic aging by deconvolution, addressing 
aging not as a general process in search of reversal, but 
as a collection of individual effects requiring personalized 
attention.

Materials and methods
Methylation data
The β values which reflect the methylation status of 
each CpG site were retrieved from the Gene Expression 
Omnibus (GEO) Data sets repository. Following filtra-
tion for whole blood and healthy subjects at the age range 
of 40–80  years old, we obtained 2298 samples, from 23 
different data sets. All filtered samples were normalized 
using an R-code provided by Horvath et al. [2]. Samples 
that failed Horvath’s normalization process (accounting 
for the two different designs of the methylation arrays, 
Type-I and Type-II) [2], were removed, leaving a total 
of 1,441 samples for interrogation, (867 females and 
574 males). We also analyzed two other distinct cohorts 
of diabetic subjects (n = 89) with whole blood samples 
from the same age range, diagnosed with diabetes (63 
T1D, age range 40–65 years old, 31 women and 32 men 
and 26 T2D, age range 65–80  years, 11 women and 15 
men), a disease possibly linked to accelerated biological 
aging [56–58]. Detailed description on the data sets and 
the processes involved in the selection of the samples we 
have analyzed are shown in Additional file  1: Table  S1, 
detailed materials and methods section, in Additional 
file 1.

Epigenetic vs chronological age
For each sample we extracted the β values of Horvath’s 
353 CpGs clock sites and converted them to age contri-
bution based on their coefficients, calculated as explained 
by Horvath et  al. [2]. The epigenetic age of each of the 
1,441 individuals is the sum of the contribution plus a 
constant (representing the intercept of the linear correla-
tion), in years, of all 353 CpGs (Additional file 2). In order 
to smooth the average (Avg) and standard deviation (SD), 
we used a running average and a running standard devia-
tion of the epigenetic age with a window size of 3 (details 
in materials and methods section of Additional file 1).

CpG sites with the highest inter‑personal variability
The 1441 healthy samples were first divided accord-
ing to gender. Each gender group was further divided to 
8 chronological data sets by age groups spanning from 
the age of 40 to the age of 80 years. At each chronologi-
cal data set, we recorded 20 CpG sites from a total of 
353 CpG sites from Horvath’s clock, with the highest 
inter-individual variability calculated as average standard 
deviation (average SD, in years). The average SD was cal-
culated separately for each chronological age group and 
was expressed in years. Out of these outstanding 20 CpG 
sites we then identified the CpG sites which were also 
consistently present at least in 7 chronological age data 
sets, for each sex (Additional file  1: Tables S2 and S3). 
Most of the top CpG sites responsible for the variability 
within the population, across all chronological age data 
sets, were common to both men and women. We there-
fore decided to treat the data with no sex distinction. 
As a result, the entire data set of 1441 healthy samples 
was re-divided to 8 chronological data sets by age groups 
spanning from the age of 40 to the age of 80 years regard-
less of the sex (40–44 (189); 45–49 (215); 50–54 (217); 
55–59 (223); 60–664 (220); 65–69 (177); 70–74 (120); 
75–80 (80), years (number of subjects)).

A similar process was applied for the diabetic cohort; 
we first looked for the most variable CpG sites in the data 
sets of T1D and T2D, separately. We divided each data 
set to chronological age groups with five years’ inter-
vals: 5 chronological age groups spanning 40 to 65 years 
and 3 chronological age groups spanning 65 to 80 years, 
for T1D and T2D, respectively. We then recorded the 
20 CpG sites with the highest inter-individual variabil-
ity (average SD, in years) for each age group within each 
data set. We found, for each data set, 8 CpG sites which 
were consistently present in at list 5 and 3 chronological 
age groups in the T1D and T2D, respectively (Additional 
file 1: Tables S6 and S7). The 5 most variable CpG sites 
out of the 8 selected, across all chronological age groups, 
for each data set, were common to both T1D and T2D 
with slight differences in the magnitude of their vari-
ability (average SD, in years). Based on these results, we 
combined the T1D and T2D data sets as a consequence 
all age groups were covered in a single unified data set so 
as to allow a more valid analysis (due to larger number of 
subjects in the data set). We then divided the combined 
diabetic data set of total 89 subjects to 8 chronological 
age groups with 5  years’ intervals, spanning from 40 to 
80 years, (40–44 (10); 45–49 (12); 50–54 (14); 55–59 (17); 
60–664 (9); 65–69 (5); 70–74 (12); 75–80 (8), years (num-
ber of subjects)).

Finally, in order to find the most variable CpG sites 
in both healthy and diabetic data sets, we recorded the 
20 CpG sites from Horvath’s clock with the highest 
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inter-individual variability (standard deviation, SD, in 
years) at each chronological age group. We then identi-
fied 9 and 5 CpG sites out of these 20 CpG sites that were 
consistently present in each of the 8 chronological age 
groups of the healthy and diabetic cohorts, respectively. 
A statistical simulation, examining the relation between 
the identified CpG sites and the size of the cohort, was 
manifested as explained in Additional file 1.

CpG sites as age accelerators or decelerators
Key epigenetic age accelerators or decelerators were 
found by looking for the probes with the highest cumu-
lative contribution to the epigenetic age. The data set 
was divided into as follows: 1) the "epigenetically aver-
age" group including all samples with epigenetically age 
of the running average ± 1 SD (the population in between 
the two orange lines), 2) the "epigenetically old/young" 
group, with an epigenetic age between 1 SD and 2.5 SD 
above or below the average (the population in between 
the upper/lower orange and purple lines, respectively), 
and 3) the outliers, which have an epigenetic age with 
more than 2.5 SD from the average (the population above 
the upper or below the lower purple lines).

For the "epigenetically old" and the "epigenetically 
young" population, a greedy algorithm was applied. The 
algorithm calculates, for each probe, the number of indi-
viduals that moved from the "epigenetically old" or the 
"epigenetically young" to the "epigenetically average" 
group, as a result of setting a particular probe to its mean 
epigenetic age contribution value (in years). In each itera-
tion, the algorithm selects the probe which moves the 
largest number of samples into the "average group": In 
the first iteration, the CpG site selected is the one which 
moves the highest number of subjects into the aver-
age zone, (by setting it to its average value). In the sec-
ond iteration, the probe selected is the one which moves 
the most individuals in the residual "epigenetic older/ 
younger" zone to the average epigenetic age group and so 
on. The bars in the graph shown in Fig. 3 present the per-
centages of individuals from the entire 1441 population, 
passing from the "epigenetically old/ young" to the aver-
age group when all consecutive CpG sites are set to their 
mean epigenetic age contribution (Additional file 1).

Personalized epigenetic aging card
A personal epigenetic card is presented for 7 healthy 
individuals, with chronological age of 40–41  years, as 
the deviation (in years) from the mean epigenetic age 
contribution of each of the 9 chosen probes. The mean 
epigenetic age contribution of each probe is the average 
addition/subtraction of each probe, to/ from the average 
epigenetic age at 40–41 years.
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